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Abstract: Radar-based breast imaging has shown promise as an imaging modality for early-stage
cancer detection, and clinical investigations of two commercial imaging systems are ongoing.
Many imaging algorithms have been proposed, which seek to improve the quality of the reconstructed
microwave image to enhance the potential clinical decision. However, in many cases, the radar-based
imaging algorithms have only been tested in limited numerical or experimental test cases or
with simplifying assumptions such as using one estimate of permittivity for all patient test
cases. In this work, the potential impact of patient-specific permittivity estimation on algorithm
comparison is highlighted using representative experimental breast phantoms. In particular, the case
studies presented help show that the permittivity estimate can impact the conclusions of the
algorithm comparison. Overall, this work suggests that it is important that imaging algorithm
comparisons use realistic test cases with and without breast abnormalities and with reconstruction
permittivity estimation.
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1. Introduction

Radar-based imaging is an emerging modality for breast cancer detection [1]. In recent years,
a number of clinical studies have been published [2–7], including the commercially available MARIA R©

system (Micrima Ltd., Bristol, UK). A competing system developed by Microwave Vision Group
(Villebon-sur-Yvette, France) is being used in clinical investigations at the National University of
Ireland Galway (Ireland) [8–10]. The increasing amount of clinical studies of microwave breast
imaging systems is motivating further research into the optimal imaging algorithms and system design
which can maximize the clinical efficacy of radar-based breast imaging [11].

Several imaging reconstruction algorithms for radar-based imaging have been developed
(known as beamformers) and many introductory books, comprehensive reviews and open-source
implementations of these algorithms have been published [12–15]. These beamformers have also
been compared using a variety of test cases with both numerical and experimental breast phantoms
and patient images [16–22]. However, many comparative studies to date have used a limited set of
beamformers [16], simplified numerical models [17,20], idealized artefact removal algorithms [18],
or considered only test situations with abnormalities [21]. A more exhaustive comparative study using
five clinical case studies identified that the Delay-Multiply-and-Sum (DMAS) algorithm achieved
the highest signal-to-clutter ratios (SCRs) for the five clinical case studies, but did not consider the
potential impact of variations in breast dielectric properties between the five patients [22].
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However, it is known that an incorrect estimate of the breast dielectric properties can impair
the image quality of radar-based breast images [23]. In particular, assuming the same estimate of
breast dielectric properties for each test case has been shown to impair the sensitivity of radar-based
breast imaging where tumors are not correctly detected [24]. Several methods to identify the
optimal patient-specific dielectric properties have been proposed [25,26], many of which rely on the
properties of the reconstructed image. Similarly, some preliminary studies have suggested that DMAS
beamformer may “improve” the image quality in cases where no abnormalities exist [22,27]. However,
to date, no study has analyzed the impact of different reconstruction algorithms on patient-specific
permittivity estimation algorithms, nor has the potential benefit of improved imaging algorithms been
examined with patient-specific estimation algorithms.

The goal of this study is to examine the impact of patient-specific permittivity estimation
algorithms on beamformer comparisons in healthy and tumor experimental models. Although
patient-specific permittivity estimation and sophisticated beamformers have been shown to improve
image quality independently in certain cases, the impact of patient-specific permittivity estimation
on beamformer comparative studies is unknown. The remainder of this paper is structured as
follows: Section 2 reviews the beamformers which have been proposed in the literature as well as
patient-specific permittivity estimation algorithms. Section 3 describes the experimental set-up used to
test the algorithms. The results are presented in Section 4 and, finally, Section 5 concludes the paper.

2. Background

Many reviews, books and editorials have been published about microwave imaging and
microwave breast imaging in recent years [1,11–15,28–37] which describe the mathematical background
and existing literature of the method. Broadly speaking, microwave breast imaging algorithms attempt
to infer information about the dielectric contrast of the breast, and correspondingly, information
about any tumors or other abnormalities present. The subject of this work is radar-based imaging,
a qualitative technique which reconstructs an energy map of the backscattered energy within the breast.
As tumor tissues often have the highest dielectric properties [1], large reflections occur at tumor tissue
boundaries. In areas of high dielectric contrast (i.e., tumors), these reflections cohere and result in high
image energy, whereas in areas of lower contrast, these reflections do not cohere and result in lower
image energy.

The Delay-and-Sum (DAS) imaging algorithm was the first proposed for radar-based breast
imaging and has been used in both mono- and multistatic configurations [38,39]. Mathematically, DAS
can be represented as follows:

I(r) = w(r)
∫
Ω

P(ω)
∫
A

∫
A′

wa,a′(r)Ea,ω(a′) exp
[
jωτa,a′(r, ω)

]
da da′ dω (1)

where the image intensity, I(r), at the point r is calculated from the scattered energy, Ea,ω(a′), recorded
at antenna a′ ∈ A′ while the incident signal, P(ω), is transmitted from antenna a ∈ A at angular
frequency ω ∈ Ω. The propagation time for a signal from the transmitting antenna, a, to the point of
interest, r, and back to the recording antenna, a′, is represented by τa,a′(r, ω). DAS has been used in
most patient imaging studies to date [3–5,40], and most comparative studies on imaging algorithm
performance have used numerical or experimental data only [1,22].

Many extensions to DAS have been proposed which aim to improve the image quality.
The extensions can be broadly classified into three types:

1. calculating a separate weighting factor to reward points where tumors are more likely based either
on epidemiological studies or on characteristics of the scattered signals (w(r) from Equation (1));

2. prioritizing scattered signals collected at certain locations based on the relative locations of the
antennas and points of interest or on the antenna radiation patterns (wa,a′(r) in Equation (1));
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3. by improving the quality of the input signals prior to imaging through improved artefact removal
algorithms or other noise reduction techniques.

In most cases, these modified beamformers have been tested in limited numerical or experimental
test cases, and most radar-based operational systems have used traditional DAS [1]. In this work,
the DAS beamformer is compared to the Delay-Multiply-and-Sum (DMAS) beamformer which has
been identified as improving image quality in a series of clinical case studies [22]. In the literature,
DMAS is increasingly being used in new experimental studies without comparison to DAS or
evaluation in imaging scenarios without targets [41,42].

The DMAS beamformer was first proposed in [43]. DMAS aims to reduce noise in the scattered
signals and hence, reduce clutter in the image. After synthetic focusing and prior to summation in
Equation (1), the scattered signals are pairwise multiplied, such that:

I(r) =
∫
Ω

P(ω)
∫
A

∫
A′

∫
A

∫
A′

Ea1 ,ω(a′1) exp
[

jωτa1 ,a′1 (r, ω)
]

Ea2 ,ω(a′2) exp
[

jωτa2 ,a′2 (r, ω)
]

da1 da′1 da2 da′2 dω (2)

Although this does not increase the amount of independent information, this pairwise
multiplication artificially increases the number of channels in the summation. The DMAS beamformer
assumes that signals with a high degree of coherence should be rewarded by multiplication, whereas
incoherent signals should not increase in energy after multiplication.

A fundamental assumption of radar-based imaging is that knowledge of propagation within the
breast can be used to synthetically focus the recorded electromagnetic energy to points within the
breast. This is represented by the propagation delay, τa,a′(r, ω), in Equation (1). The propagation delay
can be calculated from the dielectric properties of the breast, however, in a realistic imaging scenario,
the dielectric properties of the breast are not known. Thus, most practical implementations assume
a single estimate of the dielectric properties for the entire breast, known as the effective permittivity in
this work.

Several patient-specific permittivity estimation methods have been proposed which are reviewed
in detail in [24]. Patient-specific permittivity estimation methods based on analyzing images
reconstructed within a range of potential permittivity estimates have shown promising results in
experimental and clinical test cases [23,26,44,45]. These patient-specific permittivity estimation
methods have been shown to improve the sensitivity in 110 experimental test cases including diverse
breast phantoms and tumor phantoms [46]. However, in [23,26], the original DAS beamformer was
used, and the impact of other beamformers on the method is unknown.

Evaluation Metrics

To assess the performance of beamformers, it is necessary to identify a set of evaluation metrics
for the radar-based images. In many cases, image quality has been defined using the signal-to-mean
ratio (SMR) and the signal-to-clutter ratio (SCR). Typically, the SMR is calculated by dividing the mean
energy of the tumor area (the area surrounding the maximum intensity of the image) by the mean
energy of the image of the ipsilateral breast, where the tumor area is twice the full-width half-maximum
(FWHM) of the response of highest energy in the image. Similarly, the SCR is calculated by dividing
the maximum energy of the tumor area (i.e., the maximum intensity of the image) by the maximum
energy in the background of the image. Additionally, in images of test scenarios with abnormalities,
the localization error, or the distance between the maximum response in the image and the location of
the abnormality, is used as a measure of quality. Lower localization error means higher image quality.

In this work, the SCR and the FWHM of the images using different beamformers is compared.
Although recent studies have suggested that these metrics may not be sufficient to distinguish images
of modelled healthy and cancerous cases [47], the SCR and the FWHM are still the standard metrics
for image quality quantification.

Additionally, the images are analyzed quantitatively and annotated as containing a tumor or not
according to the criteria described in detail in [24]. Broadly speaking, images where the main response
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has a SCR greater than 1.5 dB are annotated as a positive and considered to be detection. Where the
main response is located within the physical extent of the tumor, the image is marked as a true positive,
otherwise, it is considered a false positive.

3. Experimental Methods

In this section, the experimental methods are described. The BRIGID breast and tumor phantom
set was used to assess the performance of the imaging algorithms which is fully presented in [48].
The breast and tumor phantoms are fabricated from a polyurethane mixture combined with graphite
and carbon black powders to control the dielectric properties [49]. Once cured, the mixture is solid,
and can be used to create a modular and stable test platform [48,50].

Breast phantoms were hemispherical with diameter of 14 cm and consisted of three tissue types:

• a hemispherical skin which varied between 1 to 3 mm in thickness with relative permittivity of
εr ≈ 30 and electrical conductivity of σ ≈ 2 S m−1 at 3 GHz;

• conical glandular structures to model breast lobes radiating from the areola with relative
permittivity of εr ≈ 45 and electrical conductivity of σ ≈ 2.5 S m−1 at 3 GHz;

• an adipose layer with relative permittivity of εr ≈ 8 and electrical conductivity of σ ≈ 0.1 S m−1.

In each breast phantom, a hole was left in which a tumor “plug” could be inserted. Each tumor
phantom was embedded in a plug of adipose tissue, and the tumor phantom had a mean relative
permittivity of εr ≈ 70 and mean electrical conductivity of σ ≈ 6 S m−1. The contrast between the
dielectric properties of tumor and glandular tissues in these breast phantoms is similar to the contrast
between healthy and glandular tissues in the literature [1,51–53].

The BRIGID phantom set contains breast phantoms which vary according to the volume of
glandular tissue present within the phantom, known as the volume glandular fraction (VGF). Recent
advances in three-dimensional imaging using breast tomosynthesis have allowed the VGF to be
quantified, such as in a study of 219 women in [54]. This study suggests that breast density in terms of
VGF may be overestimated from the two-dimensional slices used in X-ray mammography, and that
the average VGF of breasts even in BI-RADS Class D maybe be as low as 20%.

In this work, images of four breast phantoms with VGF varying from 0% to 20% are analyzed as
the healthy cases, specifically 0%, 10%, 15% and 20% as shown in Figure 1. These breast phantoms are
representative of the variation in VGF present in the population in the sense that breast phantoms with
VGF covering more than 80% of the population are included [54]. Each of the four breast phantoms
can also be combined with a tumor phantom to model a cancerous case, the location of the tumor
phantom is shown in Figure 1 by the dashed white circle. Five spherical tumor phantoms ranging
in diameter from 5 mm to 20 mm are used, representing plugs 1 to 5 from [48], which are shown in
Figure 1f. In total, there are 20 test cases with tumor phantoms (five tumor phantoms in four breast
phantoms) and four test cases without tumors (four breast phantoms with an adipose tissue in place of
the tumor phantom).

Signals are acquired from the breast phantoms using experimental hardware developed at NUI
Galway, Ireland which is described fully in [23]. Experimental data between 2 GHz and 4 GHz were
acquired using a ZNB40 2-port VNA and ZN-Z84 24-port switching matrix (Rohde & Schwartz GmbH,
Munich, Germany) in the frequency domain. 24 flexible microstrip antennas were used to collect the
multistatic scan. The antennas were first developed and used at McGill University in experimental
and healthy clinical case studies [55,56]. The antennas housed in the radome are shown in Figure 1e.
The antennas were designed to be in contact with a material with relative permittivity close to skin and
were in direct contact with the skin of the phantom in this system. The imaging system was calibrated
to the antenna using open/short/load and through measurements for all channels.
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Figure 1. The four breast phantoms are shown in (a–d) containing 0%, 10%, 15% and 20% VGF,
respectively. The tumor location is shown by the dashed, white circle. The 24 flexible microstrip
antennas shown housed in the radome are shown in (e) and the 5 tumour phantoms are showin in (f).
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A reference scan with a homogeneous breast phantom was used to account for differences between
the antennas. This reference scan was used to calculate a “calibration factor” which was then applied
to neighboring antennas such that the response of each antenna was the same. While effective in these
experimental studies, this calibration is not optimized for use with patients without optimization
to ensure the breast contacts the antennas correctly. Many approaches have been proposed in the
literature to overcome these issues:

• inclusion of a suction system to ensure the breast contacts the radome [57];
• undersizing the radome compared to the reported breast size to improve the fit [56];
• use of a coupling medium to help reduce air gaps between the breast and the antennas [2,56,58];
• automated metrics to ensure the breast is well-situated prior to the scan [58].

After acquisition, all signal processing and imaging was performed in the frequency domain
using MERIT, an open-source toolbox for microwave imaging [15]. First, rotational subtraction was
performed to remove the large skin reflection and other artefacts [23]. In this experimental set-up,
a rotational angle of 36 deg was used corresponding to the angle between neighboring antennas.
Although rotational subtraction has also been used with the MARIA R© system and hundreds of
women [2,58], the optimal angle of rotation and the impact of rotational subtraction on image quality
are not well studied.

Next, an assumed estimate of the relative permittivity of the breast was used to synthetically
focus all signals to a point of interest within the breast [23]. Considering the generic radar-based
beamformer shown in Equation (1), this is discretized and simplified to become the DAS beamformer
in the frequency domain:

I(r, ε′r) = ∑
A

∑
A′

E′a,a′(r) exp
[

jω
c0

√
ε′r
(
‖a− r‖+

∥∥a′ − r
∥∥)] (3)

where I(r, ε′r) is the beamformer with the average permittivity of the breast, ε′r, as a parameter;
the antenna locations are the 24 antenna locations shown in Figure 1e; and the propagation paths are
assumed to be the straight-line paths between the antennas and the points of interest. The DMAS
beamformer is implemented similarly; however, prior to the beamformer being applied, the signals
are pairwise multiplied.

For each test case, a cost function is used to estimate the “quality” of that image. Specifically,
the Absolute Gradient, ΦG

DMA, from [23] is applied. For each set of artefact-removed signals
corresponding to a single test case, 50 images are reconstructed: specifically, both DAS and DMAS
images are reconstructed at 25 permittivity values between ε′r = 8 and ε′r = 14. For each of the 24 test
cases (5 tumor phantoms in 4 breast phantoms and the 4 breast phantoms without tumor phantoms),
the 50 images per case are analyzed qualitatively and quantitavely below.

4. Results

The results of this paper are presented in a three stages:

1. first, the impact of permittivity estimation in phantoms without abnormalities is discussed in
Section 4.1, considering both beamformers and the four breast phantoms;

2. secondly, the ability of DMAS to compensate for errors in the permittivity estimation process is
considered in Section 4.2;

3. thirdly, the permittivity estimation algorithms are applied to images of the same scene
reconstructed with different beamformers to estimate if the characteristics of the images are
different in Section 4.3.

4.1. Algorithm Performance in Test Cases without Abnormalities

In this section, the impact of permittivity estimation on beamformer selection in breast phantoms
without abnormalities is discussed. First, the images of the four breast phantoms without abnormalities
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using both the DAS and the DMAS beamformers are investigated in Figure 2. These images are
reconstructed at εr = 8.75, which is the optimal permittivity based on maximizing the sensitivity for
all test cases with abnormalities. Figure 2a,c,e,g are reconstructed with DAS, whereas Figure 2b,d,f,h
are reconstructed with DMAS.

The images in Figure 2 highlight the potential challenges in distinguishing scenarios containing
tumor phantoms from scenarios without tumor phantoms. Due to the reflections from other tissue
boundaries within the breast (i.e., between the skin and the adipose tissue not fully removed by artefact
removal and between the glandular structures and the adipose tissue), images of breast phantoms
without tumor phantoms can have characteristics similar to images of tumor phantoms embedded in
breast phantoms.

Considering the least dense breast phantom initially (Figure 2a,b), it can be seen that the DMAS
image shows a distinct response in the middle of the breast whereas the DAS image of the same
scene does not. A similar result is visible in Figure 2c,d where the DMAS image shows a more
distinct response than the DAS image. These images suggest that DMAS may make the specificity of
radar-based imaging worse even in breast phantoms with minimal dielectric contrast in the breast
phantom interior.

However, in the denser breast phantoms, Figure 2e,f, both DAS and DMAS images show responses,
as is expected as the fibroglandular structures have significant dielectric contrast to the adipose
background. Interestingly, in the case of the 15% VGF breast phantom in Figure 2e,f, Where, as the
DAS image highlights a response in the middle of the breast, the DMAS image highlights a response
very close to the chest wall for the same scene. For the densest breast phantom in Figure 2g,h, it can
be seen that the DMAS image shows a response in the same location as the DAS image, but with
higher SCR.

Considering the images selected by using the permittivity estimation method described in [23],
the parameter search algorithm selects εr = 8 for images of the 15% and 20% breast phantoms for
both the DAS and DMAS images. In both cases, the responses are in the same location (within 5 mm)
and could both be interpreted as containing a response that could be a tumor. However, the DMAS
images have SCR of 2.62 dB and 3.06 dB for the 15% and 20% breast phantoms respectively, compared
to 0.56 dB and 0.29 dB for the DAS images. These are shown quantitively in Table 1.
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Figure 2. Cont.
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Figure 2. Images using DAS and DMAS of four breast phantoms with between 0% and 20% VGF.
The images reconstructed using DAS are shown in the leftmost column (a, c and e) in order of increasing
VGF (10%, 15% and 20% respectively). The corresponding image of the same test case reconstructed
using DMAS is shown in the rightmost column (b, d and f). As a response that is very close to the skin
would likely be regarded as an artefact, in the less dense breast phantoms, (a,c) reconstructed with
DAS could be considered to be no detection, whereas the DMAS for the same breast phantom shows a
response which is more in the center of the breast and more likely to be interpreted as a false positive.
All dimensions are in cm, and the three slices shown (coronal, sagittal and axial) are cross-sections at
the location of the maximum amplitude of the image in each case.
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For the less dense breast phantoms, the parameter search algorithm would select images
reconstructed at different permittivity values, εr = 10.5 and εr = 9 for DAS and DMAS respectively for
the 0% breast phantom and εr = 8.75 and εr = 8 for the 10% breast phantom. No clear trend is visible:
for 0% VGF the DAS image selected by the parameter search algorithm has higher SCR compared to
the DMAS image selected by the parameter search algorithm (2.6 dB compared to 1.8 dB), whereas
the reverse is true for 10% (1.6 dB compared to 2.0 dB). However, even in the simple and limited case
studies shown in this section, the choice of beamformer may impact the specificity, suggesting that this
should be evaluated in all beamformer comparison studies.

Table 1. The SCR and FWHM of images of breast phantoms without abnormalities containing 0%
and 10% VGF, reconstructed with DAS and DMAS and a parameter search algorithm. For 0% VGF:
εDAS

r = 10.5 and εDMAS
r = 9 whereas for 10% VGF, εDAS

r = 8.75 and εDMAS
r = 8.

SCR (dB) FWHM (mm)

0% VGF 10% VGF 0% VGF 10% VGF
εDAS

r εDMAS
r εDAS

r εDMAS
r εDAS

r εDMAS
r εDAS

r εDMAS
r

DAS 2.6 1.5 1.6 0.75 10 12 13 7
DMAS 0.7 1.8 2.6 2.0 7 6 9 10

4.2. Effects of Permittivity Estimation on Performance

In this section, the effect of using DMAS instead of DAS are analyzed. The reconstruction
permittivities are chosen using the parameter search algorithm applied to the DAS images.
Additionally, case studies are presented which show how the beamformer comparison can depend on
the permittivity chosen for reconstruction.

First, a case study is shown in Figure 3 where all six images are reconstructed from the same
experimental case but using a reconstruction permittivity estimate of εr = 11.75 in Figure 3a,b,
εr = 12.25 in Figure 3c,d, and εr = 12.75 in Figure 3e,f. Figure 3a,c,e are reconstructed with DAS,
whereas Figure 3b,d,f are reconstructed with DMAS.

Considering the lowest estimate of εr = 11.75 in Figure 3a,b, the strongest response is correctly
located in the images reconstructed with both DAS and DMAS. The FWHM is similar in both cases
(approximately 8 mm), but the SCR of the image reconstructed with DMAS is 1.08 dB whereas the SCR
of the image reconstructed with DAS is 0.09 dB.

Overestimating the relative permittivity by 5% in Figure 3c,d, the image reconstructed with DAS
does not identify the tumor in the correct location (a false negative) whereas the image reconstructed
with DMAS does correspond with the tumor location, albeit with a lower SCR of 0.42 dB. This result
may indicate that improving the beamforming algorithm can compensate for errors in the relative
permittivity estimates for image reconstruction.

Finally, overestimating the relative permittivity by 10% in Figure 3e,f, neither the image
reconstructed with DAS nor the image reconstructed with DMAS show a response in the correct
location. However, whereas the image reconstructed with DAS would be regarded as a false negative,
the image reconstructed with DMAS does have a response in the image, but in the wrong location.

Considering all 20 cases (five tumor phantoms different in size in four breast phantoms differing
in VGF), 14 are detected using DAS and permittivity estimation. For these 14, the DAS image is
compared to the DMAS image at the same estimate of the permittivity. For 3 of the 14 images (P5 in
20%; and P3 and P4 in 15%), the DMAS image is “sharper” with SCR at least 1 dB higher and FWHM
approximately 2 mm smaller. For a further 6 of the 14 (all from the 0% and 10% phantoms), the images
were similar where the SCR was within 1 dB and the localization was within 1 cm. However, for 5 of
the 14 cases (P1 from 0%; P1 from 10%; P2 and P5 from 15%; and P4 from 20%), the image deteriorated
such that the tumor was not detected: for all five, the location of the maximum image response was
more than 5 cm away from the location of the tumor phantom.
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Figure 3. Six images of a 2 cm diameter tumor in the breast phantom with 20% VGF are shown,
reconstructed with the DAS and DMAS beamformers are three different reconstruction permittivities.
The DAS images are shown in the leftmost column in order of increasing permittivity, similarly,
the corresponding DMAS images are shown in the rightmost column. Depending on the reconstruction
permittivity chosen between εr = 11.75 and εr = 12.75, both beamformers perform the same and
correctly localize the tumor in (a) and (b), DMAS outperforms DAS in (c) and (d), or neither DAS
nor DMAS localize the tumor in (e) and (f). All dimensions are in cm, and the three slices shown
(coronal, sagittal and axial) are cross-sections at the location of the maximum amplitude of the image
in each case.
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For the 6 of 20 cases where DAS and permittivity estimation did not detect the tumor, in 2 cases,
the DMAS image was very similar to the DAS image but with less clutter. In 3 more cases, the DMAS
image would also not have located the tumor in the right location, but the main response in the image
was in a different location when compared to the DAS image. In only 1 case, P5 in 10% phantom, did
the DMAS image reconstructed at the same permittivity as the DAS image correctly identify the tumor
where the DAS image would not have.

4.3. Parameter Search Performance Using both Beamformers

Finally, in this section, images selected by DMAS and the permittivity estimation algorithm
are compared to the DAS image at the same permittivity as the DMAS images, and to the DAS
images selected by the permittivity estimation algorithm. Overall, the sensitivity from the DMAS
images with permittivity estimation was 10 out of 20 cases compared to the 14 out of 20 for DAS with
permittivity estimation.

For the 20 breast and tumor phantom combinations, in 9 cases the permittivity estimation
algorithm selected a DMAS image reconstructed within ∆εr = 0.5 of the DAS image. Of these
9 cases, 7 of the DAS images correctly identified the tumor in the correct location where as 6 of the
DMAS images did. The majority of these nine cases were in the lower density phantoms: 6 of the
9 were images of phantoms with 0% and 10% VGF. This is expected, as images are less sensitive to the
reconstruction permittivity at lower VGF.

For the remaining 11 cases where the reconstruction permittivity selected by the parameter search
algorithm from the DMAS image differed from the DAS image, 7 of the 11 DAS images correctly
identified the tumor whereas only 3 of the 11 DMAS images did. Interestingly, of the four images where
DAS with permittivity estimation outperformed DMAS with permittivity estimation, two (P1 and P5)
were in the breast phantom with 0% VGF.

5. Conclusions

In this work, the potential impact of permittivity estimation on beamformer comparative study
design is highlighted. Although many comparative studies of various beamformers have been
published in the literature, most use the simplifying assumption that the same estimate of the
permittivity can be used for all test cases, although this is known to impair the image quality. Similarly,
the majority include only test cases with tumors, and do not compare the beamformers in test cases
without tumors.

The original DAS beamformer is compared to the DMAS beamformer, which was identified as a
promising beamformer from a recent comparative study using five clinical case studies. The results
in this paper suggest that DMAS may reconstruct an image of higher quality (defined primarily in
terms of SCR) than the original DAS, however, this may result in more false positives such as in the
less dense breast phantoms in this paper.

The importance of including realistic patient-specific estimation when comparing beamformers is
also shown. A case study showing how the conclusion of a beamformer comparison study may vary
depending on the permittivity estimate is presented. In this case study, as the estimate varies by 5%, it
could be concluded that both beamformers perform the same, or that DMAS localizes the tumor where
DAS does not, or that neither DAS nor DMAS localizes the tumor. Hence it is important to consider
realistic and varied test cases when comparing beamformer performance.

Future work in this area should include the development of metrics to quantify the image
quality which are useful to distinguish images of healthy and abnormal breasts. Future studies
should consider the effects of permittivity estimation when designing and comparing beamformer
performance experimentally and clinically.
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