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Abstract

Objective: Challenges remain in current practices of colorectal cancer (CRC) screening, such as low compliance,

low specificities and expensive cost. This study aimed to identify high-risk groups for CRC from the general

population using regular health examination data.

Methods: The study population consist of more than 7,000 CRC cases and more than 140,000 controls. Using

regular health examination data, a model detecting CRC cases was derived by the classification and regression trees

(CART) algorithm. Receiver operating characteristic (ROC) curve was applied to evaluate the performance of

models.  The robustness  and generalization of  the CART model  were validated by independent datasets.  In

addition, the effectiveness of CART-based screening was compared with stool-based screening.

Results: After data quality control, 4,647 CRC cases and 133,898 controls free of colorectal neoplasms were used

for downstream analysis. The final CART model based on four biomarkers (age, albumin, hematocrit and percent

lymphocytes) was constructed. In the test set, the area under ROC curve (AUC) of the CART model was 0.88 [95%

confidence interval (95% CI), 0.87−0.90] for detecting CRC. At the cutoff yielding 99.0% specificity, this model’s

sensitivity  was 62.2% (95% CI,  58.1%−66.2%),  thereby achieving a  63-fold enrichment of  CRC cases.  We

validated the robustness of the method across subsets of test set with diverse CRC incidences, aging rates, genders

ratio, distributions of tumor stages and locations, and data sources. Importantly, CART-based screening had the

higher positive predictive value (1.6%) than fecal immunochemical test (0.3%).

Conclusions: As an alternative approach for the early detection of CRC, this study provides a low-cost method

using regular health examination data to identify high-risk individuals for CRC for further examinations. The

approach can promote early detection of CRC especially in developing countries such as China, where annual

health examination is popular but regular CRC-specific screening is rare.
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Introduction

Colorectal cancer (CRC) is the third most common cancer
in males and second most common in females across the
world (1). With changes in modern lifestyles, such as high-
fat diets and sedentary occupations (2), the number of new
CRC cases has increased rapidly, with estimated 1.8 million
new cases and 861,663 deaths in 2018 worldwide (1). In
China, the incidence and mortality rates of CRC in 2015
are 27 and 13 per 100,000, respectively, ranking CRC as
the fifth most frequent cancer nationwide (3). In Beijing,
CRC incidence is higher in urban areas than in rural areas,
but the incidence rate is increasing faster in rural areas than
in urban areas (4).

Most colorectal carcinomas develop from a preclinical
state of adenoma, which takes years to progress to advanced
cancers (5,6). During this progression, early-stage CRC can
be  diagnosed  by  invasive  imaging  techniques,  such  as
flexible  sigmoidoscopy  and  colonoscopy  (7,8).  Early
detection  and  removal  of  adenomas  can  reduce  CRC
incidence and mortality significantly (7-10). In the US, the
5-year survival rate for CRC cases diagnosed at early stages
is 90%, in contrast to 65% for all CRC cases (11). From
1989 to  2011,  the  largest  reductions  in  CRC mortality
rates,  more than 25%, have been achieved in European
countries  with  better  accessibility  to  CRC  screening
programs (12). Over the last decade, newer tests based on
DNA, RNA and protein biomarkers  in  stool  and blood
have also improved the accuracy of CRC screenings (7,13-17).

However, challenges remain for regular CRC screening
of  large populations,  especially  in  developing countries
such as China. First, people are often unwilling to undergo
invasive examinations such as colonoscopy due to physical
or  psychological  reasons  and  expensive  cost  (7).  Low
compliance results  in incomplete CRC screening of the
populations. Second, given the very low prevalence of CRC
and the low specificity of current screening tests (18,19), it
is  not cost-effective for the whole population to receive
invasive or molecular biomarker-based screenings for CRC,
especially in regions with no or limited access to treatment
(20). Third, since different countries have different health
policies, economics and medical cultures, it is difficult to
develop a universal CRC screening program suitable for all
countries (7,21-23).

An alternative to invasive CRC screening for the whole
population is to first identify high-risk groups for CRC by
non-invasive examinations or questionnaires, and then to
perform invasive CRC examination only in these high-risk

groups.  Such  two-step  schemes  (13)  have  been
experimented  in  certain  regions  of  China  and  have
advantages of  better compliance,  lower overall  cost  and
feasibility  across  different  regions  and cultures  (24-26).
Under the premise of good sensitivity, an extremely high
specificity  or  low  false  positive  rate  (FPR)  in  initial
screening  is  crucial  to  ensure  that  only  very  small
proportion  of  CRC-free  individuals  are  incorrectly
assigned to the high-risk group which will receive further
invasive  examinations.  However,  existing  mathematical
model-based methods for CRC screening cannot balance
sensitivity and specificity well. Usually, FPRs are more than
5% at around 60% sensitivity, reducing the utility of these
methods for the general population screening (27-33).

In this study, we aimed to identify the high-risk groups
for CRC from the general population by their routine lab
test biomarkers from regular physical health examination
data.  Based  on  the  classification  and  regression  trees
(CART) model detecting CRC cases, we achieved a 63-fold
enrichment of CRC cases in the identified high-risk group
relative to the original population with high sensitivity and
specificity.

Materials and methods

Study population

Study data were from two independent hospitals in Beijing,
China: Peking University Cancer Hospital (PUCH) and
Peking University Shougang Hospital (PUSH). Specially,
routine lab test data of CRC cases were from Departments
of  Gastrointestinal  or  General  Surgery,  while  data  of
controls free of colorectal neoplasms were from physical
health  examination centers  that  provide  services  to  the
public.  The PUCH data set consists of 7,068 diagnosed
CRC cases from 2010 to 2015 and 80,194 controls who
received  physical  health  examinations  but  were  not
clinically diagnosed with CRC from 2007 to 2014. The
PUSH data set consists of 453 CRC cases from 2011 to
2016  and  66,570  controls  f rom  2009  to  2016
(Supplementary Table S1). All patient and control records
were anonymized and de-identified prior to analysis.

Ethics approval and consent to participate

Approval  for  the  study  was  provided  by  the  Ethics
Committee  of  Peking  University  Shougang  Hospital
(IRBK-2017-035-01).  The  Ethics  Committees  granted
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waivers  of  informed  consent  since  this  study  involved
analysis of retrospective data and all patient and control
records  were  anonymized  and  de-identified  prior  to
analysis.

Availability of data and materials

The R code and part data analyzed during the study are
available in the GitHub repository,  https://github.com/
ChengLiLab/CRC_screening. The completed datasets are
available  from the  corresponding author  on reasonable
request.

Data quality control

We performed quality control for the two data sets before
analysis.  First,  when CRC cases  underwent  routine  lab
examinations  multiple  times,  we only  reserved the  first
preoperative  data,  which  best  represent  the  original
symptoms of patients before interventions or treatments.
Correspondingly, if controls underwent examinations more
than once, we only used the latest one. Second, we deleted
those samples without gender or age records. Third, for the
PUCH data set, we filtered the top 35% and top 40% of
lab test biomarkers that have the least missing values for
the  CRC and control  groups,  respectively.  The cutoffs
filtering biomarkers were determined by the distributions
of the number of non-missing values. Finally, we obtained
38 biomarkers that overlapped between the two top lists.
We then extracted the final  PUCH data  set  containing
these  38  biomarkers  for  both  CRC and control  groups
(Supplementary  Table  S1).  Furthermore,  we  corrected
obvious data input mistakes, for example, one individual’s
age  recorded  as  410.  Similarly,  we  obtained  a  quality-
checked PUSH data set containing 30 biomarkers in which
27 biomarkers were common between the two data sets
(Supplementary Table S1).

CART

CART (34) is an important algorithm of decision tree. A
CART model can be represented by a binary tree, which
splits its branches at feature thresholds according to the
Gini splitting rule. To avoid overfitting, we used minimal
cost complexity pruning (35) to prune the original  tree.
Compared with other methods, not only the CART model
is easier to interpret, but also the CART algorithm is more
robust  in  handl ing  miss ing  va lues  with  better
computational speed and accuracy (34,36,37).

Data allocation

We divided the PUCH data set into two parts, 80% for
training models  and the remaining 20% for  testing the
performance  of  the  final  model.  Then  we  divided  the
training set into two parts, 75% for developing models and
25% for validating the models.

However, influenced by specific instrument, the values of
lab  test  biomarkers  were  not  always  comparable  across
hospitals.Sometimes,  the  reference  values  of  the  same
biomarkers  were  different  between  PUCH and  PUSH.
Therefore, the CART model trained from PUCH cannot
be directly applied to PUSH. As a further validation of the
method,  we  used  the  70%  of  PUSH  data  set  to  train
another CART model by the same biomarkers as the final
CART model  from PUCH, and tested  its  performance
using the remaining 30% of PUSH data set.

Variable selection for CART

J f i (i = 1; 2; ¢ ¢ ¢; J)
ith

For each variable used in the CART model, the variable
importance  is  defined  as  the  sum  of  the  decrease  in
impurity at all nodes where it is used as a splitter (34). For a
classification with  classes,  let   be the
percentage of  class samples in a node, and Gini impurity
is defined as:
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After obtaining the first CART model, we selected the
important  variables  according  to  their  importance  and
combined these variables to train a new CART model. We
repeated the process of refining the CART model from the
training  set  and  validating  its  performance  using  the
validation data, until the best CART model was derived.
The surrogate split method is used to handle missing values
in CART (34).

Measuring performance of models

We evaluated models by overall performance and specific
performance in different application scenarios. First, as an
overall measure of performance, we used the area under the
receiver  operating  characteristic  (ROC)  curve  (AUC).
Second, we inspected the sensitivities at cutoffs yielding
99.0% specificity, which represents how many real CRC

688 Shi et al. Enriching CRC using heath examination data

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2019;31(4):686-698

https://github.com/ChengLiLab/CRC_screening
https://github.com/ChengLiLab/CRC_screening
https://github.com/ChengLiLab/CRC_screening
https://github.com/ChengLiLab/CRC_screening


cases can be detected at the cost of misclassifying 1% of
CRC-free individuals as CRC cases.

Results

Sample selection and routine lab test biomarkers

After data quality control,  4,211 CRC cases and 77,099
controls free of colorectal neoplasms of the PUCH data set
and 436 CRC cases and 56,799 controls of the PUSH data
set  were  used  for  downstream  analysis  (Table  1 ,
Supplementary Table S1). In both data sets, patients were
significantly  older  in  CRC  group  than  the  control
(P<2.2e−16)  (Table  1,  Figure  1A).  In  addition,  the
proportion of male was higher than female in both CRC
and control groups. Particularly, 73.2% of the controls in
the PUSH data set were male, due to that PUSH provided
health services to a major steel factory company in China
(Table  1).  The  two  data  sets  both  covered  CRC  cases
clinically diagnosed at multiple tumor stages and locations
(Table 1).

For the PUCH training set,  we obtained 38 common
biomarkers from routine lab tests, in which 14 biomarkers
were  employed  for  downstream  analysis  that  showed
significant  differences  between  the  CRC  and  control
groups in term of both statistics and effect size (Table 2,
P<0.001,  |Cohen’s  d|  ≥0.5).  CRC  patients  often  have
abnormal blood counts and some of these biomarkers have
been used  for  CRC screening,  diagnosis  and  prognosis
(27-31,38-40).  For  example,  blood  albumin  was
significantly  lower  in  the  CRC group compared  to  the
control  (P<2.2e−16)  (Figure  1B).  Based  on  these
observations,  we  hypothesized  that  a  multivariate
classification model can distinguish CRC cases from CRC-
free individuals.

A CART-based CRC classification model using routine lab
test biomarkers

Based on routine lab test biomarkers in the PUCH training
set, a model detecting CRC cases was constructed by the
CART  algorithm,  and  this  model’s  performance  was

Table 1 Characteristics of study population

Group
PUCH [n (%)] PUSH [n (%)]

CRC Control CRC Control

Total                 4,211                 77,099                   436                 56,799

Age (year)

　<45 444 (10.5) 42,531 (55.2) 17 (3.9) 36,928 (65.0)

　45−54 810 (19.2) 16,893 (21.9) 65 (14.9) 15,131 (26.6)

　55−64 1,297 (30.8) 9,559 (12.4) 129 (29.6) 3,751 (6.6)

　65−74 1,031 (24.5) 5,402 (7.0) 96 (22.0) 488 (0.9)

　≥75 629 (14.9) 2,714 (3.5) 129 (29.6) 501 (0.9)

　 60.6±12.5 43.9±14.6 66.4±12.8 39.0±11.8
Gender

　Male 2,470 (58.7) 39,127 (50.7) 252 (57.8) 41,594 (73.2)

　Female 1,741 (41.3) 37,972 (49.3) 184 (42.2) 15,205 (26.8)

Tumor stage

　I 252 (6.0) − 37 (8.5) −
　II 595 (14.1) − 78 (17.9) −
　III 633 (15.0) − 93 (21.3) −
　IV 147 (3.5) − 31 (7.1) −
　Unspecified 2,584 (61.4) − 197 (45.2) −
Tumor location

　Colon 2,279 (54.1) − 179 (41.1) −
　Rectum 1,932 (45.9) − 257 (58.9) −

PUCH, Peking University Cancer Hospital; PUSH, Peking University Shougang Hospital; CRC, colorectal cancer.
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evaluated using the test set by the ROC curve (Figure 1C,
Supplementary Figure S1).  The final,  best  CART model
consisted of only four biomarkers: age (Age), albumin (Alb),
hematocrit (HCT) and percent lymphocytes (LYMPH%).
Meaningfully,  all  four biomarkers  had large effect  sizes
(Table 2, |Cohen’s d| ≥0.8) between the CRC and control
groups. In addition, we also built  a simple model as the
baseline  comparison  only  using  age  as  the  predicting
variable.

In the training set, the AUC values of the CART and age
models  were  0.90  [95%  confidence  interval  (95%  CI),

0.88−0.91]  and  0.81  (95% CI,  0.80−0.82),  respectively
(Figure 2A), showing that the CART model was superior to
the age model overall. Noteworthy, the sensitivity of the
CART model was 67.0% (95% CI, 63.7%−70.2%), much
higher than 4.8% (95% CI, 3.2%−6.4%) of the age model
when  defining  cutoffs  yielding  99.0%  specificity
(Figure 2B).  Therefore,  the CART model  can correctly
identify 67% of real CRC cases at the cost of misclassifying
1% of CRC-free individuals as CRC cases. The CART-
predicted probabilities of being CRC were indeed higher
for  real  CRC cases  than  for  controls  (Figure  2C).  The

 

Figure 1  Distributions of two biomarkers and flowchart of model generation. Violin plots of age (A) (P<2.2e−16) and albumin (B)
(P<2.2e−16) distributions for colorectal cancer (CRC) and control groups; (C) Flowchart of model generation. CART, classification and
regression trees.
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Table 2 Biomarkers of quality-controlled PUCH population

Biomarker Reference value Unit P Cohen’s d (95% CI) Magnitude*

Age** − − <0.001 1.13 (1.09, 1.17) Large
A/G 1.0−2.5 − <0.001 −0.32 (−0.39, −0.25) Small
Alb** 35.0−55.0 g/L <0.001 −1.46 (−1.53, −1.40) Large
ALT 0−40 IU/L <0.001 −0.28 (−0.32, −0.24) Small
AST 0−45 IU/L <0.001 −0.16 (−0.21, −0.11) Negligible
BASO% 0.00−1.00 % 0.364 0.02 (−0.03, 0.07) Negligible
Ca 2.12−2.75 mmo/L <0.001 −0.82 (−0.88, −0.77) Large
Crea 50−130 μmol/L <0.001 −0.34 (−0.38, −0.30) Small
EO% 1.00−5.00 % 0.005 0.08 (0.03, 0.13) Negligible
Gender − − − − −
Glu 3.60−6.10 mmol/L <0.001 0.70 (0.66, 0.74) Medium
HCT** 37.0−49.0 % <0.001 −1.09 (−1.13, −1.04) Large
HDL-C 0.82−1.96 mmol/L <0.001 −0.54 (−0.59, −0.49) Medium
HGB 110−150 g/L <0.001 −1.11 (−1.15, −1.06) Large
K 3.5−5.3 mmol/L 0.004 0.10 (0.03, 0.16) Negligible
LDL-C 1.80−3.90 mmol/L 0.001 −0.08 (−0.13, −0.03) Negligible
LYMPH%** 20−40 % <0.001 −1.33 (−1.37, −1.28) Large
MCH 27.00−31.00 pg <0.001 −0.52 (−0.56, −0.48) Medium
MCHC 320−360 g/L <0.001 −0.48 (−0.52, −0.43) Small
MCV 82.00−92.00 fL <0.001 −0.39 (−0.43, −0.35) Small
MONO% 3.00−8.00 % <0.001 0.27 (0.22, 0.32) Small
MPV 6.80−13.50 fL 0.954 0.00 (−0.04, 0.04) Negligible
NEUT% 50.00−70.00 % <0.001 0.98 (0.94, 1.03) Large
P 0.69−1.60 mmol/L <0.001 0.26 (0.20, 0.31) Small
P-LCR 13.0−43.0 % <0.001 −0.09 (−0.14, −0.05) Negligible
PCT 0.108−0.370 % 0.643 −0.01 (−0.06, 0.03) Negligible
PDW 15.5−18.1 % <0.001 −0.55 (−0.59, −0.50) Medium

PLT 100−350 ×109/L <0.001 0.15 (0.11, 0.19) Negligible

RBC 3.50−5.50 ×1012/L <0.001 −0.61 (−0.65, −0.57) Medium
RDW-CV 11.60−14.80 % <0.001 0.51 (0.46, 0.55) Medium
RDW-SD 37−50 fL <0.001 0.33 (0.29, 0.37) Small
TBil 1.70−20.0 μmol/L 0.175 0.05 (−0.03, 0.13) Negligible
TCHO 2.84−5.68 mmol/L <0.001 −0.20 (−0.25, −0.16) Small
TG 0.56−1.70 mmol/L 0.007 −0.04 (−0.09, 0.00) Negligible
TP 60.0−80.0 g/L <0.001 −1.23 (−1.29, −1.17) Large
UA 90−340 μmol/L <0.001 −0.16 (−0.20, −0.12) Negligible
Urea 1.7−8.3 mmol/L <0.001 0.14 (0.10, 0.19) Negligible

WBC 4.0−10.0 ×109/L <0.001 0.26 (0.21, 0.30) Small

PUCH, Peking University Cancer Hospital; 95% CI, 95% confidence interval; A/G, rate of albumin to globulin; Alb, albumin; ALT,
alanine transaminase; AST, aspartate transaminase; BASO%, percent basophils; Ca, calcium; Crea, creatinine; EO%, percent
eosinophils; Glu, glucose; HCT, hematocrit; HDL-C, high density lipoprotein-cholesterol; HGB, hemoglobin; K, kalium; LDL-C, low
density lipoprotein-cholesterol; LYMPH%, percent lymphocytes; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
hemoglobin concentration; MCV, mean corpuscular volume; MONO%, percent monocytes; MPV, mean platelet volume; NEUT%,
percent neutrophils; P, phosphorus; P-LCR, platelet large cell ratio; PCT, plateletcrit; PDW, platelet distribution width; PLT, platelet;
RBC, red blood count; RDW-CV, variable coefficient of red blood cell distribution width; RDW-SD, standard deviation of red blood
cell distribution width; TBil, total bilirubin; TCHO, total cholesterol; TG, triglyceride; TP, total protein; UA, uric acid; WBC, white
blood count; *, the magnitudes were assessed using the Cohen’s d thresholds: |d|<0.2 “Negligible”, |d|<0.5 “Small”, |d|<0.8 “Medium”,
otherwise “Large”; **, biomarkers selected in the final Classification and regression trees (CART) model and plotted in Supplementary
Figure S3.
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reliability  of  the  CART  model  was  validated  by  its
performance on the test set. Specifically, the AUC of the
CART  model  was  0.88  (95%  CI,  0.87−0.90)  and  the
sensitivity  was  62.2%  (95%  CI,  58.1%−66.2%)  at  the
99.0% specificity  (Figure  2D,E).  And  CART-predicted
probabilities of being CRC also supported this (Figure 2F).
We  concluded  that  the  CART  model  was  able  to
distinguish CRC cases  from CRC-free  individuals  with
high sensitivity and specificity.

In order to ensure that the CRC and control groups are
comparable for sample collection period, we selected the
subset of PUCH data in which the CRC cases and controls
were both from 2010 to 2014 and performed training and
testing  of  the  CART  model.  The  final  CART  model
consisted of the same four biomarkers as before: Age, Alb,
HCT and LYMPH%. AUCs were almost the same as the
previous  results  using  the  whole  data  (Supplementary

Table S2). At the 99.0% specificity, sensitivities were also
almost the same as the previous results using the whole data
(Supplementary Table S2). Therefore, we have demonstrated
that our results were little affected by the time periods of
sample collection.

Robustness and generalization of CART model

Next,  we examined whether the CART model  could be
applied  to  the  general  population  with  diverse
characteristics. First of all, we applied the CART model to
randomly sampled subsets of the test set with different class
ratios varying from 1:10 to 1:10,000. Surprisingly, these
imbalanced  sample-class  ratios  (41)  resulted  in  highly
uniform AUCs and sensitivities at the 99.0% specificity
(Figure 3A), which demonstrates that the CART model will
be  effective  for  different  regions  with  various  CRC

 

Figure 2 Performance of models on training set and test set. (A) Receiver operating characteristic (ROC) curves of age model and final
classification and regression trees (CART) model on the training set. The values shown are area under the curves (AUCs) as well as 95%
confidence intervals (95% CIs) based on 1,000 bootstrap iterations. P<0.001 for two-tailed Delong’s test between the two ROC curve; (B)
Enlarged local ROC curves in Figure 2A. Dashed lines show that the sensitivities at the 99.0% specificity of the CART and age models are
67.0% (95% CI, 63.7%−70.2%) and 4.8% (95% CI, 3.2%−6.4%), respectively. 95% CIs were constructed based on 1,000 bootstrap
iterations; (C) CART-predicted probability distribution of being colorectal cancer (CRC) in the training set. Vertical dashed line shows that
the cutoff probability is 0.48 yielding 99.0% specificity; (D−F) Similar figures as Figure 2A−C when applying the same models to test set.
(D) P<0.001 for two-tailed Delong’s test between the two ROC curve; (E) Dashed lines show that the sensitivities at the 99.0% specificity of
the CART and age models are 62.2% (95% CI, 58.1%−66.2%) and 3.73% (95% CI, 2.42%−5.04%), respectively; (F) Vertical dashed line
shows that the cutoff probability is 0.48 yielding 99.0% specificity.
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incidence rates.
In addition, previous studies indicated that the incidence

rate of CRC increased with age (42). To determine age’s
effect  on  this  model,  we  applied  the  CART  model  to
randomly sampled subsets with different proportions of
elderly cases who were more than 60 years old. The results
showed that  the CART model  still  had good predictive
power especially for groups with aging rates less than 20%
(Figure 3B), which indicates that the CART model can be
effective  in  almost  all  developing  world  and  some
developed countries.

Next, we showed that the CART model’s performance
on only male or female subsets were almost as good as the
whole test set, which indicates that the CART model was
less affected by gender factor (Figure 3C,  Supplementary
Figure S2A). Similarly, we demonstrated that the CART
model  can  detect  both  early-stage  (stages  I/II)  and

advanced-stage (stages III/IV) CRC, and detect specified-
stage  as  well  as  unspecified-stage  CRC  with  similar
performances (Figure 3D, Supplementary Figure S2B). We
also showed that the CART model had no predicted bias
for CRC locations (Figure 3E, Supplementary Figure S2C).
In addition, we found the CART model has slightly better
sensitivity  for  proximal  colon  neoplasia  than  distal
colon neoplasia (Supplementary Table S3).

Importantly,  influenced  by  specific  instrument  and
reagents used, the values of lab test biomarkers were not
always comparable across hospitals (Supplementary Figure
S3).  Sometimes, the  reference  values  of  the  same
biomarkers  were  different  between  PUCH and  PUSH.
Therefore, the CART model trained from PUCH could
not  be  directly  applied  to  PUSH.  In  order  to  test  this
approach’s applicability across different data sources, we
trained another CART model using the same four markers 

 

Figure 3 Robustness and generalization of classification and regression trees (CART) model. (A) Area under the curves (AUCs) and
sensitivities at 99.0% specificity of CART model on subsets of test set with different sample-class ratios. Every bar shows the mean of 1,000
random samples. Error bar is standard error derived from these 1,000 random samples; (B) Similar figure as Figure 3A for subsets of test set
with different proportions of elderly individuals; (C) Gender-specific receiver operating characteristic (ROC) curves. Three solid curves
show CART model’s performance on the whole test set (All), male subset (Male) and female subset (Female), respectively. Values shown are
AUCs as well as 95% confidence intervals (95% CIs). Dashed lines highlight the sensitivities at the 99.0% specificity; (D,E) Similar figures
as Figure 3C for tumor stage-specific (D) and tumor location-specific (E) subsets of test set; (F) Data source-specific ROC curves. Peking
University Cancer Hospital (PUCH) curve shows the final CART model’s performance on the test set of PUCH. Peking University
Shougang Hospital (PUSH) curve shows the performance of CART model, trained from the 70% of PUSH data set, on the remaining 30%
of PUSH data set. All P>0.05 for two-tailed Delong’s test between any two ROC curves within the same panel. CRC, colorectal cancer.
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(Age, Alb,  HCT and LYMPH%) on the 70% of PUSH
data set, and tested its performance on the remaining 30%
of PUSH data set. For PUSH, we obtained similar AUC
(0.87, 95% CI, 0.84−0.91) and sensitivity (60.8%, 95% CI,
53.1%−68.4%)  at  the  99.0% specificity,  indicating  the
CART model performed well  on the PUSH (Figure 3F,
Supplementary Figure S2D).  Taken together,  the CART
model was applicable to different populations with diverse
CRC incidences, aging rates, genders ratio, distributions of
tumor stages and locations, and data sources.

Comparative  effectiveness  of  CART-based  screening
relative to stool-based screening

The CART model can predict a high-risk group for CRC
from  the  population  who  received  regular  health
examination, which likely contains a higher proportion of
non-symptomatic  or  early-stage  CRC  cases  than  the
general  population.  This  provides  a  framework  for
enriching CRC cases from the general population using
regular  health  examination  data.  Assuming  the  CRC
incidence  rate  is  25  per  100,000  in  one  region
(Supplementary Figure S4A), the CART model will predict a
high-risk  group  that  contains  16  CRC  cases  (62.2%
sensitivity)  and  1,000  CRC-free  individuals  (99.0%
specificity)  from  a  population  of  100,000  individuals
(Figure 2E, Supplementary Figure S4B). The proportion of
CRC cases in this high-risk group (16 per 1,016) represents
a 63-fold enrichment relative to in the region's population
(25 per 100,000).

We next  considered how the CART model  compares
with the stool-based tests for enriching CRC cases. Guaiac
fecal  occult  blood  test  (gFOBT)  is  a  vital  criterion  for
clinical  diagnosis  of  CRC  (43)  that  has  only  33.3%
sensitivity  at  95.2%  specificity  (19).  Compared  with
gFOBT,  fecal  immunochemical  test  (FIT)  has  higher
sensitivity  for  adenomas  and  cancers  by  specifically
detecting human hemoglobin and does not require dietary
restriction before test,  thus  having higher participation
(44,45). For quantitative FIT, a lower cut-off increases the
detection of advanced neoplasia but lowers the specificity
thus demanding more follow-up colonoscopy (46).

Previous  study  showed  that  the  specificity  of  FIT is
94.0% at the 79.0% sensitivity (47). Due to the very low
prevalence of CRC, the CART model had a much higher
positive  predictive  value  over  FIT  screening  (1.6%  vs.
0.3%) (Table 3), which greatly enriches the CRC cases and
reduces the cost of follow-up tests such as colonoscopy.
The theoretically calculated FIT’s enrichment factor for

CRC cases was 13-fold, lower than the CART model’s 63-
fold enrichment factor. In addition, we plotted ROC curve
of  FIT  by  public  studies  (19,48-52)  (Supplementary
Table S4) and showed that the sensitivity of FIT was only
25.0%  at  the  99.0%  specificity,  although  FIT  had  the
slightly higher AUC than the CART model (0.90 vs. 0.88)
(Figure  4,  Supplementary  Figure  S2E).  Taken  together,
CART-based screening is more effective than stool-based
screening.

Discussion

CRC screening programs have been established in many
western  countries  and  paid  for  by  health  insurance.
However,  in developing countries such as China, which
have  huge  populations,  relatively  weak  economic
foundations  and  unbalanced  regional  development,
nationwide  CRC screening  is  cost-prohibitive  and  full
compliance is difficult to realize. In this study, we utilized
widely-adopted regular heath examination data in China to

Table 3 Comparison of CART model and FIT

Variables Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

CART 62.2 99.0 1.6 ~100

FIT 79.0 94.0 0.3 ~100

CART, classification and regression trees; FIT, fecal immuno-
chemical test; PPV, positive predictive value; NPV, negative
predictive value.

 

Figure 4 Comparison between classification and regression trees
(CART)  model  and  fecal  immunochemical  test  (FIT).  CART
model  from Peking  University  Cancer  Hospital  (PUCH) was
shown on test set, while FIT curve was plotted by public studies.
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develop a statistical classification model that can identify
high-risk cases for CRC from the general population. Such
routine lab test data are currently available to individuals
who participated in physical health examinations but are
not  largely  used  for  pooled  analysis.  Therefore,  our
approach does not incur additional examinations, which
would improve screening compliance with little cost (53).

Specifically, the CART model we constructed showed
high  AUC  (0.88,  95%  CI,  0.87−0.90)  and  sensitivity
(62.2%, 95% CI, 58.1%−66.2%) at the 99.0% specificity,
and performed equally well in subpopulations stratified by
multiple  CRC  incidences,  aging  rates,  genders,  tumor
stages and tumor locations. In other words, we achieved a
63-fold enrichment of CRC cases in the high-risk group
identified by the CART model. Therefore, compared with
previous models (27-32), the CART model has stronger
discriminatory power and better generalizability.

In current CRC screening practices,  stool-based tests
such as gFOBT and FIT, or one-time screening with both
FOBT and sigmoidoscopy, can identify subjects at risk for
colorectal  neoplasms  from  large  populations  (7,18).
However, false positive results are the big challenge. Due
to the very low prevalence of CRC, the CART model has a
much higher positive predictive value over FIT (1.6% vs.
0.3%)  thus  a  higher  enrichment  for  CRC  than  FIT
screening (63- vs. 13-fold) (47), which greatly reduces false
positive cases who need further examinations. Therefore,
CART-based screening significantly reduces the cost of
follow-up tests  such as  colonoscopy,  which is  crucial  in
regions with limited colonoscopy resources (19).

Colonoscopy is a common confirmative CRC screening
strategy, but it is also the most invasive method with the
highest cost and risk of complications (43). Therefore, we
propose the two-step CRC screening procedure (13), in
which only individuals predicted to be CRC positive by the
CART model receive follow-up invasive examinations. The
first step uses regular physical health examination data free
of  CRC-specific  costs,  and  follow-up  colonoscopy
recommended  by  CRC  specialists  can  be  covered  by
healthcare insurance systems.

Besides, compared with other mathematical models for
screening  or  enriching  CRC  cases  (27-32),  the  CART
model excels at handling missing values and imbalanced
classification problems. These are particularly relevant in
this  CRC  enrichment  study  since  not  all  individuals
received a full spectrum of biomarker tests in their physical
health examination and the sample numbers of CRC cases
and controls were not balanced. We tested the final CART

model using data subsets with different sample-class ratios
between the CRC and control groups and obtained similar
performance. In addition, there may be unidentified CRC
cases in controls. However, given the very low prevalence
of CRC (25 per 100,000), the few CRC cases (estimated to
be 33 CRC cases in the 133,898 controls) have little effect
on  overall  distributions  of  lab  test  biomarkers  and  are
therefore not likely to affect the overall performance of the
CART model.

The final CART model trained from the PUCH data set
consisted of  only  four  biomarkers:  Age,  Alb,  HCT and
LYMPH%. Compared with previous studies (27-32), the
number  of  variables  in  the  CART  model  is  smaller,
reducing the likelihood of overfitting and enhancing the
model’s generalizability. Meaningfully, all four biomarkers
showed statistically significant differences and large effect
sizes indicating clinical significance between the CRC and
control groups. Moreover, these biomarkers cover different
aspects  of  human physiology  such  as  blood  counts  and
specific  proteins,  facilitating  the  interpretation  of  the
CART model and being informative for CRC screening
practices.  These  changes  are  consistent  with  increased
proinflammatory cytokines and growth factors in response
to high physiological stress and hypoxia in cancer tissues
(54,55), which modulates the production of albumin (56).
During an acute inflammatory response, the ratio between
different  leucocyte  subsets  is  altered,  and  there  is  a
neutrophi l i a  o f ten  accompanied  by  a  re la t ive
lymphocytopenia (57). To our knowledge, our study is the
first to incorporate these changes in a multivariate CRC
enrichment model.

There  are  several  limitations  in  our  study.  First,  our
approach is dependent on data from routine physical health
examinations and is not applicable to the populations that
do not participate in such examinations. Such populations
may be at higher risk for CRC due to less access to early
screening and health facilities. Second, the CART model
was trained using quantitative values in routine lab test
biomarkers. However, influenced by specific instrument
calibration, the values of lab test biomarkers may not be
entirely  comparable  across  medical  institutions.  In  the
future, we will implement prospective validation for this
approach and study how to normalize data from different
facilities.

Conclusions

As an alternative approach for the early detection of CRC,
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this  study  utilized  regular  health  examination  data  to
identify  high-risk  groups  for  CRC  with  no  additional
examination  cost,  and  this  approach  is  applicable  to
populations with diverse characteristics. Overall, this study
provides a novel approach for CRC screening to trigger
follow-up  invasive  examinations  for  definite  diagnosis,
which  may  improve  the  CRC  screening  efficiency
especially in the developing world.
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Figure S1 Final classification and regression trees (CART) model trained from Peking University Cancer Hospital (PUCH) data set.
CART model represented by a binary tree consists of four biomarkers (variables): age, albumin (Alb), hematocrit (HCT), and percent
lymphocytes (LYMPH%). Green boxes contain more healthy cases and blue boxes contain more patient cases. There are three-row notes in
each box: the top labels the major class (patient or healthy); the middle shows the percentages of healthy and patient cases, respectively; the
bottom labels the proportion of cases within the box to the total.
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Figure S2 Robustness and generalization of classification and regression trees (CART) model. (A) Gender-specific receiver operating
characteristic (ROC) curves. The three solid curves show CART model’s performance on the whole test set (All), male subset (Male) and
female subset (Female), respectively. Values shown are AUCs as well as 95% confidence intervals (95% CIs); (B,C) Similar figure as
Supplementary Figure S2A for tumor stage-specific (B) and tumor location-specific (C) subsets of the test set; (D) Data source-specific ROC
curves. Peking University Cancer Hospital (PUCH) curve shows the final CART model’s performance on the test set of PUCH. Peking
University Shougang Hospital (PUSH) curve shows performance of CART model, trained from 70% of PUSH data set, on the remaining
30% of PUSH data set; (E) Comparison between CART model and fecal immunochemical test (FIT). CART model from PUCH is shown
on the test set, while the FIT curve is plotted by public studies (Supplementary Table S4).
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Figure S3 Value distributions of four biomarkers. (A) Age distribution in colorectal cancer (CRC) and control groups of Peking University
Cancer Hospital (PUCH) and Peking University Shougang Hospital (PUSH) data sets. Significant P-values of two-tailed t-tests are noted
in graphs; (B−D) Similar figures as Supplementary Figure S3A for Alb (B), HCT (C) and LYMPH% (D). Alb, albumin; HCT, hematocrit;
LYMPH%, percent lymphocytes.

 

Figure S4 Classification and regression trees (CART)-based two-step scheme for colorectal cancer (CRC) screening. (A) There are 25 CRC
cases per 100,000 individuals in the general population; (B) High-risk group for CRC predicted by the CART model contains 16 real CRC
cases (62.2% sensitivity) and 1,000 CRC-free individuals (99.0% specificity).
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Table S1 Data quality control

Source Class Year

Raw Data quality control

Sample Item Sample
Item

Common Specific

PUCH
CRC 2010−2015 7,068 363 4,211

25 + gender + age

11
Controls 2007−2014 80,194 220 77,099

PUSH
CRC 2011−2016 453 331 436

  3
Controls 2009−2016 66,570 434 56,799

PUCH, Peking University Cancer Hospital; PUSH, Peking University Shougang Hospital; CRC, colorectal cancer.

Table S2 Performance of  CART model  on data  subsets  from
same time periods

Variables Data subset
(years 2010−2014) Whole data

AUC (95% CI)

　Training 0.89
(0.88−0.91)

0.90
(0.88−0.91)

　Test 0.89
(0.88−0.91)

0.88
(0.87−0.90)

Sensitivity (95% CI)*

　Training 66.0%
(62.4%−69.5%)

67.0%
(63.7%−70.2%)

　Test 62.8%
(58.3%−67.3%)

62.2%
(58.1%−66.2%)

CART,  classification  and  regression  trees;  AUC,  the  area
under receiver operating characteristic curve; 95% CI, 95%
confidence interval; *, sensitivity at the 99.0% specificity.

Table  S3 Comparison  of  CART  model’s  performance  for
proximal and distal colon neoplasia

Variables Proximal Distal

AUC (95% CI) 0.91
(0.88−0.94)

0.88
(0.85−0.91)

Sensitivity (95% CI)* 66.8%
(58.6%−74.9%)

55.8%
(48.2%−63.3%)

CART,  classification  and  regression  trees;  AUC,  the  area
under receiver operating characteristic curve; 95% CI, 95%
confidence interval; *, sensitivity at the 99.0% specificity.

Table S4 Characteristics of FIT in public studies (1)

Study Cut-off value (μg/g) Cohort size (n) CRC (n) Sensitivity Specificity

Sohn et al. (2) 20 3,794 12 0.25 0.99

Nakama et al. (3) 20 4,611 18 0.56 0.97

Brenner and Tao (4) 6.1 2,235 15 0.73 0.96

de Wijkerslooth et al. (5) 20 1,256 8 0.75 0.95

Park et al. (6) 20 770 13 0.77 0.94

Chiu et al. (7) 10 8,822 13 0.85 0.92

FIT, fecal immunochemical test; CRC, colorectal cancer.
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