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Abstract

Cell reprogramming technologies have enabled the generation of various specific cell types including neurons
from readily accessible patient cells, such as skin fibroblasts, providing an intriguing novel cell source for
autologous cell transplantation. However, cell transplantation faces several difficult hurdles such as cell produc-
tion and purification, long-term survival, and functional integration after transplantation. Recently, in vivo repro-
gramming, which makes use of endogenous cells for regeneration purpose, emerged as a new approach to
circumvent cell transplantation. There has been evidence for in vivo reprogramming in the mouse pancreas, heart,
and brain and spinal cord with various degrees of success. This mini review summarizes the latest developments
presented in the first symposium on in vivo reprogramming glial cells into functional neurons in the brain and
spinal cord, held at the 2014 annual meeting of the Society for Neuroscience in Washington, DC.
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Significance Statement

We have had the first symposium on in vivo reprogramming at the 2014 SFN meeting held at Washington
DC. Our symposium attracted more than 800 people from around the world. This symposium invited world
leaders in this emerging new field to present their most exciting results on in vivo reprogramming glial cells
into functional neurons. This minireview discussed the latest developments on in vivo reprogramming and
its potential application for brain and spinal cord repair.

Cellular reprogramming has become of great interest in
both basic and applied research over the last decade
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understanding of the reprogramming process (Campbell
et al., 1996). In 2006, Takahashi and Yamanaka (2006)
discovered that the simple combination of a few tran-
scription factors can initiate the reprogramming toward a
pluripotent state and thus essentially mimic in vitro what
the ooplasm can accomplish in the nuclear transfer ex-
periment. This work also reminded the field of previous
work that single transcription factors can convert closely
related lineages into each other, such as fibroblasts to
muscle cells and B lymphocytes to macrophages (Davis
et al., 1987; Xie et al., 2004).

The induced pluripotent stem cell technology opened a
new avenue using transcription factors to reprogram adult
skin fibroblast cells into stem cells, which can be differ-
entiated into a variety of target cells (Takahashi et al.,
2007; Yamanaka, 2009). Further studies have demon-
strated direct interlineage reprogramming of fibroblast
cells into a terminally differentiated cell type, such as
neuronal cells, without going through the stem cell stage
(Vierbuchen et al., 2010; Pang et al., 2011; Pfisterer et al.,
2011). Such direct trans-differentiation technology has
been tested not only in cell cultures in vitro, but also inside
the mouse pancreas, heart, and in particular the brain and
spinal cord in vivo (Buffo et al., 2008; Zhou et al., 2008;
Qian et al., 2012; Grande et al., 2013; Niu et al., 2013;
Torper et al., 2013; Guo et al., 2014; Heinrich et al., 2014;
Su et al.,, 2014). At the 2014 annual meeting of the Society
for Neuroscience in Washington DC, we had the first
symposium on in vivo reprogramming and discussed po-
tential applications of reprogramming glial cells into neu-
rons for brain and spinal cord repair. This report
summarizes the work in each speaker’s laboratory.

Reprogramming fibroblast cells into

induced neurons

Vierbuchen et al. (2010) demonstrated that cells can be
directly reprogrammed into even distantly-related cell
types. Specifically, they showed that fibroblasts (of me-
sodermal origin) can be directly converted into functional
neurons (which are of ectodermal origin). After a system-
atic screen of ~20 factors, it was found that the combi-
nation of the three factors Ascl/1, Brn2, and Myt1l was
sufficient to convert mouse fibroblasts into cells with
neuronal morphology, neuronal marker expression and,
most importantly, neuronal function including the ability to
generate action potentials and formation of functional
synapses. These cells were termed induced neuronal (iN)
cells. It was further demonstrated that iN cells can also be
formed from human fibroblasts when various combinations
of transcription factors were used with or without microR-
NAs or small molecules (Ambasudhan et al., 2011; Caiazzo
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et al., 2011; Pang et al., 2011; Pfisterer et al., 2011; Son
et al., 2011; Yoo et al., 2011; Ladewig et al., 2012).

These findings sparked great interest in the field and
opened several new research avenues. For instance,
patient-derived iN cells could be used to investigate
pathogenetic mechanisms and reveal cellular phenotypes
that could be used as proxy for disease expression and as
assay for testing therapeutic interventions such as candi-
date or novel small molecule drugs (Ming et al., 2011). iN
cells or other induced neural cell types that are of more
proliferative capacity such as induced neural progenitor
cells (iNPCs) or induced oligodendrocyte precursor cells
(iIOPCs) could also be used as cellular grafts with thera-
peutic intention, such as for Parkinson’s disease or myelin
diseases (Han et al., 2012; Lujan et al., 2012; Thier et al.,
2012; Yang et al., 2013). On the other hand, direct repro-
gramming could be envisioned for in situ conversion of
non-neuronal cells into neurons. Given the complex manu-
facturing and regulatory hurdles of living cells as a therapeu-
tic approach, the prospect to accomplish neural
regeneration with delivery of small molecules or viruses is
very attractive. As discussed in more detail, some initial and
promising results have been obtained along these lines.

On a mechanistic level, it is unclear how the expression
of a small group of transcription factors can accomplish
such a biologically complex task of converting one de-
fined, mature cell type into another. Such cell lineage
conversions must include many different cell biological
processes like cell polarization, cell-cycle changes, cyto-
skeletal rearrangements, membrane compartmentaliza-
tion and proper distribution of ion channels, axonal
transport, and synapse formation. Work has begun to
map the earliest reprogramming events on the molecular
level and found that one of the three main reprogramming
factors Ascl1 has pioneer factor properties, that is it can
access closed chromatin in fibroblasts and enables re-
cruitment of other transcription factors and eventual gene
transcription (Wapinski et al., 2013). Presumably, a few
critical secondarily induced, downstream transcription fac-
tors execute different parts of the Ascl1-induced program
(Wapinski et al., 2013). Surprisingly, it was also found that
the pioneer factor activity of Asc/7 seems sufficient to induce
iN cells without any other reprogramming factors or small
molecule addition (Chanda et al., 2014). On the other hand,
a closely related factor Neurog2, is incapable of converting
fibroblasts alone, but very potent to generate iN cells from
undifferentiated embryonic stem (ES) cells (Zhang et al.,
2013). Current work is investigating the molecular features of
Ascl1 and Neurog? that are responsible for these dramatic
functional differences.

Cell reprogramming and adult neural

stem cells

The concept of neuronal cell reprogramming has broad
implications and impact not only in translational neurosci-
ence, but also in basic neurobiology studies. In the adult
mammalian brain, neural stem cells (NSCs) persist in a
few restricted regions and continuously produce new
neurons throughout life. When the in vivo identity of these
adult NSCs was first revealed late last century, a surpris-

eNeuro.sfn.org


mailto:gongchen@psu.edu
http://dx.doi.org/10.1523/ENEURO.0106-15.2015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

ing finding was that they share many features with mature
astrocytes, one of the most abundant and widely distrib-
uted cell types in the adult brain (Doetsch et al., 1999). In
fact, recent transcriptome studies have demonstrated a
close similarity of the overall gene expression profile be-
tween astrocytes and adult NSCs (Beckervordersandforth
et al., 2010; Codega et al., 2014). Nevertheless, only
NSCs, but not astrocytes, exhibit the capacity of self-
renewal and multilineage differentiation, the hallmark of
stem cells. Although many regulators of adult NSCs have
been identified in the past 2 decades, it is not yet fully
understood what the core components of the stemness
molecular program are that distinguish NSCs from astro-
cytes. M.N. and his colleagues used the in vivo repro-
gramming paradigm to address this long-unresolved
issue. They recently demonstrated that the homeodomain
transcription factor (TF) Gsx2 and the basic helix-loop-
helix (bHLH) transcription factor Ascl1 play vital roles in
the activation and neurogenesis in adult NSCs (Lopez-
Juarez et al., 2013; Andersen et al., 2014). They tested
whether these key regulators of adult NSCs alone can
confer any capacities of stem cells to non-stem astro-
cytes in vivo. Using newly developed transgenic mice in
which Gsx2 and Ascl1 can be ectopically expressed in
mature astrocytes, they found that these factors induce
mature astrocytes to exhibit many features of NSCs, in-
cluding sustained proliferation and neurogenesis in vivo
and generation of self-renewing neurospheres in vitro.
They further presented evidence that paracrine and auto-
crine signaling through transforming growth factor g re-
ceptors plays a role in regulating neurogenesis by Gsx2-
and Ascl1-reprogrammed astrocytes. It will be interesting
to investigate whether other reprogramming factors ex-
hibit a similar capacity to covert astrocytes and other cell
types into NSCs. As such, neuronal cell reprogramming
has opened a new avenue of research on the mechanisms
of cell type specification in the nervous system.

In vivo reprogramming adult astrocytes

to neural progenitors

Although neurons are frequently lost in response to
injury or degeneration, astrocytes on the other hand be-
come reactive, proliferative, and form glial scars. Reactive
gliosis and glial scars are initially protective in restricting
further spreading of damages but are in long-term dele-
terious by acting as both physical and biochemical barri-
ers to neural regeneration (Sofroniew, 2009).

C.-L.Z. and colleagues developed a strategy to convert
resident astrocytes to proliferative neural progenitors and
functionally mature neurons in the adult brain and spinal
cord (Niu et al., 2013, 2015; Su et al., 2014). After screen-
ing a dozen of transcriptional regulators that play critical
roles in the regulation of neural stem cells, neurogenesis
and cell reprogramming, Niu et al., 2013 identified that the
stem cell factor SOX2 alone is sufficient to robustly induce
DCX™ neuroblasts in the adult mouse brain. Encourag-
ingly, SOX2 has been found to possess powerful repro-
gramming activity (Karow et al., 2012; Ring et al., 2012).
Genetic lineage mappings confirmed that these induced
adult neuroblasts (IANBs) indeed originate from resident
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astrocytes. A time course analysis showed that iANBs are
progressively generated and can be identified even in the
aged mouse brain. Interestingly, BrdU-incorporation and
Ki67-staining, which are indicators of cell proliferation,
showed that a fraction of iIANBs are still dividing, a feature
consistent with native neuroblasts. Resembling the cellu-
lar sequence of endogenous neurogenesis from neural
stem cells, genetic lineage tracings and immunohisto-
chemistry further demonstrate that SOX2-dependent in
vivo reprogramming of astrocytes passes through a neu-
ral progenitor stage prior to the appearance of iANBs (Niu
et al., 2015). Together, these data suggest that SOX2-
driven cell fate conversion is a nonlinear process with the
potential of one reprogrammed astrocytes giving rise to
multiple iANBs.

Additional factors are required for iANBs to become
functionally mature neurons in the adult brain. Niu et al.
(2013, 2015) identified that the neurotrophic factors BDNF
and noggin are sufficient to promote survival and matu-
ration of the newly reprogrammed neurons. Moreover, the
small molecule valproic acid (VPA), a clinically used drug
for the treatment of epilepsy, mania, and migraine, can
replace those neurotrophic factors. Electrophysiology us-
ing live brain slices from genetically traced mice showed
that astrocyte-converted neurons are electrically mature
and make appropriate connections within the local neu-
ronal networks. By applying the same reprogramming
strategy, Su et al. (2014) demonstrated that SOX2 can
similarly convert resident astrocytes into mature neurons
in the adult spinal cord post-traumatic injury. These in-
duced neurons can make synaptic connections with local
motor neurons (Su et al., 2014).

In summary, SOX2 overexpression initiates a stepwise
reprogramming process that converts resident astrocytes
to expandable neural progenitors, which eventually gen-
erate mature neurons in the injured adult central nervous
system. This SOX2-driven, multistep reprogramming pro-
cess may provide the much-needed neurons for neural
regeneration after injury or degeneration.

In vivo reprogramming NG2 glia into
neurons

B.B. reported recent work aiming at reprogramming
resident glia into neurons in the context of a highly
invasive cortical injury in vivo. Work from his team had
previously demonstrated that astrocytes can be repro-
grammed into fully functional neurons in vitro by
retrovirus-mediated expression of Asc/?T or Neurog2
(Berninger et al., 2007; Heinrich et al., 2010). Moreover,
combined expression of Sox2 and Ascl/1 had been found
to convert pericytes isolated from the adult human brain
into induced neurons (Karow et al., 2012), encouraging his
team to study now the same combination of transcription
factors in vivo (Heinrich et al., 2014). When the cerebral
cortex of adult mice was subjected to a local injury
caused by a stab wound, resident macroglia and micro-
glia were found to respond with increased proliferation as
described previously (Buffo et al.,, 2005; Simon et al.,
2011). Three days after injury, these proliferating glial
populations then could be targeted by retroviruses en-
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coding a reporter gene for control, and Sox2 or Ascl1 for
experimental manipulation. Although neither the control
vector nor Ascl1 alone induced any degree of neurogen-
esis as assessed by the expression of doublecortin (DCX)
in the lesioned tissue, Sox2 and Ascl1 and surprisingly
even Sox2 alone induced substantial numbers of DCX-
positive cells 7 days after virus delivery. Fate-mapping the
cells that generate these new induced neurons using
Sox10-iCreERT2 mice (Simon et al.,, 2012) revealed
that the majority of the DCX-positive cells arise from
proliferative NG2 glia (Heinrich et al., 2014). Patch-clamp
recording of Sox2 and Ascl1-transduced cells provided
evidence for electrical properties characteristic of imma-
ture neurons. This conclusion was further corroborated by
the presence of low-frequency functional synaptic input in
these induced neurons as revealed both by electrophys-
iology and by finding their processes decorated with
bouton-like swellings arising from local interneurons. Al-
though these data are consistent with a neuronal pheno-
type, B.B. pointed out that some of these features may be
inherited from their NG2 glial ancestors (Bergles et al.,
2000). Finally, he provided surprising insights into the
relevance of the injury context for the conversion process.
In fact, it turned out that without prior lesioning of the
cerebral cortical tissue, forced expression of Sox2 failed
to convert either NG2 glia or astrocytes into DCX-positive
cells. In discussing the current state-of-the-art, B.B.
pointed out that although the findings of his group as well
as other laboratories represent a major advance in the
attempt to convert resident glia into neurons in vivo, there
is still a long way of fundamental research required prior
to making this approach a viable alternative to cell trans-
plantation.

Reprogramming dopaminergic neurons in
vitro and in vivo

Parkinson’s disease is a neurodegenerative disorder
that is a particularly interesting target for stem cell-based
therapies, and clinical trials have shown that effective
repair can be achieved by neural transplantation. Notably,
transplanted dopamine (DA) neurons, derived from the
ventral mesencephalon (VM), can functionally reinnervate
the denervated striatum, restore dopamine release and, at
least in some PD patients, induce substantial long-term
clinical improvement (Barker et al., 2013). Despite these
encouraging results, work with human fetal tissue pres-
ents a number of ethical and logistical problems and
therefore does not represent a realistic therapeutic option
in the future. Approaches using pluripotent stem cells to
replace the scarcely available fetal tissue is underway and
predicted to reach clinical trials within the next 5 years
(Parmar and Bjorklund, 2012).

With recent advances in direct in vivo conversion, this
approach lends promise to future therapies for brain re-
pair in Parkinson’s disease that would alleviate the need
for an exogenous cell source. The vision is that instead of
neural transplantation as a method for delivering thera-
peutic cells, new dopamine neurons could be obtained via
directly converting resident glia cells into new neurons in
situ. To date, it has been possible to convert several types
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of glia into neurons in vitro and in vivo using viral mediated
gene delivery. Once formed, the new neurons acquire
mature neuronal characteristics in a stepwise fashion, and
at the same time down-regulate glia-specific genes.
M.P.’s group, and others, have shown that both resident
astrocytes and NG2 glia can efficiently be converted into
neurons that mature, function and integrate into existing
neural circuitry (Niu et al., 2013, 2015; Torper et al., 2013,
2015; Guo et al., 2014; Heinrich et al., 2014; Su et al.,
2014; Liu et al., 2015). However, unlike for direct neural
conversion in vitro, it is yet not possible to direct the
formation of dopaminergic neurons via direct conversion
in vivo. In vitro, it is possible to change the transcription
factor combination used for direct neural conversion of
fibroblasts and astrocytes in order to generate subtype-
specific neurons. For example, Ascl1 (Mash1), Brn2a, and
Myt1l (ABM) vyield glutamatergic neurons (Vierbuchen
et al., 2010), whereas Ascl1 (Mash1), Lmx1a/b, and Nurri1
(ALN) results in the formation of dopaminergic neurons
when converting fibroblasts and astrocytes in vitro (Cai-
azzo et al., 2011; Torper et al., 2013). In our studies in vivo,
however, the ALN combination fails to convert resident
astrocytes or NG2 glia into dopamine neurons in vivo,
which has been published recently (Torper et al., 2015).

Thus, to harness the full potential of in vivo conversion
for brain repair, one has to learn how to generate specific
regionalized neuronal cell types of need in a particular
disease, for example, dopamine neurons for Parkinson’s
disease. It is also important to keep in mind that all
diseases affecting the brain may not be suitable targets
for brain repair via in vivo reprogramming due to loss of
multiple cell types, diverse loss of neurons scattered in
various brain regions, etc. Nevertheless, the ability to
create new neurons from resident glia in the brain opens
up for new, and previously unconsidered, possibilities for
brain repair.

Therapeutic potential of in vivo
reprogramming

G.C. and colleagues have been focusing on the poten-
tial applications of in vivo reprogramming for brain repair.
They have first used a brain-stab injury model to test
whether injury-induced reactive astrocytes can be directly
reprogrammed into functional neurons in the adult mouse
cortex. When ectopically expressing a single bHLH neural
transcription factor NeuroD1 in reactive astrocytes at the
stab injury sites, they were able to reprogram reactive
astrocytes directly into functional neurons (Guo et al.,
2014). This was achieved with retroviruses that only ex-
press NeuroD1 specifically in dividing reactive glial cells in
the adult mouse cortex, where normal astrocytes do not
divide under physiological condition. Patch-clamp re-
cordings in cortical slices demonstrated that these
NeuroD1-converted new neurons are functional, as
shown by repetitive action potentials and robust synaptic
events, suggesting that the newly converted neurons form
functional synapses with other neurons and have suc-
cessfully integrated into local circuits. Importantly, these
astrocyte-converted new neurons could survive 2-8
months in the adult mouse cortex, indicating their thera-
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peutic potential for brain repair. Besides this brain injury
model, Chen’s group further tested in vivo reprogramming
in a mouse model of Alzheimer’s disease (AD). They show
that the 5xFAD mouse brain has numerous reactive as-
trocytes in the cortex, and injection of NeuroD1 retrovirus
into the 14-month-old AD mouse brain can still generate
many functional neurons (Guo et al., 2014), suggesting
that such in vivo reprogramming technologies could be
used to regenerate functional neurons in the adult brain.
Moreover, NeuroD1 has also been used to directly repro-
gram cultured human astrocytes into functional neurons
(Guo et al., 2014), suggesting that such glia-neuron con-
version technology may indeed be potentially applicable
for human brain repair. Importantly, NeuroD1 directly con-
verts astrocytes and NG2 cells into neurons, without in-
ducing a transient progenitor stage, and the conversion
efficiency can be as high as 90%, making it a potential
candidate for therapeutic treatment.

G.C. further discussed unpublished work at the
symposium, including direct conversion of NG2 glia into
GABAergic neurons and chemical reprogramming of hu-
man astrocytes into functional neurons using a cocktail of
small molecules.

Concluding remarks

Although the vast majority of cell reprogramming stud-
ies are still conducted in cultured cells, in vivo reprogram-
ming starts to attract attention of both stem cell biologists
and translational researchers aiming for clinical applica-
tions. Compared to conventional stem cell therapies in-
volving the in vitro manufacturing and transplantation of
cultured cells, the approach to reprogram specific cell
types in vivo greatly reduces the risks associated with
conventional cell therapy. Already, animal studies have
indicated promising potential for the in vivo reprogram-
ming approach to regenerate functional neurons in injured
or diseased brain and spinal cord. Several new articles
have recently been published on in vivo reprogramming or
related studies over the past several months since our first
symposium held at the 2014 SFN meeting (Liu et al., 2015;
Masserdotti et al., 2015; Niu et al., 2015; Raposo et al.,
2015; Torper et al., 2015). Of course, this is still the
proof-of-concept that in vivo reprogramming may be use-
ful for brain and spinal cord repair and there are many
challenges ahead. For example, it has been successful to
reprogram glial cells into glutamatergic and GABAergic
neurons inside the mouse brain, but reprogramming do-
paminergic neurons from glial cells in vivo has been diffi-
cult so far. Furthermore, it will be important to assess the
long-term functional effects of neural circuits after in vivo
reprogramming. It is also necessary to investigate
whether the gene delivery and reprogramming procedure
is safe in vivo in a variety of animal models including
nonhuman primates, before applying such in vivo repro-
gramming technology in clinical trials. Despite significant
challenges, we hope that concerted efforts of a growing
research community will tackle these problems and some
day may realize these exciting therapeutic possibilities.
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