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Seaweeds are classified as Chlorophyta, Rhodophyta, and Phaeophyta. They

constitute a number of the most significant repositories of new therapeutic

compounds for human use. Seaweed has been proven to possess diverse

bioactive properties, which include anticancer properties. The present review

focuses on colorectal cancer, which is a primary cause of cancer-related

mortality in humans. In addition, it discusses various compounds derived

from a series of seaweeds that have been shown to eradicate or slow

the progression of cancer. Therapeutic compounds extracted from seaweed

have shown activity against colorectal cancer. Furthermore, the mechanisms

through which these compounds can induce apoptosis in vitro and in vivo

were reviewed. This review emphasizes the potential utility of seaweeds as

anticancer agents through the consideration of the capability of compounds

present in seaweeds to fight against colorectal cancer.
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Introduction

Colorectal cancer (CRC) is the most common type of cancer throughout the world,

accounting for approximately 10% of all new cancer cases and mortality, as projected

in GLOBOCAN 2020 (1). The prevalence rates of CRC are increasing among nations

with a medium human development index, such as Brazil, Russia, and countries of

Latin America (2). The pathology of CRC includes carcinogenesis of the rectum,

colon, appendix, and anus (3). Familial and environmental factors contribute to the

risk of CRC from two well-defined causes particularly amenable to dietary influence

(4). In the clinical situation, chemotherapy is a common treatment modality for CRC

(5). Nevertheless, the majority of current chemotherapeutic drugs for the therapy of

advanced-stage CRC, for instance cisplatin, have been repeatedly reported to elicit

adverse side effects and are comparatively less effective (6). Several lines of scientific

evidence, from molecular mechanisms to clinical trials, show that herbal medicines have

anti-CRC potential and have been used for therapy and recovery (7).

Seaweeds have been utilized for food and medicinal herbs since ancient times in

Asia (8). It has been consumed as a food for over 1,700 years, which can be dated

back to Japan in the fourth century and China during sixth century. Particularly, people
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living long in coastal areas frequently used seaweed as a main

dish, side dish, or soup (9). Consumption of seaweed supplies

sufficient macro and micronutrients, which are essential to

maintaining human health (10). Besides nutritional effects,

seaweed has long been adopted as a drug in Traditional East

Asian Medicine to alleviate the progression of multiple cancers

(11). Seaweeds as large multicellular marine organisms are

classified into three major groups based on their pigments and

the origin of sulfated polysaccharides: green (Chlorophyta), red

(Rhodophyta), and brown (Phaeophyta) (12, 13). They represent

a main source of bioactive compounds, yielding primary

metabolites essential for natural growth and many secondary

metabolites, which include polysaccharides, polyunsaturated

fatty acids, phenolics, vitamins, pigments, minerals, terpenes,

and phytosterols (14). Due to their various constituents,

seaweeds have shown diverse biological activities, including

anticancer activity (15).

Seaweeds have long been recognized as a therapeutic

option of cancer (16). Accumulating evidence advocates that

the anticancer effects of bioactive ingredients extracted from

seaweed are produced via multiple mechanisms of action,

including inhibition of growth, invasion, and metastasis of

cancer cells, and through the stimulation of apoptosis in

cancer cells (17). Among the East Asian population, people

who regularly consumed seaweed reduced their risk of CRC

development by half (10). Several researches have suggested that

CRC can be effectively treated with marine natural products

(18). According to one such report, brown seaweed Turbinaria

decurrens has the potential as an anti-CRC agent (19). The

highly cytotoxic and antiproliferative activities of seaweeds from

the Portuguese coast have been proven in a model of Caco-

2 CRC cells in vitro (20). Sargassum oligocystom significantly

decreased cell viability in SW742, HT-29,WiDr, and CT-26 CRC

cells through activation of the APC gene (21). Although several

studies have reported the therapeutic properties of seaweed in

CRC, its mechanism of action and active ingredients are still

unclear and unclassified. In this review, we summarize the

various effects of diverse compounds derived from seaweed

on CRC.

Categorization of anti-CRC
compounds isolated from seaweeds

Polysaccharides

The polysaccharides present in seaweeds are many and

diverse (22). They are hydrophilic molecules with high

solubility in water and a repeating structure (23). The

polysaccharides in seaweed are divided into sulfated (fucoidan,

carrageenan, and ulvan) and non-sulfated (agarose and

laminarin) (24). Chlorophyta, Phaeophyta, and Rhodophyta

contain polysaccharides of varied chemical composition and

structure (25).

Previous studies suggested that polysaccharides from

seaweed showed strong anti-CRC and preventive activities.

They can either directly inhibit cancer cells or affect various

phases of carcinogenesis and the progression of tumor through

the regulation of the balance between proliferation and

programmed cell death and can also be potentially used

for cancer prophylaxis (26). Three polysaccharide fractions

isolated from Porphyra haitanensis exerted inhibitory effects

on growth in the HT-29, LoVo, and SW-480 colon cancer

cell lines (27). Other active components contained in seaweed

that exhibit similar effects against CRC are shown in Table 1.

Another study reported on an evaluation of the anti-CRC

activity of sulfated glucuronorhamnoxylanpolysaccharides from

Capsosiphon fulvescens (28). Polysaccharides from Jania rubens

upregulated the gene expression of Bax, caspase 8, and P53

in human colon cancer Caco-2 cells (29). A summary of

mechanisms for other active components from seaweed on

anti-CRC is shown in Table 2.

Agarose

Red algae cell walls mainly consist of agarose which is

composed of alternative units of D-galactose and 3,6-anhydro-

L-galactose (AHG) linked by alternating α-1,3- and β-1,4-

glycosidic bonds (62). After being consumed, agarose is digested,

fermented, and metabolized by intestinal microbiota in the

human large intestine, which makes it unique among red algal

polysaccharides (63). Clinical trials have suggested that people

in Asia who regularly consume red seaweeds are at a lower risk

of CRC, which is relevant to their daily intake of seaweeds (64). It

is speculated that this effect may be related to biologically active

agarose components enriched from red seaweed. Upregulation

of caspase-3, Bax, and caspase-9 expression and downregulation

of Bcl-2 and Bcl-xL were observed in HCT-116 cells after AHG

treatment (30). Therefore, the growth of human colon cancer

HCT-116 cells was effectively suppressed by AHG, indicating

that AHG is a potential alternative as an anti-CRC agent.

Ulvan

The sulfated polysaccharide known as “ulvan” is extracted

from green algae of the ulva species (35). Ulvan mainly consists

of cellulose, xyloglucan, and glucuronanwith various other types

of sugars (65). It is reported to possess diverse physiological and

bioactive activities, including anticancer activity (66). Ulvan has

been demonstrated to decrease viability in cancer cells while

leaving healthy cells unaffected (65). The current study has

categorically proven that biogenic silver nanoparticles (AgNP),

which were generated via an extract of the marine alga Ulva

lactuca, can induce p53-dependent apoptosis in colon cancer

HCT-116 cells (31, 32).
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TABLE 1 The e�ects of active components isolated from seaweeds on colorectal cancer.

Seaweed Division Therapeutic

ingredients

Cell line IC50 References

Sphaerococcus coronopifolius Rhodophyta Dichloromethane extract Caco-2 21.3 µg/mL (20)

Sargassum oligocystom Phaeophyta Hydroalcoholic extract CT-26 - (21)

Porphyra haitanensis Rhodophyta PHP-F1, PHP-F2 and PHP-F3 HT-29 664.4 µg/mL, 575.1

µg/mL and 578.3

µg/mL

(27)

Capsosiphon fulvescens Chlorophyta SPS-CF HT-29 - (28)

Jania rubens Rhodophyta J. rubens polysaccharide Caco-2 20 mg/mL (29)

Red Seaweeds Rhodophyta AHG HCT-116 - (30)

Ulva lactuca Chlorophyta AgNP HCT-116 142µM (31)

Ulva lactuca Chlorophyta Ulvan polysaccharide HCT-116 22.65 µg/mL (32)

Fucus evanescens Phaeophyta Laminarin HCT-116 200 µg/mL (33)

Kappaphycus alvarezii Rhodophyta κ-carrageenan HCT-116 HT-29 -

73.87 µg/mL

(34, 35)

Fucus vesiculosus Phaeophyta Fucoidan HT-29 HCT-116 200 µg/mL

-

(36–38)

Fucus evanescens Phaeophyta Fucoidan HCT-116 - (39)

Sargassum mcclurei Phaeophyta SmF1, SmF2 and SmF3 DLD-1 - (40)

Sargassum glaucescens Phaeophyta SG4 HT-29 272 µg/mL (41)

Sargassum cinereum Phaeophyta Fucoidan Caco-2 250 µg/mL (42)

Halimeda opuntia Chlorophyta Carotenoids, chlorophyll a HT-29 45.23 µg/mL (43)

Laminaria japonica Phaeophyta Fucoxanthin HCT-116 - (44)

Sargassum angustifolium Phaeophyta Fucosterol HT-29 70.41 µg/mL (45)

Pterocladiella capillacea Rhodophyta Mertensene HT-29 56.5 µg/mL (46)

Cystoseira usneoides Phaeophyta Meroterpenoids HT-29 7.8–36.9 µg/mL (3)

IC50 , the half-maximal inhibitory concentration.

Laminarin

Laminarin, sometimes referred to as laminaran, which is an

essential biodegradable and non-toxic polysaccharide isolated

from the cell wall reservoirs of brown algae, has caught the

interest of researchers (67). Laminarins are essentially a group

of low-molecular-weight storage β-glucans consisting of (1,3)-

β-D-glucan (68). (1,3)-β-D-glucopyranose residues with a few

6-O-branching on the main chain, and also several β-(1,6)-

intra-chain links, which are abundant in their structures (69).

β-glucans can promote cell apoptosis of colon cancer, and they

may be beneficial natural agents for colon cancer treatment

and chemoprevention (70). Additionally, certain studies have

suggested that the biological activity of laminarin can be

strengthened with particular chemical modifications (71). For

example, Ji et al. (71) demonstrated that laminarin treated with

sulfated provided a stronger antitumor effect compared with

unmodified laminarin in human colorectal adenocarcinoma

cells. The cell survival rate was significantly decreased after

culturing with sulfated laminarin in LoVo cells. Apparently,

peculiarities of the polysaccharide structure and sulfation

contribute to the anticancer activity of laminarins. Malyarenko

et al. (33) found that the antiproliferative activity of laminarins

from Fucus evanescens was comparable to that of their sulfated

derivatives. The anticancer effect of laminarin isolated from

F. evanescens was stronger than that of its sulfated derivatives

in HCT-116 colon carcinoma cells. Ji et al. (72) proved that

laminarin increased the intracellular reactive oxygen species

(ROS) level, increased intracellularCa2+, decreased intracellular

pH, and induced LoVo apoptosis through a mitochondrial

pathway. A further study revealed that the expression of

procaspase-8 and−3 was downregulated and the activity of

caspase-8,−3,−6, and−7 was increased in human colon cancer

LoVo cells through the TRAIL/DR pathway after treatment with

laminarin (73). Thus, laminarin induces apoptosis in human

colon cancer via the mitochondrial and DR pathways, indicating

that laminarin is a potent anticancer agent.

Carrageenan

A set of sulfated polysaccharides generically described

as carrageenan is present in red algae, which is the major

ingredient of cell walls and interstitial spaces, acting as
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TABLE 2 Properties of active components isolated from seaweed against colorectal cancer.

Therapeutic ingredients

(Seaweed)

Cell line Mechanism Cell cycle

arrest

References

Hydroalcoholic extract (Sargassum

oligocystom)

CT-26 Upregulate APC and P53 + (21)

PHP-F1, PHP-F2 and PHP-F3

(Porphyra haitanensis)

HT-29 Induce oxidative stress and apoptosis G0–G1 (27)

SPS-CF (Capsosiphon fulvescens) HT-29 Upregulate caspase-8,−9,−3 and cleavage of poly (ADP-ribose)

polymerase (PARP), induce DNA fragmentation, disrupt MMP

G2/M (28)

Polysaccharide (Jania rubens) Caco-2 Upregulate Bax, caspase 8 and P53 + (29)

AHG (Red Seaweeds) HCT-116 Upregulate Bax, caspase-3,−9 and P53, downregulate Bcl-2 and Bcl-xL + (30)

AgNP (Ulva lactuca) HCT-116 Upregulate Bax, P53 and P21, downregulate Bcl-2 + (31)

Ulvan polysaccharide (Ulva lactuca) HCT-116 Upregulate P53, downregulate Bcl-2 + (32)

Laminarin (Fucus evanescens) HCT-116 Anti-Proliferation, inhibit MMP-2 and MMP-9 activity - (33)

κ-carrageenan (Kappaphycus alvarezii) HCT-116 Induce apoptotic cell death, nuclear fragmentation and apoptosome

formation, downregulate XIAP and PARP-1

G1 (34)

Fucoidan (Fucus vesiculosus) HT-29 HCT-116 Increase Bax, caspase-3, PARP-1 and P21, decrease Bcl-2, Cyclin D1

and E, CDK2 and CDK4

G1 (36, 38, 47)

Fucoidan (Fucus evanescens) HCT-116 Decrease TOPK kinase activity, inhibit phosphorylation of TOPK (Thr

9)

- (39)

SG4 (Sargassum glaucescens) HT-29 Increase cytochrome c release, caspase-9,−3 and DNA fragmentation,

disrupt MMP

sub-G1, S, and

G2/M

(41)

Fucoidan (Sargassum cinereum) Caco-2 Increase ROS, induce chromatin condensation - (42)

Fucoxanthin (Undaria pinnatidfida) Caco-2 DLD-1

HT-29

Upregulate apoptosis, downregulat DNA fragmentation - (48)

Fucoxanthin (Laminaria japonica) WiDr HCT-116 Upregulate cell cycle arrest and apoptosis, up-regulation of

p21WAF1/Cip1, downregulat proliferation

G0/G1 (44)

Fucoxanthin (Marine algae) HCT-116 HT29 Upregulate DNA damage + (49)

Fucoxanthinol (Brown algae) DLD-1 HCT-116 Upregulate anoikis and integrin β1, downregulat PPARγ, Akt

activation

G1 (50)

Astaxanthin (Marine source) WiDr Downregulat proliferation, inhibiting the MYC-mediated

downregulation of microRNA-29a-3p and microRNA-200a

- (51)

ω-3 PUFAs LOVO Anti-Proliferation, induce phosphorylation of YAP - (52)

EPA HCT-116 Suppress EGFR and VEGFR activation pathways, downregulate VEGF

and HIF1α

- (53)

DHA HCT-8 HT-29

HCT-116 SW480

Upregulate TNFα, ERdj5 and caspase-4, downregulatemicroRNA-21,

inhibit RIP1 kinase and AMP-activated protein kinase α

- (54, 55)

ARA HT-29 Induce ER stress and apoptosis, inhibit SREBP-1 activity and DNA

replication

G1/S (56, 57)

LA LOVO CT-26 Upregulate microRNA-494, cytochrome c release, caspase-9,−3 and

ROS, downregulateMYCC and PGC1α

S and G2/M (58, 59)

Fucosterol HT-29 Anti-Proliferation, upregulate P53, decrease cell viability + (60)

Fucosterol (Sargassum angustifolium) HT-29 Induce cytotoxicity - (45)

Mertensene (Pterocladiella capillacea) HT-29 Upregulate caspase-3 and cleavage of poly (ADP-ribose) polymerase

(PARP), inhibit phosphorylation of P53, Rb, cdc2 and chkp2

G2/M (46)

Meroterpenoids (Cystoseira usneoides) HT-29 Inhibit phosphorylation of ERK, JKN and AKT G2/M (3)

Phloroglucinol HT-29 HCT-116 Upregulate caspase-3 and caspase-8, inhibited the expression of Ras,

Raf, mitogen-activatedprotein kinase, extracellular-signal regulated

kinase phosphorylation, PI3K and Akt

G0/G1 (61)

+, effects reported; −, no effects reported.
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structural compounds and supplying intercellular adhesion and

signaling. The structural units of these natural polysaccharides

are a mixture of sulfated linear galactans, which consist

of disaccharides of α-(1,4)-linked D-galactopyranose (D)

residues or 3,6-anhydrogalactopyranose (DA) and β-(1,3)-

linked D-galactopyranose (G) residues (74). According

to the concentration, position, and sulfation of 3,6-

anhydrogalactose, they are categorized into κ, λ, ι, ν, m,

and θ types (75). Polysaccharides with a molecular weight

ranging from 500 to 1,000 kDa are present in most of them;

however, up to 25% of them may contain polysaccharides

at a molecular weight of <100 kDa (76). The significant

anticancer and antitumor activities were found in the

low-molecular-weight κ- and λ-carrageenan, probably

attributed to their antiviral and antioxidant effects as well

as the stimulation of immunity against tumors (77). Some

studies have reported that the risk of colon cancer appears

to be minimized with low-molecular-weight carrageenan,

a type of functional food ingredient (34). Carrageenans

from Gigartina pistillata (78), Apostichopus japonicus (79)

and Kappaphycus alvarezii (80) have an anti-CRC effect

on the colon cancer HT-29 cell line. Native carrageenan

exerted high cell suppressive activity in colon cancer cells

compared with commercial carrageenan. Raman et al. (34)

examined the role of the κ-carrageenan-containing soluble

dietary fiber fraction of red algae in human colon cancer

HCT-116 cells.

However, conflicting studies have suggested that colitis

and inflammation may be induced by carrageenan (81). Wei

et al. (82) suggested that the existing intestinal inflammation

was magnified and TNBS-induced intestinal inflammation was

aggravated by κ-carrageenan via activating the TLR4-NF-κB

and MAPK/ERK1/2 pathways, which indicates it might act

as a potential pro-inflammatory factor. In addition, further

studies from their group revealed that the LPS-induced

inflammation can be synergistically activated by κ-carrageenan

through the Bcl10-NF-κB pathway, as illustrated by the

aggravation of Citrobacter freundii DBS100-induced colitis

in mice treated with it (83). Mi et al. (84) investigated the

effectiveness of the carrageenan intake form and host intestinal

microecology on toxicity in C57BL/6J mice. The severity

of colitis in high-fat diet-fed mice could be increased by

native carrageenan from drinking water via decreasing the

abundance of the anti-inflammatory bacterium Akkermansia

muciniphila and increasing that of harmful bacteria. The

inflammatory effect and secretion of proinflammatory

cytokines in HT-29 cells can be increased and promoted

by using the fermentation supernatants of κ-carrageenan

oligosaccharides (85). The inflammatory property of κ-

carrageenan oligosaccharides in the context of gut microbiota

was evidenced by these results.

Fucoidan

Sulfated L-fucose present in the fibrous cell walls and

intercellular spaces of brown seaweeds is a major component

of fucoidan, which belongs to a large family of marine sulfated

polysaccharides (86, 87). Fucoidan is a heparin-like molecule

with a simple chemical structure composed of a repeating unit

of disaccharides containing α-1,3-linked fucose and α-1,4-linked

fucose with branches linked at the C2 positions (86). Generally,

L-fucose polymerized with sulfated ester groups is present

substantially in fucoidan, while galactose, glucose, mannose,

xylose, and glucuronic acid residues are found in only a small

proportion (88). Derivatives of fucoidanwith a molecular weight

varying from 40 to 330 kDa have been examined for their

anticancer activities (89). Numerous experiments have shown

that tumor cell proliferation and its growth or metastasis can

be counteracted by fucoidan via eliciting cell apoptosis and

suppressing angiogenesis (90). Health can be promoted and

gut dysbiosis can be treated by fucoidan, a potential intestinal

microbiota modulator. In addition, the effects of induced

apoptosis in CRC cells by fucoidan have been evaluated (91).

In HT-29 colon cancer cells, cell viability was reduced

by fucoidan in a dose- and time-dependent manner through

reducing the expression of CDK2, CDK4, and Cyclin D1 (36).

Apoptosis was also mediated by fucoidan via inhibition of

the IGF-I/IGF-IR/IRS-1/PI3K/AKT (92) and PI3K-Akt-mTOR

signaling pathways (37). A further study found that cell cycle

arrest at G1-phase was induced by fucoidan via the upregulation

of p21WAF1 and downregulation of Cyclin D1/CDK4 and

Cyclin E/CDK2 expression (47).

In HCT-116 human colon cancer cells, CDK activity was

suppressed by fucoidan via combining the CDK inhibitor

proteins p21 and p27 with the Cyclin/CDK complexes (38).

EGF-induced neoplastic cell transformation was significantly

inhibited by fucoidan from F. evanescens via suppressing the

TOPK/ERK1/2/MSK 1 signaling axis (39). In colon cancer cells

DLD-1, fucoidan from Sargassum mcclurei was observed to be

less cytotoxic and inhibited colony formation (40).

Fucoidan strongly regulated the mitochondrial membrane

in cancer cells. The evidence found that apoptosis was caused

by fucoidan through MMP loss, an increase in cytochrome c

release and DNA fragmentation, activated caspase-9 and−3, and

an increasing percentage of early and late apoptotic cells in HT-

29 cells. Other biological studies indicated that apoptosis was

induced by SG4 via involvement of the Akt/mTOR/S6 pathway

in HT-29 cells (41). Another report showed that fucoidan from

Sargassum cinereum suppressed the proliferation of Caco-2 cells

in a dose-dependent manner, increased ROS production, and

augmented mitochondrial membrane permeability (42).

In an animal model, tumor morbidity and average

tumor weight were reduced and cellular apoptosis was

increased by the treatment of dietary fucoidan in 1,2-
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dimethylhydrazine (DMH)-induced colorectal carcinogenesis

in rats. The expression of β-catenin, C-Myc, Cyclin D1, and

Survivin was reduced by treatment with fucoidan, whereas the

Hippo pathway was highly activated and the phosphorylation

levels of Mst1, Mst2, LATS1, LATS2, and YAP were significantly

upregulated (91).

Pigments

Generally, marine seaweed and animals are rich in

pigments, which are widely used in functional food and

pharmaceutical industries (93). There are mainly three types of

pigments in seaweed involving chlorophylls, carotenoids, and

phycobiliproteins (94). The seaweed color was determined by

the content and type of pigments (95). For instance, chlorophylls

a and b contribute to the green color in green seaweed, whereas

allophycocyanin and c-phycoerythrin are responsible for the

red color in red seaweed. β-carotene and fucoxanthin (Fx) are

commonly observed in brown seaweed (96).

Tumor cells from CRC patients grow uninhibited in the

body and enter the blood vessels to spread systemically

(97). The apoptosis mechanism is strongly associated with

antioxidant properties. Hence, anticancer compounds generally

have antioxidant, antiangiogenic, and anti-inflammatory effects

to regulate tumor development (98). A recent report showed

that the strong antioxidant activity of carotenoids and

chlorophyll a from green seaweed Halimeda opuntia against

HT-29 human colorectal adenocarcinoma was investigated. The

finding suggests that natural pigments are potential anticancer

ingredients (43).

Carotenoids give seaweed colors from yellow to orangish

(99), which of them possess strong activities involving

Fx, astaxanthin (AXT), and violaxanthin (100). The

evidence showed that carotenoids inhibited the PI3K/Akt

apoptosis pathway, eventually integrating the mitochondrial

membrane (101).

Fx is one of the most famous lipophilic carotenoids in brown

algae, which is responsible for the strong antitumor property.

Clinical trials reported that Fx decreased the causing risk of

CRC, which has been found to Fx possess potential anti-CRC

activity via downregulation of tumor-related proteins (102).

In cell experiments, Fx caused a markably decrease of the

survival rate in Caco-2, HT-29, DLD-1 (48), and HCT-116

colorectal carcinoma cells (103). It was found that the activation

of apoptosis and fragmentation of DNA contributes to the

anticancer effect of Fx. Fx showed a significant antiproliferative

effect by controlling the level of signaling proteins such as

MAPK, NF-κB, and caspase family (99, 104). The disruption

of cell cycle arrest causes cell apoptosis. Researchers found that

Fx regulated sub-G1 cell cycle arrest in WiDr colon cancer

cells (44). Furthermore, Fx stimulated cell cycle arrest at the

G0/G1 or G2/M phases and caused programmed cell death

(104). It is deduced that Fx induced cell cycle arrest and

caused programmed cell death through enhancing intercellular

communication between tumor cells.

The derivative compound of Fx was found that exists

stronger anticancer activity than Fx. Chemical structural factors

significantly influence the antiproliferative properties of Fx. The

anti-CRC effect of Fx-degrading compounds was evaluated in

Caco-2 cells and its activitymay result in partial structures (105).

The 13-cis and 13′-cis isomers of Fx showed a markably cancer-

preventive effect compared to other derivatives (106). In another

study, the antiproliferative effects of 5-fluorouracil (5-Fu) and

Fx were determined and compared in HCT-116 and HT-29

cells (49). Fucoxanthinol (FxOH) is the deacetylated type of Fx,

which can induceDLD-1 cell apoptosis into anoikis-like changes

through the distribution of FAK and integrin β1 expression (50).

The mechanism of the anti-CRC effect of FxOH was evaluated

via regulation of MAPK and STAT apoptosis pathways in HT-

29 and HCT-116 cell lines (107), and through inhibiting NF-κB

activation in CRC cells (108). According to the previous reports,

we found that the anti-CRC activity of FxOH is stronger than

Fx, and FxOH induced cancer cells through downregulation of

MAPK, STAT, and NF-κB apoptosis pathways. The anticancer

effects of Fx and FxOH on six types of CRC cell lines and twenty

kinds of tissues from surgically resected clinical CRC specimens

were determined as well (109).

In a CRC model animal experiment, a continuous 5-week

oral administration of Fx-rich fraction strongly inhibited the

number of colorectal adenocarcinomas in DSS-treated male

mice (110). Additionally, Fx significantly suppressed colon

cancer in azoxymethane-dextrane sodium sulfate (AOM/DSS)

carcinogenic model mice (111). In an inflammation-associated

CRCmouse model, after a 4-month period of Fx administration,

the multiplicity of colorectal adenocarcinoma was strongly

decreased via upregulated anoikis-like integrin β1low/−/cleaved

caspase-3high cells in colonicmucosal crypts (112). Additionally,

Fx also markedly decreased HSP70 protein in colorectal

mucosal crypts for 15-week administration (113). In a 14-week

administration in a CRC mouse model, Fx markedly decreased

CCR1, pAKT(Ser473), Cyclin D1, and pSmad2 compared with

untreated mice (114). Therefore, Fx had chemopreventive

potency and therapy ability in the progression of colorectal

carcinogenesis in mice.

AXT is mainly contained in seaweed, and showed anti-

metastatic activity through inhibiting microRNA-29a-3p and

microRNA-200a, thereby downregulating MMP2 and ZEB1

(51). Natural AXT isolated from Haematococcus pluvialis

showed a significantly anti-CRC effect in a dose-dependent

manner in HCT-116 cells by regulating the ratio of Bax/Bcl-2

and upregulating the phosphorylation of p38, JNK, and ERK1/2

(115). AXT induced programmed cell death in DMH-induced

rat colon carcinogenesis by modifying NF-κB, COX-2, MMPs-

2/9, Akt, and ERK-2 expressions (116). A finding observed that

AXT inhibits the progression of colonic premalignant lesions in
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an obesity-associated colorectal carcinogenesis animal model by

attenuating oxidative stress, reducing inflammation and NF-κB

activation in the colonicmucosa (117). Hence,AXT is a potential

cancer-preventive compound in the therapy of CRC.

Polyunsaturated fatty acids

Seaweeds are known as low-energy food. Despite their low

lipid content, seaweeds contain ω-3 and ω-6 polyunsaturated

fatty acids (PUFAs) as a significant portion of their lipids (118).

PUFAs are the precursors of eicosanoids and all cell membrane

components, which can effectively reduce the risk of cancer

(119). Several studies have demonstrated that the colorectal

tissue distribution of PUFAs is associated with CRC prognosis

(120). There are studies suggesting the potential use of some

oxidized metabolites of PUFAs as biomarkers of CRC (121).

ω-3 PUFAs

PUFAs in seaweeds contain a substantial amount of ω-3

fatty acids as major components. Eicosapentaenoic acid (EPA)

and docosahexaenoic acid (DHA) in seaweed are important

ω-3 fatty acids in the marine environment (122). At present,

more and more epidemiology and experiments have verified the

antitumor activity of ω-3 PUFAs (123). Consumption of diets

rich in ω-3 PUFAs not only inhibits the proliferation of CRC

cells, but also can be combined with chemotherapy to enhance

their sensitivity (124).

PUFAs have pro-apoptotic and growth-inhibitory effects on

cancer cells. In LoVo and RKO colon cancer cells, PUFAs can

reduce the synthesis of PGE2 and LTB4, inhibit the expression

of ALOX5, LTB4, mPGES, COX-2, and PGE2, and increase the

expression of LXA4, thereby promoting apoptosis and inhibiting

the growth of LoVo and RKO colon cancer cells (125).

In an animal model, dietary supplementation of ω-3 PUFAs

increased CRC cell apoptosis and decreased the tumor incidence

in AOM/DSS-induced CRC in mice. ω-3 PUFAs treatment

activated the hippo pathway, with increased cytoplasmic

retention and phosphorylation of YAP (mediated by LATS1 and

MST1/2) and the levels of epoxydocosapentaenoic acids (52).

Notably, dietary ω-3 PUFAs treatment suppressed the growth

of MC38 colorectal tumors. In C57BL/6 mice, ω-3 PUFAs

modulate eicosanoid and fatty acid metabolite profiles (126).

Huang et al. (127) demonstrated thatω-3 PUFAs reduced tumor

incidence in rats by regulation of the DNA methylation process.

Together, these results support the notion thatω-3 PUFAsmight

contribute to the anti-CRC effects of seaweed.

EPA

There is evidence of the utility of ω-3 PUFA EPA in the

treatment of CRC (128). In a clinical study, patients with familial

adenomatous polyposis (FAP) were randomized to receive free

fatty acid (FFA). Experimental data proved that EPA 2 g daily in

the form of FFA has chemo-preventive efficacy in FAP patients

(129). Recently, it has been shown that EPA can prevent FAP-

related CRC by acting on several molecular mechanisms (129,

130).

The increased risk of colitis-associated colorectal cancer

(CAC) is strongly associated with inflammatory bowel disease,

but the effectiveness of dietary EPA-FFA in anti-inflammatory

and anticancer activities is unclear. In EPA-FFA-treated AOM-

DSS mice, Piazzi et al. (131) found an enrichment of

Lactobacillus species in the gut microbiota, as well as restored

Notch signaling and decreased nuclear β-catenin expression,

while tumor cell apoptosis increased. Morin et al. (53) reported

that the eicosapentaenoic acid monoglyceride (MAG-EPA)

treatment increased HCT-116 cell apoptosis and decreased the

tumor of a mouse xenograft model of HCT-116 via activating

the vascular endothelial growth factor (VEGF) receptor pathway

and decreasing the epidermal growth factor receptor (EGFR).

DHA

As an ω-3 PUFA, DHA has various biological properties,

including anticancer activity (132). The anticancer effect of

DHA might be a consequence of its ability to regulate the

production of proinflammatory mediators in cancer cells and/or

host cells, changing the inflammatory status of the systemic

or tumor microenvironment (54, 133). Numerous studies

have demonstrated that in CRC cells, the activity of DHA-

triggered caspase family members is associated with apoptosis

(134). Mechanisms including DHA-induced cellular protein

expression explain the antitumor activity of DHA (55).

Fluckiger et al. (54) reported that the TNFα-dependent

manner triggers apoptosis in HCT-116, HCT-8, and human

CRC cells in DHA-mediated, and cells induced with DHA

increased TNFα mRNA content by downregulating microRNA-

21 expression, stating that the effect of TNFα on DHA-

mediated apoptosis of colon cancer cells. Sarabi et al. (135)

demonstrated that DHA could specifically attenuate promoter

DNA methylation and VEGF protein levels of microRNA-126

in HCT-116, Caco-2, and CRC cells. Fasano et al. (55) reported

that DHA treatment induced apoptosis in HT-29, HCT-116,

and SW480 colon cancer cell lines and inhibited their total and

surface GRP78 expression, suggesting that pERK1/2 could be

the first upstream target of DHA. These studies offer insight

into the epigenetic mechanisms by which DHA influences gene

expression regulation in CRC cells.

ω-6 PUFAs

The ω-6 PUFAs contained in seaweeds include mostly

linoleic acid (LA) and arachidonic acid (ARA) (136). Previous

studies have suggested that, unlike ω-3 PUFAs, the ω-6 PUFAs,

especially ARA, are generally associated with many adverse

effects on the human body, including the promotion of multiple
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cancer types, such as CRC (137, 138). However, there is little

in vitro evidence to show that ARA exerts anticancer activity

in CRC cells. Bae et al. (56) and González-Fernández et al.

(57) evidenced that ARA may inhibit DNA replication and

G1/S cell cycle transition and induce endoplasmic reticulum

stress in HT-29 CRC cells, thereby suppressing cell viability and

inducing apoptosis.

Research evidence shows that LA may be involved in both

pro- and anticancer activities (137). Lu et al. (139) and Ohmori

et al. (140) reported that LA at low concentrations (100-200µM)

reduced caspase-3 activation in CRC cells and promoted tumor

cell proliferation. LA at high concentrations (above 300µM)

enhanced ROS generation, caused mitochondrial dysfunction

and inhibited tumor cell growth (58). A recent report from

Ogata et al. (59) suggested that LA induced quiescence

by promoting microRNA-494 expression, resulting in the

dormancy of CT-26 CRC cells. Therefore, it is speculated that

LA can inhibit the growth of CRC cells.

Phytosterols

Phytosterols are the major nutritional components of

seaweed and the most important chemical constituents of algae

(141). Phytosterols are the major lipid components of plant

cell biofilms. In the marine environment, brown algae are a

major source of phytosterols, including brassicosterols with a

small amount of plant cholesterol and fucosanols (142). Not

only can phytosterols lower cholesterol, they also have strong

anticancer activity, and several studies have shown that foods

rich in phytosterols may help control the growth of many types

of tumors (143).

β-Sitosterol

β-Sitosterol, isolated from seaweed, is the most common

dietary phytosterol and has a proven potential role in the

treatment of CRC (144, 145). Shathviha et al. (146) reported

on the evaluation of AgNP synthesized using β-sitosterol and

its cytotoxic potential in HT-29 human colon cancer cells. β-

Sitosterol-mediated AgNP treatments induced p53 expression

and early apoptosis in HT-29 cells. Arul et al. (147) investigated

the β-Sitosterol significantly reduces fecal bacteria and colonic

bioconverting enzymes in mice with DMH-induced colon

cancer, thereby preventing colon cancer development. Amplified

activities of colonic biotransformation enzymes are considered

hallmarks of colon carcinogenesis. Hence, β-sitosterol is a

potential chemopreventive agent in colon carcinogenesis.

Fucosterol

Themajor phytosterol in brown seaweed is fucosterol, which

has various biological activities, including anticancer activity

(148). A previous study indicated that oxygenated fucosterol

inhibited HCT-116 human colon cancer cell growth with higher

cytotoxicity than commercial cytotoxic drugs (149). Ramos et

al. (60) reported that the combination of fucosterol with 5-

Fu can enhance the toxic effect in HT-29 cells. Furthermore,

fucosterol is not toxic to normal cells, indicating specificity for

cancer cells. The hexane fraction of fucosterol produced by

Sargassum angustifolium confirmed its cytotoxic activity against

HT-29 (45).

Terpenes

Within the marine environment, terpenes synthesized by

algae and secreted to the outside of cells to resist environmental

insults are major secondary metabolites from seaweeds (150).

It is a chemical compound that contains one or more isoprene

units with strong anticancer activity (15). Epidemiological and

experimental studies suggest that terpenes may be helpful in

curbing the growth of a variety of cancer cells, including colon

cells, and provide additional opportunities for cancer therapy

(151). Terpenes can modulate pathophysiological processes

such as the cell cycle, invasion, migration, proliferation, and

apoptosis in different types of tumor cells (152), exhibiting a

wide spectrum of antitumor activities (153).

Previous studies have reported that a pentahalogenated

monoterpene, halomon, isolated from the red seaweed Portieria

hornemannii, exhibited strong anticancer activity (154).

The halogenated monoterpene mertensene from the red

seaweed Pterocladiella capillacea (S.G. Gmelin) Santelices &

Hommersand inhibited LS174 and HT-29 human colorectal

adenocarcinoma cell lines by activating caspase-3 and NF-κB,

Akt, andMAPK ERK-1/-2 pathways vitality (46). Terpenes from

the brown seaweed Cystoseira usneoides have anticancer effects

on HT-29 colon cancer cells by reducing the phosphorylation

levels of JNK and ERK and inhibiting the ERK/JNK/AKT

signaling pathway (3). These reports demonstrate the potential

of terpenes as drug candidates for the treatment of colon cancer.

Phenolics

Phenolic agents are one of the most active compounds

in seaweed. Polyphenols with their high molecular weight,

such as phlorotannins, specifically exist in brown algae (155).

Phlorotannins are composed of a number of phloroglucinol

(Ph) monomeric units (156). Those active compounds play

a pivotal role in anti-CRC effects, for instance, as apoptotic,

anti-metastatic, and antiangiogenic proprieties. They inhibited

CRC cell growth directly or indirectly through attenuated

inflammatory cytokines and oxidative stress (157). In other

reports, the anticancer effects of Ph on insulin-like growth

factor-1 receptor signaling in HT-29 human colon cancer cells
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have been investigated. In addition, Ph inhibited the levels

of Ras, mitogen-activated protein kinase, and mTOR (158).

The polyphenol-rich agent showed a lower survival rate in

CRC cells than the non-polyphenol-rich agent from seaweeds

involving Laminaria japonica, U. lactuca, and Porphyra tenera.

Additionally, the polyphenol-rich agent caused G0/G1 cell cycle

arrest in HCT-116 cells (159). Phlorofucofuroeckol A (PFF-A)

(160) and Ph (161), isolated from brown seaweed, decreased

survival rates via activating the apoptosis pathway in CRC cells.

Further, Ph decreased the survival rate dose-dependently and

induced apoptosis in HT-29 cells, altering Bcl-2 and caspase

family proteins (61). The evidence proved that phenolic agents

play an important role in understanding the development of

colon CRC.

Vitamins

Seaweed is an important source of various vitamins, among

which vitamin C and vitamin D have strong anticancer activity

(162). A previous study indicated a potential interplay of vitamin

D and immune cells in the tumor microenvironment reduces

CRC risk (163). Moreover, some research groups have reported

an inverse association between vitamin D3 levels and CRC

incidence, and that higher vitamin D3 levels reduce polyp

recurrence and improve overall survival in CRC patients (164,

165). Tumor migration and proliferation were inhibited by

vitamin D and its analogs in the colon of C57Bl/6 mice (166).

Rawson et al. (167) suggested that vitamin D may alter CRC

risk by mediating extracellular inhibition. Ferrer-Mayorga et

al. (168) indicated that the vitamin D metabolite calcitriol

promotes vitamin D receptor expression and inhibits fibroblasts

(associated with colon cancer), resulting in anti-CRC effects.

There is also a study on vitamin C from Yun et al. (169),

who found that cultured CRC cells harboring KRAS or BRAF

mutations were selectively killed when exposed to high levels of

vitamin C.

Minerals

The minerals in seaweed are 10–20 times those of land

plants and are easily bio-accumulated from seawater (12,

170). The macronutrients (e.g., magnesium, potassium, calcium,

and sodium) and microelements (e.g., selenium, iodine, iron,

manganese, and zinc) contained in seaweed are important

for normal physiological functioning of the body and have

potential relevance in cancer treatment (171, 172). Numerous

clinical and epidemiological studies indicated that the risk of

CRC may be reduced with a higher intake of calcium and

magnesium (173). Ali et al. (174) evaluated the antitumor

effect of selenium against DMH-induced CRC in BALB/C

mice and its effect on apoptosis and angiogenesis. The group

treated with DMH plus selenium exhibited significantly lower

expression of cloned caudal-type homeobox gene-2 and VEGF

but a higher caspase-3 expression level than the DMH-

treated group.

Conclusions

Many studies have demonstrated the effect and mechanism

of red, green, and brown seaweeds in CRC-prevention and

therapy. Various therapeutic compounds from seaweed

involving large molecular polysaccharides and small molecular

pigments, fatty acids, phytosterols, terpenes, phenolics,

vitamins and minerals induce programmed cell death via

various signaling pathways. Such treatments can alter the

protein expression of Bax, caspases, Bcl-2, MAPK, NF-κB,

VEGF, DNA methylation, and CDK inhibitor and induce

changes in the cell cycle and the CRC cellular functions

of adhesion, migration, and invasion. Important anti-CRC

agents such as polysaccharides and fatty acids existed for

their antiproliferative and anti-metastatic effects in vivo.

Furthermore, terpenes and pigments inhibited CRC cell survival

rate and induced programmed cell death via regulation of the

Akt signaling pathway.

A few molecular alterations in human CRC cells were

correspondingly observed in CRC animal models treated with

seaweed. Consecutive studies in vitro will be important as

the basis for clarifying the molecular mechanisms underlying

cancer prevention in humans with CRC and CRC animal

models. CRC animal models, AOM-DSS, BALB/C, and C57BL/6

mice, have been the vehicles for many discoveries concerning

the anti-CRC effects of seaweed. The oxidation, inflammation

and gut microbiota, which are significant factors associated

with colorectal carcinogenesis, have been reported to be prime

targets of various therapeutic compounds from seaweed. In

addition, the administration of Fx induced anoikis in CRC

animal models. However, the detailed molecular mechanisms

underlying the cancer chemopreventive effect in animals remain

poorly understood.

Finally, this review highlights the importance of seaweed

as a potential agent candidate for preventing CRC. However,

the underlying mechanisms remain elusive. Further clinical

investigations are needed to assess the anticancer effect of

seaweed in humans.
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