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Abstract

Links between affective states and risk-taking are often characterised using summary statis-

tics from serial decision-making tasks. However, our understanding of these links, and the

utility of decision-making as a marker of affect, needs to accommodate the fact that ongoing

(e.g., within-task) experience of rewarding and punishing decision outcomes may alter

future decisions and affective states. To date, the interplay between affect, ongoing reward

and punisher experience, and decision-making has received little detailed investigation.

Here, we examined the relationships between reward and loss experience, affect, and deci-

sion-making in humans using a novel judgement bias task analysed with a novel computa-

tional model. We demonstrated the influence of within-task favourability on decision-

making, with more risk-averse/‘pessimistic’ decisions following more positive previous out-

comes and a greater current average earning rate. Additionally, individuals reporting more

negative affect tended to exhibit greater risk-seeking decision-making, and, based on our

model, estimated time more poorly. We also found that individuals reported more positive

affective valence during periods of the task when prediction errors and offered decision out-

comes were more positive. Our results thus provide new evidence that (short-term) within-

task rewarding and punishing experiences determine both future decision-making and sub-

jectively experienced affective states.

Author summary

Affective states, such as happiness, are key to well-being. They are thought to reflect char-

acteristics of the environment such as the availability of reward and the inevitability of

punishment. However, there is a lack of agreement about: (i) the time scales over which

these characteristics are measured; (ii) how and in what combinations actual or expected

outcomes influence affect; (iii) how affect itself influences decision-making. A particular

stance on the last issue underpins the judgement bias task, which, by measuring an
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individual’s willingness to make ‘optimistic’ or ‘pessimistic’ choices that are rendered

risky by perceptual ambiguity, is one of the few cross-species tests for affect. Here we

apply a novel computational analysis to a novel judgement bias task to examine all three

issues. We reveal a rich interplay between affect and rewards, punishments, and

uncertainty.

Introduction

There is a traditional gulf in the field of decision-making between one-shot tasks, in which

each trial is independent of the others (i.e., there is assumed to be no influence of previous out-

comes or stimuli on current decisions), and ongoing tasks, in which individuals are supposed

to apply what they learn from the consequences of their actions in earlier trials to later trials.

Signal detection theory [1] is the most well-established framework for investigating the former,

and reward- (or punishment-) based reinforcement learning [2] for the latter. In reality, the

distinction is blurred—adaptation paradigms use repeated stimulus presentations to ‘set’ the

state for one-shot psychophysical examinations [3]; participants perform exquisite Bayesian

learning in stop signal reaction time tasks, despite the instructed independence of the trials [4].

This distinction is particularly pertinent in research where decisions on serial trials yielding

reward or loss/punishment are used to probe the influence of affective states and disorders on

risk-taking and reward sensitivity. The resulting decision-making profiles are proposed as

markers of these states (e.g., Iowa Gambling task [5–7]; Balloon Analogue Risk Task [8–10];

Reward Responsiveness Task [11, 12]; Judgement Bias Task [13–15]). In most studies, deci-

sion-making data across test sessions are summarised into single statistics such as the number

of cards selected from more favourable decks, the average number of ‘balloon’ pumps, the

overall response bias as a marker of reward responsiveness, or the proportion of ‘optimistic’

responses. However, each trial within a task yields rewards or losses/punishments with the

potential to influence the participants’ performance on future trials. Moreover, an individual’s

ongoing experience of rewards and punishers (e.g., [16–20]) and their predictability (e.g., [21–

23]) are considered to be fundamental determinants of affective states. Therefore, within-task

experience may alter local affective states and influence future decisions and, ultimately, sum-

mary statistics of task performance, with knock-on effects for our understanding of the rela-

tionship between affect and decision-making and the utility of decision-making markers of

affective states or disorders.

Here we use a judgement bias task as an example paradigm in which to investigate what

characteristics of past within-task decisions and outcomes influence affective state, and how

they influence present choices, either directly, or indirectly, via changes in affective state.

Answering these questions will provide new fundamental information about how rewarding

and punishing experiences influence affect and decision-making across short timescales, from

seconds to a number of minutes. It will also further inform use of the judgement bias task as a

method for assessing both human and animal affective states.

The judgement bias task was originally designed [13], and has since been widely used [14,

15], as a translational paradigm in which decision-making under ambiguity could be used as

an indicator of an individual’s affective state. In the task, participants are trained to discrimi-

nate between two stimuli and make different responses to each (typically ‘go’ or ‘stay’/‘no-go’)

in order to either obtain a reward or avoid a punisher. Participants are then presented with

probe stimuli that are ambiguous by lying intermediate between the trained stimuli, and their

responses are recorded. In typical go/no-go tasks, executing the response associated with the
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trained rewarded stimulus, which is deemed the ‘optimistic’ response in the judgement bias lit-

erature, is risky in that it could result in either a reward or punisher, while executing the

response associated with the trained punished stimulus (deemed ‘pessimistic’) is ‘safe’ in that it

guarantees avoidance of the punisher, but also removes the possibility of winning a reward.

Decision-making in the judgement bias task, particularly trials with perceptually ambigu-

ous stimuli, is considered to be indicative of a longer timescale notion of affective state, or

‘mood’. Specifically, more ‘optimistic’ decision-making, as indicated by an excess proportion

of ‘optimistic’ as opposed to ‘pessimistic’ decisions made across a test session, is typically asso-

ciated with more positively valenced affect [14, 15, 24]. This decision-making profile is

hypothesised to reflect approximate sufficient statistics about the characteristics of the individ-

ual’s interaction with and experience of the rewarding and punishing features of their environ-

ment [22, 25, 26]. These statistics could encompass such things as past provision of rewards

and punishers or the extent to which these were predicted, and could affect how the individual

makes decisions by, for instance, changing their prior expectations, or their sensitivities to

reward and punishment [17, 22, 25–28]. To illustrate, consider an individual in a chronically

reward-barren environment. Such an environment has been proposed to induce a depression-

like state which is sometimes associated with a reduced reward valuation (i.e., anhedonia—

reduced sensitivity to the value of rewards; [29, 30]) and a reduced expectation of future

rewards, and hence should result in more ‘pessimistic’ decision-making in the judgement bias

task [17, 25–28].

While these statistics might reflect long-term experience prior to the task, they might also

reflect short-term and ongoing experience within the task. That is, the judgement bias task is

ostensibly a series of independent one-shot psychophysical choices, each open to influence

from longer-term affective state as described above. However, during performance of the task,

participants accrue rewarding or punishing outcomes as a result of their decisions. These out-

comes might in turn alter the very affective state that the task is designed to measure. Clearly,

the influence of the consequences of previous decisions in the task on subsequent affect and

choices needs to be investigated.

In the present study, we examined this relationship between psychophysical decision-mak-

ing, decision-outcomes and self-reported affect in human participants using a novel ‘go’/‘stay’

judgement bias task design in which either reward or loss magnitude was systematically varied

across trials, so that there were epochs of high and low value potential outcomes. We investi-

gated the impact of on-going reward and loss experience on decisions on each trial, and on

self-reported affective state at intervals during the task. Choice and/or latency are the typical

outcome measures in judgement bias tasks; we further exploited these by constructing a

computational model of the task that allowed us to model the course of decision-making in

detail [31, 32] and thereby investigate the latent, and potentially more fundamental, variables

underlying the relationship between reward and loss experience, affect, and decision-making

in this task. This study hence provides a comprehensive investigation of the interplay between

affect, outcomes, and decision-making by exploring the links between reward and loss experi-

ence and affective state, reward and loss experience and decision-making, and affective state

and decision-making simultaneously.

The model considers the task as a partially observable Markov decision process (POMDP).

In this, on each trial, participants transition through a two-dimensional state space, which

bears some resemblance to a discretised version of a drift-diffusion model: one dimension rep-

resents accumulated information about the presented stimulus, as informed by their observa-

tions, and the other dimension represents the (discretised) time elapsed on the trial. The

probability that a participant executes a ‘go’ action (associated with avoiding the punished

stimulus), the alacrity with which they do so, and the probability of executing the ‘stay’ action
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(associated with obtaining the rewarded stimulus) will depend on their transitions through

this state space and their subjective value of occupying each state. This is determined by two

sets of parameters. One set characterises task performance, and includes a slope, which repre-

sents the ability to discriminate the stimuli, and lapse parameters, which represent the propen-

sity to make errors at either trained or ambiguous stimuli. These lead to the psychometric

function [33]. The second set of parameters quantify time estimation, decision stochasticity,

and finally biases towards or away from ‘optimistic’ decision-making. Because biases in deci-

sion-making may be influenced by experience prior to the task, but also by experience of deci-

sion outcomes during the task itself, we used additional parameters that mapped the influence

of within-task experience to this bias parameter. These included the average earning rate
(reflecting what a participant has learnt about their earnings from previous trial outcomes),

prediction error (the difference between the actual and expected outcome on recent trials) and

squared prediction error (magnitude of unpredictability of outcomes on recent trials). All of

these have been implicated in affect and decision-making and/or the relationship between the

two in a variety of ways (prediction errors: [21, 22, 34, 35]; average earning rate: [36, 37]). Crit-

ically, the model precisely quantifies the various factors determining behaviour that can then

answer our specific research questions.

Our main hypothesis was that a less favourable within-task experience would induce more

negatively-valenced affect and consequently more risk-averse decision-making. Specifically,

we hypothesised that more negative prediction errors and a lower average earning rate (a

weighted average of past outcomes) would reflect epochs in which the test environment is

both relatively and absolutely unfavourable, thereby promoting more negatively-valenced

affect [22, 25, 38], as assessed by a self-reported affect measure [21, 39, 40]. In turn, we pre-

dicted that the same factors predicted to induce negatively-valenced affect (i.e., more negative

prediction errors and a lower average earning rate) would be associated with riskier decision-

making.

In contrast, the literature does not suggest such clear predictions for positive prediction

errors. They might be associated with more positively-valenced affect [21, 22], but given that

they are also indicative of greater uncertainty, they have also been associated with more nega-

tively-valenced affect [23, 41, 42]. Hence, we remained agnostic as to the direction of the effect

of positive prediction errors on affect and decision-making, and to whether the direction or

magnitude (i.e., unpredictability) of prediction errors would provide a better account of

within-task variation in affect and decision-making.

We further hypothesised that overall more positive affective valence would be associated

with an overall greater ‘optimistic’ bias/greater risk-seeking, based on previous research [30,

43, 44]. Given that losses can be more salient than gains [45–47], we investigated the possibility

that all effects of past outcomes on affect might be stronger in the fluctuating loss condition

than in the fluctuating reward condition.

1 Results

In order to examine the relationships between rewards and punishments, affective states and

risky decision-making, we asked human participants to perform a novel version of a go/no-go

judgement bias task (see Fig 1), whilst also providing reports on their affective states. The task

involved participants choosing between a risky response (‘stay’; in which they continued to

hold a key on a keypad for the 2s duration of the trial, resulting in either a reward or loss) or a

safe response (‘go’; in which they released the key before the trial elapsed, resulting in neither a

reward nor loss). Participants were informed about the reward or loss outcome of the risky

response by the direction of motion of a random dot kinematogram (RDK) which varied in
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ambiguity. We analysed the choices/reaction times and affective reports using a new computa-

tional approach which is sensitive to subtle influences of past outcomes and predictions on

present decisions and reports.

We start by laying out how our model captured trial-, subject-, and history-dependent

choices in the task. This leads to a set of parameters that we then relate to the affect that the

participants report during performance of the task.

The ultimate model involves a large number of parameters. We controlled the model com-

plexity by adding only those that reduced the BIC score, which is a complexity-sensitive mea-

sure of the fit of the model to the subjects’ performance. We then compared the resulting BIC

scores [48] along with those of another complexity measure, the AIC [49], across a final set of

models (see S1 Appendix). To validate our procedure, we also checked that we could recover

Fig 1. Task structure. Structure of the human monetary judgement bias test session: (1) participants are shown the

potential outcomes of the ‘stay’ response and then must press ‘enter’; (2) participants are instructed to press and hold

the ‘enter’ key; (3) participants are shown a fixation cross for 1000ms (3) participants are presented with a RDK for

2000ms during which they must either continue holding the ‘enter’ key (‘stay’) or release the ‘enter’ key (‘go’); (4)

participants are shown the outcome of their action (which is also determined by the true direction of the RDK) for

1000ms (5) either the next trial starts or the participant is asked to complete an affect grid (after every 10 trials).

https://doi.org/10.1371/journal.pcbi.1008555.g001
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subjects’ parameters from data generated by the model, compared the results to those obtained

using a quasi model-agnostic approach, and compared the model fit to an alternate model of

judgement bias (see S1 Appendix).

1.1 Judgement bias

We first sought to identify the parameters which best accounted for variation in decision-mak-

ing both across trials and between participants on the judgement bias task. We paid particular

attention to participants’ (discretised) reaction times. Each model included various sets of

parameters, the first of which characterised an individual’s decision-making in the absence of

baseline or experience-dependent biases. These models are detailed in full in S1 Appendix.

The raw experimental data are provided in S1 Data. Here, we describe the functional role of

the parameters.

At the heart of the model is a simple psychometric function, which uses three participant-

specific parameters: a slope (σ); and two lapse rates (λamb and λref), which turn the objective

rewards and punishments into a subjective probability of choice. The use of two lapse rates is

justified by model parsimony (ΔAIC = 316.650; ΔBIC = 192.125); we consider that it may arise

from the application of a different strategy on cases when there could be very little doubt about

the direction of motion. As uncertainty in time estimation is fundamental to the task, given

that the trial will ‘timeout’ and the risky choice made, de facto, if the participants do not make

a decision prior to the end of the trial, two parameters were included to encompass errors in

time estimation; z and ϕ. These are respectively the shape and scale parameters of a gamma

distribution representing the uncertainty about the interval (with mean zϕ and variance zϕ2).

Finally, a parameter characterising decision stochasticity (B) was included to capture the extent

to which decisions executed within a model state depended on the value of that state.

Central to the decision-making component of the judgement bias task is that ambiguous

choices may be biased, in a participant-specific manner, in the risk-seeking/‘optimistic’ (‘stay’)

or risk-avoidant/‘pessimistic’ (‘go’) directions. We characterised this tendency in general using

just such a participant-specific, constant, bias parameter; b
d

0
. We first assessed whether the par-

simony of the model was improved by including this bias.

However, our current hypotheses concern the possibility that ‘optimistic’ or ‘pessimistic’

biases might not be fixed across all trials for a single participant, but rather that they might be

modulated around a baseline by the ongoing experience that participants have during the task.

We quantified experience in terms of a few key statistics: the average reward rate (�Rn� 1: reflect-

ing what a participant has learnt about their earnings from previous trial outcomes), the

weighted prediction error (wPEn−1: difference between actual and expected outcomes on recent

trials), the squared weighted prediction error (wPE2

n� 1
: magnitude of unpredictability of out-

comes on recent trials), and the outcome of the previous trial On−1. Then, we parameterised

how these various experiential factors might modulate the baseline bias parameter, and

assessed whether inclusion of these parameters would improve the model fit.

The best-fitting model included nine parameters: σ, λref, λamb, B, b
d

0
, b

d
�R , b

d

O, z, and ϕ (see S1

Appendix). This model was the AIC-best model, and the BIC-best model included all of these

parameters except b
d

O (see S1 Appendix). However, we conducted further analyses to assess

whether this parameter should indeed be included in the model, which involved analysing

whether the parameter estimate differed from zero using two separate approaches—these addi-

tional analyses justified inclusion of this parameter in the final model (see S1 Appendix).

The model provides a good fit of discretised reaction time data (Fig 2). Furthermore, assess-

ment of parameter recovery and comparison with alternate models supports the reliability of

the parameter estimates (see S1 Appendix).
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Following model selection, permutation tests were used to examine whether and how the

parameter estimates differed from zero. As z and ϕ jointly determine the timeout probabilities,

the mean timeout probability
ST

0
Pt;timeout

t

� �
was analysed instead of z and ϕ for a more intuitive

interpretation of the results.

Estimates of the bias parameter were significantly greater than zero (b
d

0
: mean±SE = 0.711 ±

0.141, p<0.001), while estimates of the influence of both �Rn (the average earning rate) and

On−1 (the previous outcome) were significantly lower than zero (b
d
�R : mean±SE = −0.143 ±

0.042, p<0.001; b
d

O: mean±SE = −0.018 ± 0.006, p<0.001). Thus, participants were overall risk-

seeking on the task, but were more risk-averse when they had experienced greater recent earn-

ings and when the most recent outcome was more favourable.

1.2 Correlation between parameter estimates and reported affect

As a next stage of analysis, we considered whether there was a relationship between the model

parameters that were fitted to the participants’ discretised reaction times and aspects of their

reported affect (Table 1). More negative reported affective valence was significantly associated

with a higher timeout probability (
ST

0
Pt;timeout

t : LRT = 6.662, p = 0.010), and tended to be associ-

ated with a greater bias towards the ‘risky’ response (b
d

0
: LRT = 3.526, p = 0.060). Further,

lower reported affective arousal was significantly associated with a greater propensity for errors

at the ambiguous cues (λamb, LRT = 4.697, p = 0.030), and there was a weak tendency for a

lower reported affective arousal to be associated with a weaker bias towards the ‘safe’ response

(b
d

0
: LRT = 2.851, p = 0.091).

1.3 Influence of within-task experience on reported affect

Finally, we quantify model-agnostic effects of recent trial history on the reported affect. Partici-

pants reported significantly more positive affective valence when the weighted prediction

Fig 2. Observed vs. generated reaction time data. The mean discretised reaction time for each stimulus level for both

the model-generated and observed judgement bias data. Error bars represent one standard error.

https://doi.org/10.1371/journal.pcbi.1008555.g002
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error (wPEn−1; LRT = 66.411, p<0.001), and the potential outcome (On−1; LRT = 27.132,

p<0.001) were more positive (Fig 3). The average earning rate was not a significant predictor

of reported affective valence (Fig 3; �Rn� 1; LRT = 2.616, p = 0.106).

There was no difference in reported valence between the fluctuating reward and fluctuating

loss conditions (LRT = 1.673, p = 0.196). Additionally, the interactions between the potential

outcome and experimental condition (LRT = 0.124, p = 0.724), the weighted prediction error

Table 1. Results of the statistical analysis of the estimates of parameter estimates.

Dependent Variable Predictor Variable LRT p-Value Significance

B arousal 0.006 0.939

valence 0.007 0.933

b
d

0
arousal 2.851 0.091 MNS

valence 3.526 0.060 MNS

b
d
�R

arousal 0.069 0.792

valence 2.370 0.124

b
d

O
arousal 0.713 0.399

valence 0.150 0.699

λamb arousal 4.697 0.030 �

valence 0.480 0.488

λref arousal 0.679 0.410

valence 0.021 0.885

ST
0
Pt;timeout

t
arousal <0.041 0.840

valence 6.662 0.010 �

σ arousal 1.318 0.251

valence 0.110 0.741

https://doi.org/10.1371/journal.pcbi.1008555.t001

Fig 3. Valence GLMM coefficients. Standardised GLMM coefficients from the model of the reported affective valence for both the fluctuating reward and fluctuating

loss condition. Positive values for the standardised GLMM coefficients reflect a positive relationship between reported valence and the predictor variable, while

negative values reflect a negative relationship. Error bars represent one standard error.

https://doi.org/10.1371/journal.pcbi.1008555.g003
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and condition (LRT = 0.113, p = 0.737), and also between the average earning rate and condi-

tion (LRT = 0.603, p = 0.437) were not significant (Fig 3).

Reported affective arousal and valence were not correlated in this study (LRT = 1.576,

p = 0.209). The number of trials completed had a strong effect on reported arousal

(LRT = 20.292, p<0.001) with participants reporting lower arousal when they had completed a

greater number of trials. There were no significant effects of the squared weighted prediction

error (wPE2

n� 1
; LRT = 1.555, p = 0.212), potential outcome (LRT = 0.918, p = 0.338), and

experimental condition (LRT = 0.011, p = 0.915) on reported arousal. However, there was a

significant interaction between the potential outcome and experimental condition (Fig 4:

LRT = 9.305, p = 0.002). Post-hoc analysis revealed that participants reported greater arousal

when the potential outcome was more positive in the fluctuating reward condition (LRT =

9.027, p = 0.005), but this was not the case in the fluctuating loss condition (LRT = 2.284,

p = 0.131). The interaction between condition and the squared weighted prediction error

(LRT = 0.920, p = 0.337) was not significant (Fig 4).

2 Discussion

Performance in decision-making tasks can be influenced by predispositions and biases that

participants bring with them to the task, but also by experiences that occur during the task.

Previous research has typically focused on just one aspect of reward and loss experience

and affect or decision-making (e.g., solely looking at the effect of prediction error on affect;

or solely looking at the relationship between affect and decision-making). Here we provide

the first in-depth analysis of how within-task experience may influence behaviour in the

judgement bias test which is designed to assess the relationship between affective state

and decision-making under ambiguity. Our study provides new information on the inter-

play between affect, decisions, and reward and punishment experience during short

Fig 4. Arousal GLMM coefficients. Standardised GLMM coefficients from the model of reported affective arousal for both the fluctuating reward and fluctuating loss

condition. Positive values for the standardised GLMM coefficients reflect a positive relationship between reported arousal and the predictor variable, while negative

values reflect a negative relationship. Error bars represent one standard error.

https://doi.org/10.1371/journal.pcbi.1008555.g004
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(within-task) timescales. The approach taken has the potential to reveal variables and con-

structs that underlie decision-making which in turn could be used as new markers of affec-

tive state. This has implications for a range of other tasks that investigate links between

affective state and decision-making using serial trials that provide rewarding or punishing

outcomes.

We focused on how the most recent decision outcome, recent prediction errors (difference

between actual and expected decision outcomes), recent squared prediction errors (magnitude

of unpredictability of outcomes) and the average earning rate during a task influence both

decision-making and self-reported affective state. To achieve this, we used a judgement bias

task in which we manipulated reward and loss experience by systematically varying either the

threatened loss or offered reward on a trial-by-trial basis. We recorded the decisions made to

probe stimuli and regularly asked participants to report their affective state using an affect

grid. Decision-making data were analysed using a model-dependent analysis which inter-

preted decision-making in the judgement bias task through the lens of a POMDP. This novel

model of data from a judgement bias task allowed insight into the influence of reward and

punisher experience on decision-making and reported affect.

We made a number of predictions about the relationship between reward and loss experi-

ence, affect, and decision-making, specifically that; an overall more negatively-valenced affec-

tive state would be associated with more risk-averse decision-making, both a lower average

earning rate and more negative prediction errors would be associated with more negative-

valenced affect and consequently more risk-averse decision-making. Although we found that

more negative prediction errors were associated with more negatively-valenced affect, we

found no evidence that affective valence was associated with the average earning rate, or that

prediction errors influenced decision-making. Contrary to our predictions, we found that

more positive affect tended to be associated with more risk-averse decision-making, and that a

greater average earning rate was associated with more risk-averse decision-making. We also

obtained several findings unrelated to our initial set of predictions.

Here we discuss our findings focusing first on within-task experience of reward and losses

on decision-making. We then consider how these variables underlying decision-making relate

to self-reported affect before discussing the links between within-task reward / loss experience

and affect. We end by considering dissociations between effects of recent reward and loss expe-

rience on decision-making and self-reported affect.

2.1 Does recent experience of reward and loss modulate decision-making?

Our findings indicate that ongoing experience of rewards and losses is indeed a key determi-

nant of decision-making within the judgement bias task. Specifically, the average earning rate

and previous outcome were important determinants of the participants’ discretised reaction

times. Participants were more risk-averse when recent outcomes or the average earning rate

were higher. A similar judgement bias task with rodents also found that a rewarding outcome

on one trial resulted in a greater likelihood of making a risk-averse response on the subsequent

trial [50]. Both findings contrast with our prediction that a greater average earning rate (and a

better recent outcome) reflect the favourability of within-test experience and hence should be

associated with more risky decision-making. Instead, within-task experience of a rewarding

event or environment appears to increase the likelihood of risk-averse responses on subse-

quent trials. In each task, the ‘stay’ response could be considered both risky and exploratory as

the outcome of the ‘stay’ action is variable while the outcome of the ‘go’ action is fixed. Accord-

ingly, the relationship between decision-making and both the average earning rate and previ-

ous outcomes would be consistent with previous findings from animal studies showing that
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risk and exploration can become greater as overall conditions become less favourable [51, 52],

a trend that may be explained by individuals in poorer conditions having ‘little to lose’. Why

this appears to be more evident in a short-time window (within-task) compared to a longer-

time window when less favourable pre-task conditions are often associated with less risky

within-task decision-making [15] requires further investigation.

2.2 How do variables underlying decision-making behaviour relate to self-

reported affect?

We found that baseline biases were related to self-reported affective valence; individuals who

were more risk-averse (according to the model bias parameter) tended to overall report more

positive affect. This result is reminiscent of cautious optimism: the finding that positive affect

can induce greater caution, despite a more optimistic belief about the outcome of decisions

[53–55]. Cautious optimism has been explained as a self-protecting mechanism which leads

individuals to make decisions that allow them to maintain their positive affect [53–55]. There-

fore, this finding may reflect that individuals in more positive affective states were more averse

to losing money because it might have threatened their positive affective state. Indeed, this

explanation is consistent with our finding that a more favourable within-test experience

increases risk-aversion.

In contrast to these findings, negative affect is more typically associated with greater risk-

aversion/‘pessimism’ [14, 15, 17]. However, our study was conducted over a short-time scale

in a non-clinical population, and differences between findings may thus reflect differences in

the effect of short- as opposed to longer-term (and clinical) negative affect on decision-

making.

Reported valence was also associated with an aspect of decision-making unrelated to

‘optimistic’/‘pessimistic’ biases. Specifically, participants who reported more negative affec-

tive valence were found to have poorer time estimation, as characterised by the model time-

out probabilities. It could be that greater uncertainty about the time remaining on the trial

increases negative affect, given that uncertainty is often considered to be aversive (although

we found no evidence that recent unpredictability within the task is aversive) [23, 56]. Alter-

natively, this result could reflect the possibility that negative affect induces poorer time esti-

mation. This explanation would be supported by a number of studies that have found a

relationship between mood and interval timing [57, 58], although it is important to note

that evidence regarding the relationship between affect and time perception is conflicting

[58, 59]. Moreover, the dopaminergic system has been implicated in both time perception

[60] and mood disorders [61, 62], providing a potential neurobiological basis for this

finding.

Affective arousal was also associated with aspects of decision-making both related and

unrelated to ‘optimistic’/‘pessimistic’ biases. Firstly, there was a tendency for greater arousal to

be associated with greater risk-seeking. Hence, high-arousal negative-valence (i.e., anxiety-

like) affective states tended to be associated with greater risk-seeking, while low-arousal, posi-

tive-valence (i.e., calm-like) states were associated with greater risk-aversion. Although anxi-

ety-like states are typically hypothesised to induce risk-aversion/‘pessimistic’ decision-making,

both human [63] and rodent [64] studies have demonstrated that chronic stress can induce

risky decision-making.

Secondly, lower arousal was associated with a higher frequency of stimulus-independent

errors when presented with the ambiguous cues. This result is fairly intuitive; lower engage-

ment with the task and poorer concentration, resulting from lower arousal, should increase an

individual’s propensity for errors [65, 66].
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2.3 Does recent experience of reward and loss modulate self-reported

affect?

Our results corroborate the finding that affect reflects relative levels of rewards [21, 34]. A

more positive weighted prediction error led to more positive reported affective valence, indi-

cating that positively valenced affect arises in environments where rewards are greater than

expected. However, we found no evidence that the average earning rate (i.e., a measure of

absolute reward and loss experience) within the task modulated affective valence. This is at

odds with the theoretical framework for affect proposed by Mendl et al. (2010) [25] in which

affective valence is hypothesised to reflect environmental levels of rewards and punishers;

high-reward environments are considered to induce a positively valenced state to drive reward

acquisition, and high-punisher environments are suggested to induce a negatively valenced

state to promote punisher avoidance (see also [16, 67, 68]). As this task was conducted over a

short timescale, further research should investigate whether absolute and relative levels of

rewards and punishers would indeed influence longer-term affect (mood) as opposed to tran-

sient trial-by-trial fluctuations in reported affect.

Participants also reported more positive affective valence when the most recent trial had

offered a higher reward or lower loss, indicating that the opportunity to win greater amounts

is likely to induce a positive emotional state, while the potential to lose greater amounts is likely

to induce a negative emotional state [69].

Affective arousal was also influenced by experience during the task. Greater affective

arousal was reported when the offered reward was higher in the fluctuating reward condition,

suggesting that high stakes trials required greater alertness. Participants also reported lower

arousal as the number of trials completed increased, likely indicative of a degree of boredom.

2.4 Dissociations between effects of recent experience of reward and loss on

decision-making and self-reported affect

Recent prediction errors during the task influenced affective valence but not decision-making

and judgement bias. Conversely, despite influencing decision-making, there was no evidence

that the average earning rate or previous outcome influenced reported affect, although baseline

biases in risk-aversion tended to be associated with both reported affective valence and arousal.

These findings indicate that particular influences on decision-making within the judgement

bias task need not also have an effect on self-reported affective valence, and vice versa. This

raises the question of whether effects on decision-making of recent experience are necessarily

mediated by changes in affective state. It is possible, for example, that transient fluctuations in

affect (such as those associated with the prediction error) do not exert a strong influence on

decision-making, while longer-term affect (i.e., mood) may be a more important determinant

of decision-making. This might be compounded in the current study by the use of rapidly fluc-

tuating offered rewards and threatened losses creating a relatively volatile environment which

is less informative about the outcome of future decisions [70, 71].

These possibilities should be explored in future studies, especially as the general relation-

ship between affect and ‘optimistic’ or ‘pessimistic’ decision-making is supported by a recent

meta-analysis of animal judgement bias studies. Pharmacological and environmental manipu-

lations of animal affect alter judgement bias as predicted [14, 15] but there is considerable het-

erogeneity of study findings and variation in task characteristics and within-task experience

may be one reason for this. The influence of arousal on decision-making identified in this

study, albeit weak, may also explain some of the heterogeneity observed across judgement bias

studies.
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2.5 The POMDP model

The POMDP model provided greater insight into decision-making, and the relationship

between affect and decision-making, than simpler, statistical, analyses. The model predicted

the discretised reaction times very well, and the choices predicted by the model compared

favourably with an alternate model of judgement bias choices. The model generalises aspects

of diffusion-to-bound like models in particular because of the risk associated with stochastic

timing.

In contrast to typical psychometric function fitting, we included an additional lapse rate

parameter to characterise the psychometric function in our POMDP model (which was justi-

fied according to both AIC and BIC scores), to allow for separate lapse rates for the ambiguous

and reference stimuli. This reflects that the likelihood of errors differs between trials where

there is little doubt about the direction of motion of the RDK, and trials where direction of

motion is difficult to detect—which may arise from the application of a different strategy for

each of these cases.

Importantly, the results of this study suggest that the latent variables underlying decision-

making that are revealed by the model may provide a better measure of affect than judgement

bias itself. In particular, variation in time estimation (characterised by z and ϕ) within the task

may provide a measure of affective valence, while propensity for errors (characterised by λamb)

may provide a measure of affective arousal. This possibility should be investigated in future

studies.

In addition to assessing the external validity and reliability of these results, an important

next step to assess our novel POMDP model will be to investigate how the current model

parameters relate to neurobiological processes. Endogenous fluctuations in dopaminergic

activity in the midbrain have been shown to correspond to within-subject variability in risky

decision-making [72]; hence we might expect our results to correspond with the mean or stan-

dard deviation of these fluctuations within an individual participant. Likewise, dopaminergic

activity might underlie the relationship between variability in time estimation and reported

affective valence [60].

3 Conclusions

Serial decision-making tasks have been used to study and measure affective states or disorders.

However, little consideration has been given to the potential influence of outcomes within

these tasks on subsequent decision-making and affect. We hypothesised that a more favourable

within-task experience would lead to more positively-valenced affect and riskier decision-

making. This study revealed a number of novel relationships between within-task reward expe-

rience, affective state, and behaviour in a decision-making task—some of which were in direct

contrast to our hypotheses. In line with our hypotheses and previous research, we found that

individuals reported more positive affective valence during epochs of the task when recent pre-

diction errors were more positive, and offered outcomes were more positive. The study also

highlighted the role of the favourability of task outcomes in modulating risk-aversion; contrary

to our hypotheses, increased risk-averse decision-making was observed when the average earn-

ing rate and most recent outcome were higher. Finally, in contrast to our hypotheses, but in

line with the aforementioned findings, increased risk-aversion tended to be associated with

high-arousal and negative-valence affective states. Thus, within-task experience influenced

both decision-making and affect, and this should be considered when using serial decision-

making tasks to investigate affect.

The findings, which linked reward and punisher experience and decision-making, would

not have been revealed without the development of a novel computational model for
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examining decision-making in the judgement bias task. Overall, our results provide evidence

that within-task rewarding and punishing experiences determine both future decision-making

and subjectively experienced affective state. This has implications for other tasks that are

employed to detect links between serial decision-making and affective states or disorders, and

highlights the potential for computational modelling to reveal novel variables and constructs

underlying within-task decisions that can be used as new markers of these states. In future

studies, it would be worthwhile to attempt to replicate these results, and to investigate aberrant

decision-making in clinical populations using the methodology outlined here.

4 Methods

4.1 Ethics statement

Participants provided written, informed consent, and the study was approved by the Faculty of

Science Research Ethics Committee at the University of Bristol.

4.2 Participants

Thirty-nine students from the University of Bristol participated in the study and were paid £5

per session for their participation plus a performance-dependent bonus.

4.3 Procedure

Using an independent-subjects design, 20 participants undertook the experiment in the con-

text of obtaining variable rewards (fluctuating reward condition), and 19 in the context of

avoiding variable losses (fluctuating loss condition). The task was written in MATLAB (Math-

Works, Natwick, MA, USA) using the PsychToolBox package [73].

4.4 Judgement bias task

The judgement bias task is a widely-used paradigm to investigate putative affect and decision-

making in non-human animals [14, 15]; in particular it assesses whether an animal makes a

risky (‘optimistic’) or safe (‘pessimistic’) action when sensory information about the outcome

of the risky action is ambiguous. Our task was a human version of the automated rat judge-

ment bias task described by Jones et al. (2018) [74]. In their task, rats self-initiated trials by put-

ting their snout in a trough. This led to the presentation of a tone, the frequency of which

provided more or less ambiguous information about the outcome of the risky action (‘stay’;

where the rat kept their snout in the trough). The rats had two seconds, during which the tone

was played, to decide whether to make this risky action or whether to make the safe action

(‘go’: in which the rat removed their snout from the trough) (see [75] for discussion of Pavlov-

ian influences in this task).

Here, we replace the auditory stimuli with random dot kinomatograms (RDKs) which are

widely-used sensory stimuli for primates (including humans). The RDKs comprised 100 dots

which moved at a speed of 780 pixels per second displayed within a circular aperture with a

diameter of 208 pixels. The dots were square with a width and length of 3 pixels. Signal dots

(i.e., those moving in the same direction) were selected at random on each frame, and the

remaining dots moved in a random direction on each frame. Any dot that went outside of

aperture was replotted in a random location within the aperture on the subsequent frame. The

direction of motion of the signal dots was always either leftwards or rightwards, and the pro-

portion of dots moving coherently (i.e., the number of signal dots; termed the ‘coherence

level’) was varied across trials to alter the difficulty with which the motion could be classified

by the participant as leftwards or rightwards. In all blocks of trials, the signal direction of
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motion was equally often leftwards and rightwards, and each coherence level used within each

block occurred an equal number of times within each direction of motion. The order of trials

was randomised.

Instead of initiating trials by placing their nose in a trough, the human participants were

instructed to initiate trials by pressing and holding the ‘enter’ key. The ‘risky’ action was to

continue pressing the key for the two seconds of the RDK presentation (‘stay’), while the ‘safe’

action was to release the key (‘leave’). Execution of the ‘stay’ response was the ‘risky’/‘optimis-

tic’ decision, as it could result in either a reward or loss, while execution of the ‘go’ response

was the ‘safe’/‘pessimistic’ decision, as it resulted in neither a reward nor loss. Half of the par-

ticipants were told that when the direction of motion was rightwards (threatened loss trials),

they must release the ‘enter’ key (‘go’) prior to two seconds to avoid a loss (see below), and

when the motion was leftwards (offered reward trials) they must continue to press the ‘enter’

key (‘stay’) for two seconds to obtain a monetary reward (see below), while the other half of

the participants were told the obverse (i.e., leftwards = threatened loss; rightwards = offered

reward). The semantics of ‘stay’ and ‘go’ were the same across the groups.

Following each presentation of the RDK and response, participants were shown on-screen

feedback. For the ‘offered reward’ trials, the correct response was to continue holding the key

for two seconds (‘stay’) to gain a monetary reward, while for the ‘threatened loss’ trials the cor-

rect response was to release the key prior to two seconds (‘go’) to avoid a monetary loss. In the

first two training blocks either ‘Correct’ (in green font) or ‘Incorrect’ (in red font) was dis-

played for 1.5s. In the final training block and test block, participants could win or lose money

according their responses. In the final training block, they were informed that they would win

or lose a multiple of £10, otherwise they would get £0. For the test block, following [37] and

[38], the notional amount rewarded in the fluctuating reward condition, or potential loss, in

the fluctuating loss condition, for correct or incorrect responses respectively varied across tri-

als according to a sine function with added noise. In the fluctuating reward condition, the

rewards shown to the participant varied between £0.87 and £19.16 and the loss was fixed at

£10. In the fluctuating loss condition, the losses shown to the participant varied between £0.87

and £19.16 and the reward was fixed at £10 (Fig 5). The participant was truthfully informed

that they would receive an amount proportional to their total wins and losses. To illustrate

these amounts as clearly as possible, participants were informed about these values using con-

nected green and red bars (with lengths proportional to the potential reward and loss respec-

tively, and amounts written in figures at their ends) shown on the screen for 1.5s prior to each

trial (see Fig 1). The amount won or lost was displayed on screen for 1.5s following each trial;

this figure was green when a correct response was made and red otherwise. Participants were

told that the monetary amounts they saw on the feedback screens during the final training and

test block (see Fig 1) would be multiplied by a factor, and then added to or deducted from an

initial £2 endowment, and a £5 turn-up fee. To sustain motivation across the test session, par-

ticipants were informed that the top-three ranking participants would have their bonus

doubled.

The particulars of each trial on the human task are as follows (see S1 Video File for example,

and see Fig 1): participants were first shown the potential monetary outcome of the ‘stay’

action on-screen (as described above) and following acknowledgement of this by pressing the

‘enter’ key were first instructed by an on-screen prompt to press and hold the ‘enter’ key. This

led to a fixation cross being displayed for 500ms, followed by a RDK displayed for 2000ms.

The duration of the RDK display was 2000ms regardless of choice. Participants were required

to make one of two responses to RDKs; (1) continue to press the ‘enter’ key (‘stay’) or (2)

release the ‘enter’ key (‘go’). The ‘stay’ response resulted in a reward if the RDK moved in the

rewarded direction (either leftwards or rightwards), and a loss if the direction of the RDK was
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in the alternate direction. The magnitude of the reward or loss varied across trials in a system-

atic manner. The ‘go’ response resulted in neither a reward nor loss. The outcome of their

action was then displayed on screen for 1.5s.

Participants completed three training blocks consisting of 24, 60, and 24 trials respectively,

followed by one test block of 180 trials. In the first training block, the direction of motion of

the dots were unambiguous, with a coherence level of 0.32 (i.e., 32/100 dots moving coherently

in the same direction). In the second training block, the direction of motion of the dots was

difficult for the participants to determine (i.e., ambiguous) on a third of trials with a coherence

level of 0.04, and unambiguous on two thirds of trials with coherence levels of 0.32 or 0.16. Sti-

muli in the third training block and also in the test block had a coherence level of 0.16, 0.02, or

0.01, with ambiguous coherence levels (0.01 or 0.02) on two thirds of trials (see S1 Video File

for examples). The coherence levels required for the direction of motion to be perceptually

ambiguous and unambiguous were determined in a pilot study.

4.5 Self reports of affect

At the start of the test block of each task and following every 10 subsequent trials (see Fig 1),

participants were asked to report their current mood using a 9 by 9 computerised self-report

affect grid [39, 40]. To complete the affect grid, participants had to move a cross, which was

initially central in the grid, to the location that best described their current mood using the

arrow keys on a keyboard (see S1 Video File for example). Horizontal movements represented

changes in mood valence, with movements to the right reporting a more positively valenced

mood. Vertical movements represented arousal, with upwards movement reporting higher

levels of arousal.

4.6 Model dependent analysis

4.6.1 POMDP model. The judgement bias task is a partially observable Markov decision

process (POMDP) by its very nature, since the stimulus that is presented can be ambiguous.

Fig 5. Offered rewards and threatened losses. Offered monetary reward and threatened monetary loss on each trial

of the judgement bias task in the fluctuating reward and loss conditions.

https://doi.org/10.1371/journal.pcbi.1008555.g005
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Accordingly, the decision-making process was modelled as POMDP [76, 77] with a two-

dimensional state space s = (t, X) in which participants accumulate evidence (X) from observa-

tions of the RDK (x) over (veridical) time (t). The true direction of motion of the RDK (μ)

takes one of two values, 1 or −1. Here, μ = 1 represents motion in the favourable direction in

response to which the participant should ‘stay’, to collect a reward; μ = −1 represents motion

in the unfavourable direction in response to which the participant should ‘go’ before the 2s is

up to avoid a loss. Participants have to use prior knowledge (such as the possible direction and

coherence levels of the RDK) together with the evidence they collect (in a manner closely

related to drift-diffusion modelling), and the costs and benefits of being correct or incorrect,

to decide what to do. The participants’ capacity to perform interval timing of the stay period is

noisy [78], making it hard for them to wait until the last possible moment in order to collect

evidence about μ.

For convenience, we discretise the objective time between zero and two seconds into bins

of Δt, and use integer states t = {0, 1, 2, . . ., T}Δt. Thus, we write xt to represent the observa-

tions from time (t − 1)Δt to tΔt, and x0:t to represent all the observations from the beginning of

the trial up to time t. Given the coherence of the stimulus (written as θ), the participant’s rela-

tive belief that the stimulus is favourable at time t will depend on their prior belief that the

stimulus would be favourable, the relative likelihood of their observations prior to time t, and

the relative likelihood of the current observation:

log
Pðm¼1jx0:t; yÞ

Pðm¼ � 1jx0:t; yÞ

� �

¼ log
Pðm¼1Þ

Pðm¼ � 1Þ

� �

þ log
Pðx0:tjm¼1; yÞ

Pðx0:tjm¼ � 1; yÞ

� �

¼ log
Pðm¼1Þ

Pðm¼ � 1Þ

� �

þ log
Pðx0:t� 1jm¼1; yÞ

Pðx0:t� 1jm¼ � 1; yÞ

� �

þ log
Pðxtjm¼1; yÞ

Pðxtjm¼ � 1; yÞ

� �

We assume that the likelihood follows a Gaussian probability distribution with a mean depen-

dent on the true value of μ and the coherence level θ, and (fixed) variance σ2 that reflects the

participant’s ability to detect the direction of motion of the RDK:

Pðxtjm; yÞ � N ðxt : my; s2Þ. Thus, the relative posterior probability for the last sample is:

log
Pðxtjm¼1; yÞ

Pðxtjm¼ � 1; yÞ

� �

¼
2y

s2
xt

the above equation can be rewritten as:

log
Pðm¼1jx0:t; yÞ

Pðm¼ � 1jx0:t; yÞ

� �

¼ log
Pðm¼1Þ

Pðm¼ � 1Þ

� �

þ
2y

s2

Xt

t¼0
xt

For convenience, we suppress the dependence of μ and σ2 on Δt.
Again, for convenience, and since the participant is ignorant of θ, we consider the informa-

tion state X ¼
Pt

t¼0
xt, accumulating statistics X in discrete steps χ × [� � � −3, −2, −1, 0, 1, 2, 3,

. . .] for discretisation χ:

The state space contains two special states along with s = (t, X): one, s = leave, is the inevi-

table consequence of choosing action GO; the other, s = timeout, arises after 2 seconds if the

participant does not actively go.

We describe in stages the probabilistic transition structure of the chain, i.e., Ts;s0(a),

which is the probability of going from state s to state s0 when executing action a. First, we have

Ts;leave(GO) = 1, and Ts;leave(a) = 0, a 6¼ GO. Second, we simplify the stochastic, interval-

timing [78] relationship between objective and subjective time by imagining that timeout
can happen probabilistically when the participant chooses a = STAY. It would be more realistic

for the participants’ time to evolve subjectively rather than objectively, and for timeout to
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happen deterministically in objective time. However, this would mean a non-uniform acquisi-

tion of evidence (i.e., the statistics of xt would not be homogeneous), making for extra com-

plexities of only modest import.

We therefore imagine that, from a participant’s perspective, the stay time is a random var-

iable which is primarily determined by a gamma distribution Γ(z, ϕ), with shape and scale

parameters z and ϕ, respectively. This then leads to a hazard function, which is defined as the

probability of transitioning to timeout at each point in time assuming that the individual

hasn’t already transitioned to timeout:

Pt;timeout ¼ Pðtimeout 2 ðt; t þ 1ÞDtjcontinuing at t & at ¼ stayÞ

which can be calculated as

Pt;timeout ¼

R ðtþ1ÞDt
tDt dt Gðt; z; �Þ

1 �
R tDt

0
dt Gðt; z; �Þ

However, we impose an actual time-out at the end of the trial by fiat:

PT;timeout ¼ 1

Next, if the participant knows the quality of the stimulus, μ, θ, and there is no timeout when

choosing STAY, we have for a single sample of x over time Δt:

Pm;yX;X0 ¼ Pðx 2 wðX0 � XÞ þ ½� w=2; w=2�jno timeout; stay; m; yÞ

¼ Fs wðj � iÞ þ
1

2
w � my

� �

� Fs wðj � iÞ �
1

2
w � my

� �� �

where Fσ is the cumulative normal function for N ð0; s2Þ, j maps the accumulated statistics

represented by X0 to a specific location in the state space, and i maps the accumulated statistics

represented by X to a specific location in the state space (i.e., X = j × χ).

Of course, the participant does not know the true value of μ or θ. Thus, the evidence com-

ponent of the subjective transition matrix Ts;s0(a) comes from averaging over the possible μ
and θ, given the information available at the current state, i.e., using the posterior probability

(Fig 6):

Pðm; yjt;XÞ ¼
PðmÞPðyÞPðXjm; y; tÞ

Sm02f� 1;þ1gSkPðm0ÞPðyÞPðXjm0; yk; tÞ
; given priors :

Pðm ¼ 1Þ ¼ Pðm ¼ � 1Þ ¼
1

2

Pðy ¼ 0:01Þ ¼ Pðy ¼ 0:02Þ ¼ Pðy ¼ 0:16Þ ¼
1

3

where X* N(μθt, tσ2).

In sum, the subjective transition structure from current state s = (t, X) is therefore given by:

Tðt;XÞ;leaveðgoÞ ¼ 1

Tðt;XÞ;timeoutðstayÞ ¼ Pt;timeout

Tðt;XÞ;ðtþ1;X0ÞðstayÞ ¼ ð1 � Pt;timeoutÞð
P

m2f� 1;þ1g

P
kPðm; ykjt;XÞP

m;yk
X;X0 Þ t < T

A participant’s policy π is determined by the long-run values Qp
L;Rðs; aÞ of executing action a

in state s = (t, X), and then following the policy thereafter, where R and L are the potential
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reward and loss. In general, these action values are determined by the Bellman equation [79].

We assume that no discounting occurs given the short duration of the trial. In this case:

Qp
L;Rðs;goÞ ¼ 0

Qp
L;Rðs; stayÞ ¼ Ts;timeoutðstayÞVtimeout

L;R ðsÞ þ
P

s0¼ðtþ1;X0ÞTs;s0 ðstayÞVp
L;Rðs

0Þ

where s0 = (t + 1, X0).
Here, the expected timeout value depends on the likelihood of the two possibilities:

Vtimeout

L;R ðsÞ ¼ ðR� Pðm¼1jsÞÞ þ ðL� Pðm¼ � 1jsÞÞ

Further:

Vp
L;Rðs

0Þ ¼ pL;Rðs0;go0Þ � 0þ pL;Rðs0; stayÞQp
L;Rðs

0; stayÞ

where the policy π is determined by:

pL;Rðs0; stayÞ ¼
l

2
þ ð1 � lÞsðB½Qp

L;Rðs
0; stayÞ � Qp

L;Rðs
0;goÞ þ d � nbn�Þ

pL;Rðs0;go0Þ ¼ 1 � pL;Rðs0; stayÞ

with σ(z) = 1/(1 + exp(−z)) being the logistic sigmoid, λ (which could take one of two values:

λamb for ambiguous stimuli and λref) and B being lapse and inverse temperature parameters

respectively, δ characterising biases towards or away from the ‘stay’ (‘optimistic’) response (c.f.

[44]), and βn being a scale parameter to account for the effects of number of trials completed

on decision-making (Fig 7). The latter was included as previous research has demonstrated

that the number of trials completed can influence judgement bias [74].

To calculate the distribution of leaving times, we consider the probability,

Premain

s ðmn; yn;Rn; Ln; nÞ, of staying until state s = (t, X) on trial n, which is defined by direction

Fig 6. Transition probabilities. Heatmaps illustrating the probability that a participant transitions to each state given

the stimulus (i.e., true values of μ and θ). The coherence level (θ) governs the rate of the transition towards a stronger

belief that the ‘stay’ response will lead to a reward or loss; and the direction of the stimulus (μ) governs the direction of

the transitions.

https://doi.org/10.1371/journal.pcbi.1008555.g006
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μ = μn, coherence θ = θn, reward R = Rn and loss L = Ln. This enjoys a recursive form:

Premain

0;X ðmn; yn;Rn; LnÞ ¼ 1

Premain

t;X ðmn; yn;Rn; LnÞ ¼

Z

xt

dxt Pðxtjmn; ynÞ�

Premain

t� 1;X� xt
ðmn; yn;Rn; LnÞ�

pL;Rððt � 1;X � xtÞ; stayÞð1 � Pt� 1;timeoutÞ

from which we can calculate the overall probability of timing out (rather than leaving) as:

Ptimeoutðmn; yn;Rn; LnÞ ¼

Z

X
dX

XT

t¼0

Premain

t;X ðmn; yn;Rn; LnÞpRn ;Ln
ððt;XÞ; stayÞPt;timeout

As we hypothesise that judgement bias will depend on past experience, specifically the aver-

age earning rate (�Rn� 1), the weighted (low pass filtered—i.e., attenuated across trials) predic-

tion error (wPEn−1), the weighted (low pass filtered—i.e., attenuated across trials) squared

prediction error (wPE2

n� 1
), and the most recent outcome (On−1) we allow δ potentially to

depend additively on these values as well as on a constant term, which reflects baseline individ-

ual variation in these parameters. To allow the relative contribution of �Rn� 1, wPEn−1, wPE2

n� 1
,

On−1 to δ to vary, we scale �Rn� 1, wPEn−1, wPE2

n� 1
, and On−1 by weighting parameters:

d ¼ b
d

0
þ b

d
�R
�Rn� 1 þ b

d

wPEwPEn� 1 þ b
d

wPE2wPE2

n� 1
þ b

d

OOn� 1

�Rn� 1 and wPEn−1 are updated following the most recent outcome On−1. The average earning

rate reflects the learnt value of the test session from previous wins and losses and updates

Fig 7. State values. Heatmap illustrating the value of occupying each state as the value of the offered reward and threatened loss

varies. The state values earlier in the trial in which there is a weaker belief that the trial will be rewarded (i.e., bottom left quadrant

of each heatmap), are close to zero; this reflects that the ‘go’ action is the most likely future action and hence the trial outcome will

most likely be zero. The value of states representing no strong belief changes across time (i.e., middle third of the y-axis on each

heatmap); this reflects that transitions to a state with a high value (e.g., resulting from a strong certainty of reward) may be

considered probable earlier in time, but if there is uncertainty about the stimulus further into the trial, then it is most likely that the

stimulus has a low coherence and that reaching a high value state is less probable. The overall value of states representing no strong

belief about the stimulus are most strongly modulated by the subjective value of the reward and loss; being higher when the reward

is higher, and lower when the loss is higher.

https://doi.org/10.1371/journal.pcbi.1008555.g007
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according to a Rescorla-Wagner learning model [80], with learning rate a�Rn
:

�Rn ¼
�Rn� 1 þ a�RðOn �

�Rn� 1Þ

Further, following Rutledge et al. (2014) [21], the prediction error on past trials PE1:n−1 is

weighted such that the influence of past prediction errors attenuates over trials. However, con-

sistent with the average earning rate, the weighted reward prediction error (wPE) is a weighted

average as opposed to a weighted summation as in [21]. The weighting is determined by for-

getting factor γwPE:

wPEn ¼
1 � gwPE
1 � gnwPE

Sn
i¼1
gn� iwPEPEi

Here, PEn is defined as the difference between On and expected outcome of the trial prior to

stimulus presentation, as given by the value function:

PEn ¼ On � VRn;Ln
ðð0; 0ÞÞ

In sum, the key parameters in the model were thus: σ, λamb, and λref (parameters character-

ising the psychometric function); z and ϕ (characterising the hazard function, and hence errors

in time estimation); B (characterising decision stochasticity); b
d

0
(characterising a constant

baseline decision-making biases); b
d
�R , b

d

On� 1
, b

d

wPE, b
d

wPE2 (characterising the effect of the average

earning rate, previous outcome, weighted prediction error, and squared weighted prediction

error on decision-making biases); and βn (characterising the effect of number of trials com-

pleted in the judgement bias task) (see Table 2). These parameters were not fitted simulta-

neously (see below section and Table 2).

4.6.2 Model-fitting. We fitted the choice/reaction time data (i.e., the probability of

remaining until time t for ‘go’ responses; the probability of timeout for ‘stay’ responses) to a

given model by maximum likelihood with multiple starting values, implemented using the

fmincon and GlobalSearch functions in MATLAB. We added parameters in stepwise manner,

and compared models using Bayes’s information criterion (BIC) values, and the final set of

models was compared using both Aikake and Bayes’s information criterion (AIC and BIC) val-

ues (see S1 Appendix). Thus, parameters that did not increase the model parsimony were

excluded. Parameters that characterised decision-making in the absence of biases (i.e., B, λamb,

λref, σ, z, and ϕ) were included in all models to account for their potential influence on behav-

iour (‘core’ parameters, Table 2). We first assessed whether the parameter that characterised

constant biases in decision-making improved model parsimony (Step 1 parameter, Table 2);

then the second set of parameters included in the model-fitting procedure were those that

allowed within-task variation either resulting from experience or time (i.e., b
d
�R , b

d

wPE, b
d

wPE2 , b
d

O,

βn, b
d
�R & a�R , b

d

wPE & γwPE, b
d

wPE2 & γwPE) (Step 2 parameters, Table 2); and the final set combined

the best models as determined through the previous steps. It was not feasible to fit all possible

models to the data due to the computational complexity of the model-fitting procedure and

the large number of possible combinations of model parameters. The model was found to pro-

vide accurate recovery of parameters, as determined by simulating data and assessing the cor-

relations between the parameters recovered by the model and those used to simulate the data

(see S1 Appendix). The code for the model was written in MATLAB (MathWorks, Natwick,

MA, USA) and model-fitting was conducted using the Advanced Computing Research Centre

High Powered Computing Facility at the University of Bristol. We used permutation tests to

assess whether the parameter estimates from the most parsimonious model, as determined

through model-fitting, differed significantly from zero.
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Due to significant correlations between the weighted prediction error (wPEn−1), squared

weighted prediction error (wPE2

n� 1
), and previous outcome (On−1), and likewise between the

average earning rate (�R) and number of trials completed (n), with the extent of the correlation

dependent on the model parameters, parameters characterising the influence of these variables

on the same aspect of the decision-making process were not fitted simultaneously in the same

model, but instead fitted separately and the goodness of fit of each model compared using

their BIC values.

4.7 Statistical analysis: Correlation between parameter estimates and

reported affect

To examine whether the parameter estimates correlated with reported affect, a general linear

model was fitted to the parameter estimates with mean reported arousal and mean reported

valence (from each individual’s affect grid data averaged across the session) as the predictor

variables, as well as condition (i.e., fluctuating reward or fluctuating loss) as a control variable.

4.8 Statistical analysis: Influence of within-task experience on reported

affect

Generalised linear mixed models (GLMMs) were fitted to the affect grid data (i.e., the x and y

coordinates for the selected location on the affect grid across the test session) in R [81] using

the nlme [82] package. Likelihood ratio tests were then used to assess whether the difference in

model deviance was significant following removal of a parameter from a model.

Table 2. Glossary of parameters in the POMDP model of judgement bias, including the range of values that each

parameter can take and the step at which they were added in stepwise model-fitting procedure.

Parameter Range Interpretation Step

αR [0, 1] Learning rate for the average earning rate; higher values reflect more rapid updating

of the average earning rate based on recent outcomes.

2

B [0,1] Inverse temperature parameter; higher values reflect lower decision stochasticity. core

b
d

0
[−1,

1]

Baseline bias; higher values reflect an overall ‘optimistic’ bias 1

βn [−1,

1]

Time-dependency of the policy: higher values reflect that the ‘stay’ action is less likely

as more trials are completed.

2

b
d

O
[−1,

1]

Outcome dependent loss sensitivity; higher values reflect a greater ‘optimistic’ bias

when the most recent outcome is higher.

2

b
d
�R

[−1,

1]

Average earning rate dependent bias; higher values reflect a greater ‘optimistic’ bias

when the average earning rate is higher.

2

b
d

wPE
[−1,

1]

Weighted prediction error dependent loss sensitivity; higher values reflect a greater

‘optimistic’ bias when the weighted prediction error is higher.

2

b
d

wPE2
[−1,

1]

Squared weighted prediction error dependent loss sensitivity; higher values reflect a

greater ‘optimistic’ bias when the squared weighted prediction error is higher.

2

γwPE [0, 1] Forgetting factor for the weighted prediction error; higher values reflect slower

forgetting of previous prediction errors.

2

λamb [0, 1] Lapse rate at the ambiguous stimuli: higher values reflect a greater likelihood of

executing the action with the lowest value (i.e., the ‘wrong’ action).

core

λref [0, 1] Lapse rate at the reference stimuli: higher values reflect a greater likelihood of

executing the action with the lowest value (i.e., the ‘wrong’ action).

core

σ [0,1] Slope parameter: higher values reflect a poorer ability to detect the true direction of

the stimulus.

core

z and ϕ [0,1] Shape and scale parameters for the Gamma distribution that determines the timeout

probabilities.

core

https://doi.org/10.1371/journal.pcbi.1008555.t002
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Each GLMM included a random effect of participant and fixed effects of the potential out-

come (
RnþLn

2
), and condition (i.e., fluctuating reward or fluctuating loss). To examine if and

how affect depended on reward and punisher experience, the values of the average earning

rate (�Rn� 1), weighted prediction error (wPEn−1), squared weighted prediction error (wPE2

n� 1
),

and previous outcome (On−1) immediately prior to presentation of each affect grid were calcu-

lated (using the best-fit model with the parameter estimates for each individual, and standard-

ised by dividing by the standard deviation for each individual), as well as number of trials

completed, and included as predictor variables in the GLMMs of reported valence and

reported arousal. Due to significant correlations between the weighted prediction error

(wPEn−1), squared weighted prediction error (wPE2

n� 1
), and previous outcome (On−1), and also

between the number of trials completed and the average earning rate (�Rn� 1), these variables

were not included in the same GLMM but instead separate GLMMs including each variable

were compared according to their BIC value and the GLMM which provided the best fit was

selected for further analysis. We assessed the relationship between reported affective arousal

and valence by fitting reported affective valence to reported affective arousal using an addi-

tional GLMM with the described random effect structure.

The GLMMs predicting affect also included interaction terms between each of the variables

encompassing reward and punisher experience and condition. To investigate significant and

marginally non-significant interaction terms, the data were split by condition and further

GLMMs were fitted to these subsetted data. Post-hoc adjustment of p-values from these

GLMMS was conducted using the false discovery rate.
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