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Objectives: A subset of meningiomas may show progression/recurrence (P/R) after

surgical resection. This study applied pre-operative MR radiomics based on support

vector machine (SVM) to predict P/R in meningiomas.

Methods: From January 2007 to January 2018, 128 patients with pathologically

confirmed WHO grade I meningiomas were included. Only patients who had undergone

pre-operative MRIs and post-operative follow-upMRIs for more than 1 year were studied.

Pre-operative T2WI and contrast-enhanced T1WI were analyzed. On each set of images,

32 first-order features and 75 textural features were extracted. The SVM classifier was

utilized to evaluate the significance of extracted features, and the most significant four

features were selected to calculate SVM score for each patient.

Results: Gross total resection (Simpson grades I–III) was performed in 93 (93/128,

72.7%) patients, and 19 (19/128, 14.8%) patients had P/R after surgery. Subtotal tumor

resection, bone invasion, low apparent diffusion coefficient (ADC) value, and high SVM

score were more frequently encountered in the P/R group (p < 0.05). In multivariate Cox

hazards analysis, bone invasion, ADC value, and SVM score were high-risk factors for

P/R (p < 0.05) with hazard ratios of 7.31, 4.67, and 8.13, respectively. Using the SVM

score, an AUC of 0.80 with optimal cutoff value of 0.224 was obtained for predicting P/R.

Patients with higher SVM scores were associated with shorter progression-free survival

(p = 0.003).

Conclusions: Our preliminary results showed that pre-operative MR radiomic

features may have the potential to offer valuable information in treatment planning

for meningiomas.

Keywords: magnetic resonance imaging, radiomics, support vector machine, meningioma, progression,

recurrence
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INTRODUCTION

Meningiomas are the most frequently diagnosed primary
brain tumors (1). Although most meningiomas are classified
as grade I benign tumors according to the 2016 WHO
classification system (2), a subset of these tumors may show
early progression/recurrence (P/R) after surgical resection (3–
5). Furthermore, the rate of P/R is especially high in cases
in which Simpson grade I resection is difficult to achieve,
such as for parasagittal and skull base meningiomas (6).
Conventional MR imaging findings such as tumor size, bone
invasion, and parasagittal location have all been identified as
important imaging parameters related to P/R in meningiomas
(5, 7). However, most data are presented in qualitative and
subjective terms, and interreader inconsistencies may occur
during data interpretation.

Radiomics is a new approach in the diagnosis, treatment
planning, and prediction of prognosis in brain tumors (8–10). It
works by extracting a large number of quantitative characteristics
from a medical image and then analyses these features by
means of a series of machine learning algorithms (11). Although
the radiomics approach for the evaluation of meningiomas
pertaining to tumor grades and histological subtypes had recently
been reported (12–15), models for predicting clinical outcomes in
overall meningiomas are still rare (10, 16). Among the machine
learning techniques, several studies had reported that support
vector machine (SVM) classifiers offer excellent results in the
classification and segmentation in brain tumors (17–22). The
purpose of this study is to investigate the role of quantitative
radiomics approach based on automatically segmented tumor
and SVM classification for the prediction of P/R in meningiomas.

MATERIALS AND METHODS

Ethics Statement
This study was approved by our Institutional Review Board
(IRB no.: 10902-009). Written consent was waived because the
retrospective nature of this study meant that the healthcare of
the included subjects was not affected. Personal information of
all included patients was anonymized and de-identified before
analyses were carried out.

Patient Selection
The inclusion criteria were patients diagnosed with WHO grade
I meningiomas by means of pathological confirmation. All the
included patients must have undergone pre-operative brain
MRI, post-operative follow-up brain MRIs for more than 1
year, and at least one MRI performed at 3 to 6 months after
surgery. Patients diagnosed with neurofibromatosis (N = 3)
were excluded. From January 2007 to January 2018, a total of
128 patients (43 men and 85 women with a median age of
57.5 years) diagnosed with WHO grade I meningiomas were
included according to the abovementioned criteria. No known
history of pre-operative intracranial radiation was documented
in any of the included subjects. The mean follow-up time was
64.2 months (ranging from 14 to 149 months). A total of
19 (19/128, 14.8%) patients were found to have P/R, and the

mean time to P/R was 33.3 months (ranging from 8 to 92
months). Based on anatomic location, the tumors were classified
into four subgroups: convexity, parasagittal and parafalcine
(PSPF), skull base, and intraventricular meningiomas. Skull
base meningiomas included tumors arising from the anterior
fossa/olfactory groove, spheno-orbital region, temporal floor,
sellar/cavernous sinus, and posterior fossa (23). The extent of
tumor resection was determined by a review of pre-operative
brain MRI and the first time post-operative MRI (3–6 months
after surgery) by a neuroradiologist (C.C.K.) and a neurosurgeon
(S.W.L.). Simpson grade I–III resections (considered gross total
resection, GTR) were performed in 93 patients, and Simpson
grade IV–V resections (considered subtotal tumor resection,
STR) were performed in 35 patients. Post-operative adjuvant
radiotherapy (RT) was provided for patients who underwent STR
in our institution. A total of 35 patients received post-operative
adjuvant RT. Post-operative adjuvant RT was carried out via
stereotactic radiosurgery (SRS) (N = 28, median dose of 25Gy,
ranging from 18 to 30Gy; median fraction of 5, ranging from
3 to 5 fractions) or fractionated stereotactic intensity-modulated
radiotherapy (IMRT) (N = 7, dose ranging from 55 to 60Gy with
30 to 33 fractions) by linear accelerators. Detailed information of
post-operative RT protocols is provided in Supplementary File 1
in Supplementary Material.

Determination of Progression/Recurrence
P/R was evaluated by two experienced neuroradiologists (C.C.K.,
7 years of work experience, and T.Y.C., 19 years of work
experience) by comparing the post-operative brain MRI findings
between the 3–6 months and more than 1 year follow-up. Both
readers were blinded to the clinical information of the studied
patients. In equivocal cases, final agreement was arrived at by
consensus. P/R was defined as recurrence of tumor in Simpson
grade I–III resections (GTR) or increasing residual tumor size
in Simpson grade IV–V resections (STR) on contrast-enhanced
T1WI. In cases of STR, the threshold of P/R was defined as a
10% increase in tumor volume in comparisonwith post-operative
brain MRIs (10). Interobserver reliability in determining P/R
with intraclass correlation coefficient (ICC) of 0.8 was obtained.
For patients who received post-operative adjuvant RT, P/R was
differentiated from post-irradiation effects (pseudoprogression)
based on progressive tumor growth, not transient increase in
tumor volume (24).

Imaging Acquisition
Pre-operative brain MRI images were acquired using a 1.5-T
(Siemens, MAGNETOM Avanto, n = 53, or GE Healthcare,
Signa HDxt, n = 58) or a 3-T (GE Healthcare, Discovery
MR750) (n = 17) MR scanner, equipped with eight-channel
head coils in each machine. Scanning protocols were as follows:
axial and sagittal spin echo T1-weighted imaging (T1WI), fast
spin-echo T2-weighted imaging (T2WI), axial fluid attenuated
inversion recovery (FLAIR), axial gradient recalled echo (GRE)
T2∗-weighted imaging, axial diffusion-weighted imaging (DWI),
and contrast-enhanced (CE) T1WI in axial and coronal sections.
DetailedMR imaging parameters can be found in Supplementary
File 2 in Supplementary Material.
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Tumor Segmentation
T2WI and CE T1WI were known to be associated with
histopathology and tumor grades in meningiomas (8, 25),
and the two sequences (slice thickness/spacing, 5 mm/5mm)
were consistently acquired in all subjects. Thus, they were
selected for radiomics analysis in this study. Figure 1 shows
the flowchart of the analysis process. For each lesion, the
operator placed an initial rectangle region of interest (ROI)
on axial CE T1WI exhibiting the maximal tumor diameter,
locating the approximate location and also deciding the initial
and final slices containing the lesion. The fuzzy c-mean (FCM)
clustering-based algorithmwas developed to calculate the outline
of the ROI on each imaging slice (26). In cases of under-
or oversegmentation, manual correction by inclusion of more
tumor tissue or exclusion of unnecessary normal tissue was
performed. After segmentation and correction, the ROIs gleaned
from all imaging slices containing the lesion were combined to
obtain the 3D information of the whole lesion. The 3D connected
component labeling was applied for removing scattered voxels
not connecting to the main lesion. The hole-filling algorithm was
then applied to include all voxels contained within the main ROI
that had been labeled as nonlesion. The final 3D tumor mask
was mapped to the axial T2WI to determine the tumor ROI
on corresponding imaging slices using affine transformation and
linear interpolation by FMRIB’s Linear Image Registration Tool
(FLIRT) (27).

Texture Feature Extraction and Selection
Within the segmented tumor on axial CE T1W images and
T2W images, 107 imaging features, consisting of 32 first-order
features and 75 textural features, were extracted on eachmodality
(Figure 1). Therefore, a total of 214 descriptor features were
obtained for each case. In order to evaluate the importance
of these features in differentiating P/R, the sequential feature
selection process was implemented via constructing multiple
SVM classifiers (28). Using this method, we selected imaging

features with high importance. In this process, SVM with
Gaussian kernel was used as the objective function (29, 30). Ten-
fold cross-validation was applied to test the model performance
(31). In each iteration, the training process was repeated
1,000 times to explore the robustness of each imaging feature.
After each iteration, the feature which contributed to the best
performance was added into the candidate set.When the addition
of features no longer improves the performance, the selection
process was terminated and a final set containing the optimal
features was obtained. The termination criterion for the
objective function was determined at 10−6. This procedure was
implemented in MATLAB 2018b. The most significant four
features selected by the SVMmodel for the prediction of P/Rwere
T1 gray-level co-occurrence matrix (GLCM) cluster shade, T1
gray-level size zone matrix (GLSZM) gray-level non-uniformity,
T2 GLCM cluster prominence, and T2 GLCM cluster shade. The
SVM score for each patient was calculated using the following
equation based on the selected features.

f (x) =

N∑

n=1

wnynG (xn, x) + b

where x is the input features and N is the length of the support
vector. wn is the parameter and b is the bias. yn and xn are the
entries of the supporting vector. G(xn, x) is the Gaussian kernel
function that indicates the dot product in the predictor space
between x and the support vectors. Herein,

G (xn, x) = e−‖xn−x‖2

Measurement of Apparent Diffusion
Coefficient Value
For comparison with the radiomics model in the prediction
of P/R in meningiomas, apparent diffusion coefficient (ADC)
values (b = 1,000 s/mm²) on DWI were measured manually
by two experienced neuroradiologists (C.C.K. and T.Y.C.) as

FIGURE 1 | Flowchart indicating the process of analysis for the prediction of progression/recurrence (P/R) in meningiomas. The tumor is first segmented based on

contrast-enhanced (CE) T1-weighted image (T1WI), and the region of interest (ROI) of the tumor is then mapped onto the T2-weighted image (T2WI). On each set of

the two sequences, a total of 32 first-order features and 75 textural features are extracted, and a total of 214 parameters for each case are collected to develop the

classification model. The most important four features are selected by means of the sequential feature selection and support vector machine (SVM) classifiers to

calculate SVM score. The 10-fold cross-validation method is applied to test the model performance.
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FIGURE 2 | A 31-year-old woman with pathologically proven parafalcine

meningioma (WHO grade I). (A) Axial CE T1WI showing an enhancing

parafalcine tumor (red outline) at the frontal region. The tumor (red outline) is

segmented on axial CE T1WI (A) and then mapped onto axial T2WI (B). The

SVM score based on the four selected radiomic features is 0.831. (C) The

measured ADC value (circular ROI) is 0.805 × 10−3 mm2/s (b = 1,000

s/mm2). (D) Gross total tumor resection is performed. (E,F) Progressive

recurrence of tumor (arrowheads) was observed in 36 months (E) and 60

months (F) after surgery.

in previously published works (7, 29). The circular ROI (area
ranging from 35 to 78 mm2) was placed in a homogeneous
area of the tumor to avoid volume averaging with calcification,
necrosis, and cystic regions that might influence ADC values
(Figure 2) (7, 32, 33). Due to the almost perfect reproducibility in
the interobserver reliability, the subsequent statistical evaluation
of ADC values was performed using the mean value calculated
from both interpreters.

Statistical Analysis
Statistical analyses were performed using statistical package
SPSS (V.24.0, IBM, Chicago, IL, USA). For the evaluation of
the clinical parameters and conventional MRI findings, chi-
square (or Fisher’s exact test) and Mann–Whitney U tests were
performed for categorical and continuous data, respectively. The
area under the receiver operating characteristic curve (ROC)
curve (AUC) was calculated for SVM scores and ADC values to
obtain the optimal cutoff values. Kaplan–Meier analysis was used
to evaluate progression-free survival (PFS), and the log-rank test
was used to assess significance. Cox hazard regressionmodel with
univariate and multivariate analyses was performed to determine
independent predictors of P/R. Variables with a p < 0.05 in
univariate analysis were brought forward to the multivariate
analysis. For multivariate analysis and all other statistical
analyses, p < 0.05 was considered statistically significant.

RESULTS

Clinical Data and Conventional MRI
Findings
The clinical data and conventional MRI findings of the
included 128 meningiomas are summarized in Table 1. Nineteen

TABLE 1 | Clinical data and conventional MRI findings of meningiomas with and

without progression/recurrence (P/R).

P/R Non-P/R p-value

Number of patients 19 109

Sex 0.057

Male 10 (52.6%) 33 (30.3%)

Female 9 (47.4%) 76 (69.7%)

Age (years) 55 (49.5, 60.5) 59 (52, 66) 0.289

Histological subtypes 0.748

Meningothelial (syncytial) 17 (89.5%) 87 (79.8%)

Transitional (mixed) 2 (10.5%) 12 (11%)

Fibroblastic (fibrous) 0 7 (6.4%)

Angiomatous 0 2 (1.8%)

Psammomatous 0 1 (0.9%)

Simpson grade resection 0.007*

Grades I, II, and III (gross

total resection, GTR)

9 (47.4%) 84 (77.1%)

Grade IV and V (subtotal

resection, STR)

10 (52.6%) 25 (22.9%)

Post-operative adjuvant RT 0.118

Yes 8 (42.1%) 27 (24.8%)

No 11 (57.9%) 82 (75.2%)

Location 0.296

Convexity 4 (21.1%) 30 (27.5%)

Parasagittal and parafalcine 11 (57.9%) 43 (39.4%)

Skull base 3 (15.8%) 34 (31.2%)

Intraventricular 1 (5.3%) 2 (1.8%)

Peritumoral edema 9 (47.4%) 59 (54.1%) 0.586

Calcification 3 (15.8%) 38 (34.9%) 0.100

Heterogeneous

enhancement

7 (36.8%) 46 (42.2%) 0.662

Cystic change or necrosis 3 (15.8%) 19 (17.4%) 1.000

Dural tail sign 11 (57.9%) 65 (59.6%) 0.887

Adjacent bone invasion 8 (42.1%) 7 (6.4%) <0.001*

Reactive hyperostosis 5 (26.3%) 27 (24.8%) 1.000

Multiplicity 3 (15.8%) 5 (4.6%) 0.096

Maximal diameter (cm) 5.12 (4.22, 6.03) 4.43 (4.09, 4.76) 0.118

Tumor volume (cm3) 59.19 (30.35, 88.02) 44.07 (34.96, 53.17) 0.294

ADC value (×10−3 mm2/s) 0.785 (0.725, 0.845) 0.865 (0.78, 0.95) 0.002*

SVM score 0.787 (0.543, 1.032) 0.272 (0.080, 0.464) <0.001*

Follow-up time (months) 72 (40, 104) 57 (35.2, 78.8) 0.437

Continuous variables were presented as median and interquartile range (IQR).

*Statistical difference (p < 0.05).

(19/128, 14.8%) patients were diagnosed with P/R. Statistically
significant differences (p < 0.05) were observed in the extent
of resection, adjacent bone invasion, ADC value, and SVM
score between P/R and non-P/R groups (Table 1) (Figures 2, 3).
In multivariate Cox hazards analysis (Table 2), adjacent bone
invasion, low ADC value, and high SVM score were high-risk
factors for P/R (p < 0.05) with hazard ratios of 7.31, 4.67,
and 8.13.
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Radiomics Approach for the Prediction of
P/R
The most significant four imagining features selected by the
SVM model for the prediction of P/R were T1 GLCM cluster

FIGURE 3 | A 58-year-old man with pathologically proven parasagittal

meningioma (WHO grade I). (A) Coronal CE T1WI shows an enhancing tumor

mass (white arrow) in the midline parasagittal region with invasion into the

superior sagittal sinus (SSS) (open black arrow) and adjacent skull bone (open

curved arrow). (B,C) The tumor (red outline) is segmented on the axial CE

T1WI (B) and then mapped onto the axial T2WI (C). Mild peritumoral edema

(white open arrowheads) is noted on T2WI (C). The calculated SVM score

based on the four selected radiomic features is 0.337. (D) Subtotal tumor

resection is performed to preserve the SSS; residual tumor (curved arrow) is

noted in the posterior SSS. (E,F) Progressive recurrence of tumor (white

arrowheads) was observed in 37 months (E) and 56 months (F) after surgery.

shade, T1 GLSZM gray-level non-uniformity, T2 GLCM cluster
prominence, and T2 GLCM cluster shade. The reproducibility of
ROI-based radiomics feature was good, and the ICCs of the four
imaging features were 0.92, 0.78, 0.82, and 0.94, respectively.

For the prediction of P/R, AUCs of 0.80 and 0.73 with
optimal cutoff values of 0.224 and 0.825 × 10−3 mm2/s were
obtained in SVM score and ADC value, respectively (Figure 4).
Furthermore, improved performance in predictive model was
observed after combining SVM score and ADC value, with
AUC of 0.88 (Figure 4). When tumor progression trends were
compared, patients with adjacent bone invasion, high SVM score
(more than the cutoff value of 0.224), and low ADC value (lower
than the cutoff value of 0.825 × 10−3 mm2/s) were found to
exhibit shorter PSF (p < 0.05) (Figure 5).

DISCUSSION

In this study, an SVM-based radiomics model was built for
the prediction of P/R in meningiomas. A total of 214 first-
order and textural features were extracted from CE T1WI and
T2WI, and the four most significant features were selected
by the SVM algorithm to calculate the personalized SVM
score. In multivariate Cox hazards and Kaplan–Meier survival
analyses, adjacent bone invasion, low ADC value, and high
SVM score were high-risk factors of P/R in meningiomas. For
the prediction of P/R in meningiomas, the SVM score-based
predictivemodel is superior to themodel based on the ADC value
measured manually.

Although 90% of meningiomas are WHO grade I benign
tumors, about 21% of these tumors may recur in 5 years after
surgical resection (3, 4). Radiomics plays significant roles in

TABLE 2 | Cox proportional hazards analysis for P/R.

Univariate analysis Multivariate analysis

HR (95% CI) for P/R p HR (95% CI) for P/R p

Sex (fraction male) 2.559 (0.952, 6.879) 0.063

Age (years) 0.986 (0.950, 1.024) 0.476

STR 3.733 (1.366, 10.201) 0.010* 2.567 (0.746, 8.834) 0.135

Post-operative adjuvant RT 0.453 (0.165, 1.242) 0.124

Parasagittal and parafalcine 2.110 (0.785, 5.671) 0.139

Peritumoral edema 0.763 (0.287, 2.024) 0.587

Calcification 0.350 (0.096, 1.278) 0.112

Heterogeneous enhancement 0.642 (0.152, 2.721) 0.548

Cystic change or necrosis 0.888 (0.235, 3.354) 0.861

Dural tail sign 0.931 (0.347, 2.499) 0.887

Adjacent bone invasion 10.597 (3.224, 34.831) <0.001* 7.314 (1.830, 29.239) 0.005*

Reactive hyperostosis 1.085 (0.358, 3.291) 0.886

Multiplicity 3.900 (0.849, 17.922) 0.080

Maximal diameter (cm) 1.228 (0.947, 1.591) 0.121

Tumor volume (cm3) 1.005 (0.997, 1.014) 0.227

ADC <0.825 × 10−3 mm2/s (cutoff value) 5.752 (1.895, 17.458) 0.002* 4.667 (1.335, 16.319) 0.016*

SVM score >0.224 (cutoff value) 14.400 (1.855, 111.760) 0.011* 8.129 (0.978, 67.569) 0.048*

*Statistical difference (p < 0.05).
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FIGURE 4 | Statistically significant differences (p < 0.05) (Mann–Whitney U test) are observed in the box plot of (A) SVM score and (B) ADC value to differentiate

between patients with and without P/R. (C) Receiver operating characteristic (ROC) curves of SVM score and ADC value for the prediction of P/R in meningiomas,

with optimal cutoff value of 0.224 and AUC of 0.825 × 10−3 mm2/s, respectively. The AUCs of SVM score, ADC value, and combination of SVM and ADC in the

prediction of P/R are 0.80, 0.73, and 0.88, respectively.

FIGURE 5 | Kaplan–Meier survival curves of (A) adjacent bone invasion, (B) SVM score, and (C) ADC value for the prediction of P/R in meningiomas. All three

parameters showed significant difference (p < 0.05) (log-rank test) in overall trend of progression-free survival.

the analysis of meningioma characteristics both quantitatively
and objectively. Zhu et al. (12) and Chen et al. (34) performed
radiomics-based machine learning for pre-operative grading in
meningiomas, with AUC of 0.81 and accuracy of 75.6%. Park et al.
(8) used the radiomics feature-based machine learning classifiers
on conventional and diffusion tensor imaging to predict the grade
and histological subtype in meningiomas, with accuracy of 89.7%
and AUC of 0.86. Morin et al. (16) integrated radiologic and
radiomic features to predict meningioma grade, local failure,
and overall survival with AUCs of 0.75 to 0.78. The clinical
application of SVM or radiomics score is a new concept. A
personalized SVM score could be calculated based on selected
radiomic features (35–37). Xu et al. (35) used SVM score to
predict pre-operative lymph node metastasis in intrahepatic
cholangiocarcinoma, with AUC of 0.87. Fan et al. (38) used SVM-
based radiomics score to predict radiotherapeutic response in
acromegaly, with AUC of 0.96. Liu et al. (36) reported excellent

performance in SVM score to predict treatment response in
advanced rectal cancer, with AUC of 0.98. Zhang et al. (10)
first applied radiomics to evaluate recurrence in skull base
meningiomas, with accuracy of 90%. These studies suggest
that SVM score based on radiomics might be a useful tool
in predicting recurrences in meningiomas, but rare reports
regarding this concept have been published.

Recently, research of computer-extracted radiomic imaging
features has become a new field in medical imaging. However,
the reproducibility and robustness of the selected imaging
features need to be extensively studied before their applications
in clinical practice. Factors influencing the robustness of the
radiomics approach are modality dependent. However, only
few studies have investigated the robustness in MR radiomics
(39–42). How different imaging sequences and parameters will
affect the reproducibility of radiomic features is still unclear.
A recent phantom study showed that obvious differences exist
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among different MRI sequences in the number of robust and
reproducible features (43). However, more than 30% (15 of 45) of
the features still showed excellent robustness across all different
MR sequences and demonstrate excellent reproducibility. It was
supposed that these 15 features can be applied reliably for the
design of radiomic models in clinical studies. Among these
features, the shape-related feature was noted to be the most
robust and reproducible. Only robust and reproducible T1W
and T2W radiomic features were suggested to build a radiomics-
based model (43). However, it was also true that the effect of
operator-dependent bias can be reduced in radiomic features
through fully automatic image segmentation as in our study (43).

Lower ADC values have been reported to be associated
with a higher rate of recurrence in meningiomas (7). However,
subjective ROI placement with various methods for ADC
measurement may result in varying results (44). Susceptibility
artifact caused by intratumoral calcifications, necrosis, and cystic
changes within meningiomas may also interfere with obtaining
optimal ADC values (45). The extent of surgical resection is the
most important determining factor in the rate of recurrence in
meningiomas (46). Nanda et al. (47) reported that the overall
recurrence rates of WHO grade I meningiomas in Simpson
resection grades I, II, III, and IV are 5, 22, 31, and 35%,
respectively. Recurrence rates of 9.7% in the GTR group and
28.6% in the STR group are observed in our study. Although
post-operative adjuvant RT improves tumor control status in
high-grade meningiomas (48), no standard protocol could be
reliably adopted regarding adjuvant RT for benign meningiomas,
and clinical practices among different institutions are varied
(49). Whether post-operative adjuvant RT will be beneficial
for benign meningiomas is still unclear because it increases
the risk of complications such as symptomatic peritumoral
edema, cranial nerve deficits, and other neurologic deficits
(50). Pre-operative radiomics-based prediction for P/R, thus,
offers additional information for determining the treatment
strategies in meningiomas. For patients with high risks of P/R,
aggressive tumor resection in primary surgery combined with
post-operative adjuvant RT should be considered. In contrast, the
aim of surgery would be the relief of clinical symptoms for other
patients to avoid post-operative neurological deficits. Although
adjuvant RT may affect the independent predictive value for P/R
in our study, no statistically significant difference was observed
between the P/R and non-P/R groups.

This study still had several limitations. Selection bias existed
due to its retrospective nature. All images are acquired
from a single institution, and there is a lack of external
validation. Future testing with multi-institutional data and
varying imaging protocols is necessary to determine whether
the trained predictive classifier is generalizable. The extent of
tumor resection and adjuvant RT may affect the independent
predictive performance in radiomics analysis although this
limitation always exists in studies focusing on this topic due to
variations in treatment protocol (6, 7, 10, 32). Because the sample
size of P/R is relatively small, only a few imaging features can
be selected to build the classification model in order to avoid
overfitting. When more cases become available, other machine

learning algorithms such as the fully automated convolutional
neural network could be implemented. Finally, there is a lack
of complete histopathologic findings such as Ki-67 (MIB-1),
nuclear atypia, and genomic signature for correlation in this
retrospective study.

CONCLUSIONS

Our preliminary study revealed that SVM score based on
pre-operative MR radiomic features was a useful tool for
the prediction of P/R in meningiomas. Although this was a
single institution study, the imaging features extracted based
on automatic segmentation and imaging registration were
quantitative and objective. Pre-operative MRI radiomics and
SVM score, thus, may have the potential to offer valuable
information for the planning of treatments in meningiomas,
such as the extent of tumor resection, implementation of post-
operative adjuvant RT, and the time interval of imaging follow-
up. Nevertheless, this method still needs to be validated in a
larger-scale study in the future.
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