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ABSTRACT:
No treatment strategies effectively limit the progression of Alzheimer’s disease 

(AD), a common and debilitating neurodegenerative disorder. The absence of viable 
treatment options reflects the fact that the pathophysiology and genotypic causes 
of the disease are not well understood. The advent of genome-wide association 
studies (GWAS) has made it possible to broadly investigate genotypic alterations 
driving phenotypic occurrences. Recent studies have associated single nucleotide 
polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, 
and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, 
NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating 
oncogenesis and metastasis, and all three are known to be active in the brain during 
development and in cancer. However, to date, the majority of studies of these proteins 
have emphasized their roles in the directly cancer relevant processes of migration and 
survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in 
additional processes, including hypoxia, vascular changes, inflammation, microtubule 
stabilization and calcium signaling, as potentially relevant to the pathogenesis of 
LOAD. Reciprocally, these functions can better inform our understanding of the action 
of NEDD9, CASS4 and PTK2B in cancer.

INTRODUCTION

Roles in cancer and tumor metastasis are well 
established for the two paralogous scaffolding proteins 
NEDD9 (neural precursor cell expressed, developmentally 
down-regulated 9; also known as HEF1 or Cas-L) and 
CASS4 (Cas scaffolding protein family member 4; also 
known as HEPL), and for their interacting partner, the 
kinase PTK2B (protein tyrosine kinase type 2 beta; also 
known as PYK2, Cak2β, or RAFTK) [1-4]. Based on early 
identification of these proteins as regulators of integrin-
dependent signaling governing survival, proliferation, 
migration, and invasion, and the recognition of NEDD9 
as a major determinant of cancer metastasis [4-8], the 
majority of subsequent analyses emphasized their cancer-
related roles involving these functions. Unexpectedly, 
recent genetic studies have implicated single-nucleotide 

polymorphisms (SNPs) in each of these genes in a 
completely different domain: Alzheimer’s disease [9-14]. 
In part because independent research groups performed 
these studies, the fact that three closely interacting proteins 
have all been linked to increased risk of developing 
Alzheimer’s disease has not been appreciated, limiting 
consideration of relevant mechanisms by which defects in 
these proteins might affect disease pathogenesis. 

The pathophysiology of Alzheimer’s disease is 
known to reflect important contributions from vascular 
defects, hypoxia and calcium signaling, microtubular 
integrity, and inflammation. Interestingly, over the past 
two decades, several studies have identified roles for 
NEDD9, CASS4, and PTK2B in these processes, but this 
literature is typically underappreciated in the context of 
neurodegenerative diseases, in contrast to the focus on this 
signaling cluster in cancer and metastasis. In this article, 
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we first introduce the pathological features of Alzheimer’s 
disease, and describe recent data linking NEDD9, CASS4, 
and PTK2B to this syndrome. We then summarize 
signaling activities of these proteins with particular 
focus on literature identifying brain or Alzheimer’s-
relevant functions. Provocatively, these data suggest 
a new perspective on the breadth of action of NEDD9, 
CASS4, and PTK2B, extending their roles into the sphere 
of neurodegenerative maladies. Finally, we discuss how 
this assembled body of non-canonical functions for these 
genes increases appreciation of their roles in cancer.

Pathobiology and genetic basis of Alzheimer’s risk

Alzheimer’s disease (AD) is the leading cause of 
dementia, afflicting over 35 million people worldwide [15, 
16]. There are currently no effective treatment strategies 
for AD, and the disease typically leads to death within 3 to 
9 years [15, 17, 18]. Significant structural and functional 
alterations associated with AD include severe loss of brain 

volume as well as altered neuronal network activities [17]. 
β-amyloid peptide (Aβ) plaques, dystrophic neuritis and 
neurofibrillary tangles composed of hyperphosphorylated 
tau, are dominant histopathological features [15]. The 
pathophysiological processes are complex, and include 
mitochondrial dysfunction (Aβ is a mitochondrial poison 
[19]), oxidative stress, inflammation, disturbance in cell-
cycle re-entry, abnormal cholesterol metabolism, and 
aberrant vascular changes, with 60-90% of patients with 
AD presenting with ischemic disease [15, 17, 20-22]. 
Figure 1 summarizes AD-associated processes relevant to 
this article.

Two different subtypes of AD have been identified: 
early-onset AD (EOAD; <65 years of age) and late-onset 
AD (LOAD; >65 years old). EOAD accounts for >1-
6% of all cases [23] and tends to follow an autosomal 
dominant inheritance pattern [24]. For EOAD, defects in 
three genes have been described as causative: mutations, 
predominantly missense, in amyloid precursor protein 
(APP), presenilin 1 (PSEN1), or presenilin2 (PSEN2) 
(Table 1; [24-27]). Presenilin 1 and 2 are critical 

Figure 1: Alzheimer’s disease associated processes that involve NEDD9, PTK2B and CASS4. The processes depicted in 
this figure are: oxidative stress response [115, 116, 118, 121]; inflammatory response (NEDD9 control via PGE2 was described for cancer 
cells, not neurons) [79, 165, 175]; cell cycle regulation [83, 100]; microtubular alterations [83, 182-184]; vascular alterations [149, 150, 
153, 155-157]; and retinoic acid induced signaling and transcription [99, 101, 110, 111]. APP = amyloid precursor protein; Aα = amyloid 
alpha; R1-R4 = repeat sequences (make up microtubule-binding domain of Tau); RTK = receptor tyrosine kinase.
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components of the catalytic site of the γ-secretase 
complex, a membrane-embedded aspartyl protease 
required for cleaving the APP C-terminus (Figure 2; [28, 
29]). 

The genetic complexity of LOAD is much greater 
than the relatively well understood genotypes of EOAD. 
Only apolipoprotein E (APOE) has consistently been 
identified as an AD susceptibility gene for LOAD, possibly 
due to the role APOE plays in the clearance of Aβ [16, 30-
35]. However, it has been estimated that less than 20% of 
the risk for the development of LOAD is associated with 
APOE [36-38]. There has hence been considerable interest 
in identifying additional contributing factors. Systems 
biology and large scale genomics studies have begun 
to provide insights into the underlying multifactorial 
pathophysiology of AD [14, 32, 39-44], supporting the 
eventual development of effective treatment strategies. 
NEDD9, CASS4 and PTK2B have previously been much 
studied in the context of cancer [1-4]: as summarized 
below. Their recent identification as candidate regulators 
of the susceptibility of LOAD suggests numerous specific 
mechanisms by which they may influence LOAD disease 
onset and severity (Figure 1).

Genetic evidence linking NEDD9, CASS4, PTK2B 
and associated SNPs to neurodegenerative disease

To identify genetic determinants of LOAD, Lambert 
et al. performed a two-stage meta-analysis of genome-
wide association study (GWAS) data. The study analyzed 
data from 74,046 individuals of diverse ethnicities, and 
identified a total of 19 AD susceptibility loci, 8 of which 
had previously been identified. Newly identified loci 
included SNPs in CASS4 (rs7274581 - chr20: 55018260 
T/C) and PTK2B (rs28834970 - chr8: 27195121 T/C) 
[14]. These had genome-wide significance (P < 5 x 10-

8) in terms of an association with LOAD [14, 32]. Both 

rs7274581 and rs28834970 are intronic and distant from 
splice junctions (2996 and 11923 bases respectively) 
(allele T|C; http://cadd.gs.washington.edu/score; [45]).

Unlike CASS4 and PTK2B, NEDD9 was not 
identified as an LOAD associated susceptibility loci by 
Lambert et al.; in spite of NEDD9 having been implicated 
as such by several previous studies. The NEDD9 
rs760678 SNP was first identified by Li et al. (2008) 
in a patient population of Caucasian descent, and was 
proposed to be a common genetic factor in LOAD and 
Parkinson’s disease [10]. In this large-scale association 
study testing 4692 SNPs, the NEDD9 rs760678 SNP 
(allele C|G) was identified as the second most significant 
susceptibility marker (P = 0.0051); only rs439401, near 
APOE on chromosome 19, had a lower p value (P = 
2.40x10-11; [10]). rs760678 (chr6: 11334654) C/G is 
located within intron 2, 28266 bases away from a splice 
site, and has a global minor allele frequency of 0.2984 
(www.snpedia.com). A potential role for the NEDD9 
rs760678 SNP was reiterated by an independent study 
of genomic DNA from 214 LOAD patients, 135 EOAD 
patients and 386 healthy individuals. This study found a 
positive association between rs760678 and LOAD (CC 
genotype: P = 0.016; C allele: P = 0.007). No significant 
difference between EOAD patients and the control group 
was detected (p > 0.1; [12]). Similar observations were 
made in an additional study with an independent cohort of 
Han Chinese patients, which compared 383 patients with 
LOAD with 369 non-affected individuals. A significant 
difference for both genotype (P = 0.003) and allele 
frequency (P = 0.002), between the LOAD group and the 
control group were determined. Additionally, a significant 
difference (genotype: P = 0.047; allele frequency: P = 
0.024) between the two groups was maintained even if 
only subjects without the APOE ε4 allele were considered 
[13]. However, as mentioned, Lambert et al. did not 
report a significant occurrence of this particular SNP in 

Table 1:  Alzheimer’s Disease mutations and NEDD9, PTK2B and CASS4 SNPs.

Alzheimer’s 
Disease Gene Association Genetic Mechanism Biochemical Phenotype References

PSEN1 EOAD (30-70%) Mostly missense mutations 
(approx. 140)

Reduced γ-secretase proteolytic 
activity [28, 224]

PSEN2 EOAD (<5%) Mostly missense mutations 
(approx. 10)

Reduced γ-secretase proteolytic 
activity [28, 224]

APP EOAD (10-15%) Mostly missense mutations 
(approx. 16)

Increased amount or longer 
pieces post-cleaving [224, 225]

APOE LOAD ε4 variant Increased Aβ aggregation and 
decreased clearance [33-35]

PTK2B LOAD SNP: rs28834970 (Chr. 8) [14]
CASS4 LOAD SNP: rs7274581 (Chr. 20) [14]
NEDD9 LOAD SNP: rs760678 (Chr. 6) [9, 13]
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their study [14] and Chapuis et al. have described the 
association between NEDD9 and AD as weak at best [46]. 
The differences between reports may reflect variation 
in subject selection, disregard of environmental factors, 
difference in analysis, or it may simply be due to the 
underlying complexity of AD. Of note, Chapuis et al. 
did not indicate in their study if the analyzed cases were 
cases of LOAD, EOAD or both, perhaps explaining the 
discordant findings [46]. In 2012, a meta-analysis by Wang 
et al. concluded that more studies with larger number of 
samples are required for more precise answers [9-13, 47]. 

The known biology of NEDD9 closely links its 
function to CASS4 and PTK2B, as summarized below, 
additionally suggesting NEDD9 as a compelling target 
for further studies focused on AD. rs760678 maps near 
a putative GATA1 transcription factor binding site [10], 
implying a possible role for the SNP in influencing 
NEDD9 expression. Intriguingly, the two scaffolding 
proteins and PTK2B have also been associated with the 
function of the protein TREM2. TREM2 has been strongly 
linked to AD and general dementia by several studies 
[40, 48-50], including the study by Lambert et al., which 

identified an AD susceptibility SNP (rs9381040; P = 6.3 
x 10-7) only 24 kb away from the 5’ end of TREM2 [14]. 
Mutations in TREM2 significantly downregulate NEDD9 
expression [48] and an established signaling relationship 
exists between TREM2, its signaling partner DAP12, 
and PTK2B. TREM2 is a membrane bound protein that 
is activated by as of yet unidentified ligands to trigger 
SFK dependent phosphorylation of DAP12, leading 
to SYK activation, which then engages in a reciprocal 
activation interplay with PTK2B [51-56]. As we continue 
to discuss the functionality of NEDD9, CASS4, or PTK2B 
in relation to LOAD, we view it as most likely that the 
identified SNPs influence the expression levels of these 
proteins and thus their functional roles.

Canonical biology of NEDD9, CASS4, and 
PTK2B: interactions between these proteins and 
evidence for action in the brain 

Suggestively, NEDD9 and CASS4 are paralogues, 
with NEDD9 known to interact directly with PTK2B, and 

Figure 2: NEDD9, PTK2B and CASS4 as regulators of molecular signaling proposed as relevant in Alzheimer’s disease 
[1, 15, 17, 57, 59, 62, 63, 66, 78, 83, 90, 95-97, 178, 185, 187, 191, 196-198, 200, 226, 227]. atRA = all-trans retinoic acid; RAR 
= retinoic acid receptor; RXR = retinoic X receptors.
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CASS4 retaining the motifs required for this interaction. 
Hence, association of all three with LOAD suggests a 
common function in the pathobiology of this disease 
(Figure 2; [1]), paralleling the interactions among these 
proteins that underlie development and progression of 
cancer [1-4, 57, 58].

In thinking about this common function, NEDD9 
and CASS4 are expressed in many tissues, including the 
brain [59-61]. NEDD9 and CASS4 are members of the 
Crk-associated substrate (CAS) family of scaffolding 
proteins, which also includes BCAR1/p130Cas and 
embryonal Fyn substrate (EFS; also known as CAS3, 
CASS3, HEFS and SIN; [1, 2]). CAS proteins share 
several conserved sequence motifs, including an amino-
terminal Src homology 3 (SH3) domain that allows 
binding with a number of proteins [2], including focal 
adhesion kinase (FAK) [62] and the FAK paralog PTK2B 
(Figure 2; [63, 64]). Additionally, CAS proteins contain 
a “substrate domain”, with multiple tyrosines that form 
SH2-binding motifs when phosphorylated [1, 4], a 4-helix 
bundle that provides a docking site for 14-3-3 proteins 
[65] and GRB2 [66] as well as a C-terminal helical 
domain that provides another site for interaction with 
additional proteins, such as SRC family kinases (SFKs), 
the CAS protein BCAR1 [1], and other signaling adaptors 
for integrin and receptor tyrosine kinase signaling, such as 
NSP2/BCAR3/AND-34, SOS and C3G [66-69].

NEDD9 and CASS4 are regulated by and mediate 
cellular attachment to the extracellular matrix [59, 70, 
71]. In studies predominantly performed in cancer 
cell lines of epithelial and lymphoid origin, following 
integrin engagement or mechanical stretching, FAK 
or PTK2B (discussed further below) directly bind and 
phosphorylate CAS proteins [62], which subsequently 
leads to further phosphorylation of the CAS proteins by 
SRC [63, 72-74]. Crk, Crk-L, and BCR/ABL associate 
with hyperphosphorylated CAS proteins to induce cell 
spreading (Figure 2; [4, 75]). Reciprocally, overexpression 
of NEDD9 or CASS4 activates FAK and SRC kinases [3, 
59, 76] and organizes complexes that regulate the actin 
cytoskeleton, contributing to changes in cell adhesion, 
migration, and invasion, and involve regulation of RAC, 
DOCK3, and WAVE2 [77]. These changes may vary 
dependent on cell context, with most studies showing 
NEDD9 as a positive regulator [70, 78, 79], but some 
showing a negative role [71, 80, 81]. 

In addition, in some cell types, NEDD9 can induce 
the formation of neurite-like cell extensions that depend 
on an intact microtubule cytoskeleton [82]. Further, 
NEDD9 associates with and influences the activity of 
the kinase AURKA to govern appropriate organization 
of microtubules into a mitotic spindle [83]. Further 
interactions between NEDD9 and AURKA in G0/G1 
cells regulate integrity of the cell cilium [84], a structure 
important for brain patterning and function [85, 86] that is 
organized around a microtubule-based axoneme. NEDD9 

also associates with the TGFβ effectors and regulatory 
proteins SMAD3, SMAD6 and SMAD7 [57, 87-89], 
positioning it to influence cell differentiation status. To 
date, very few studies have addressed CASS4 function, 
although roles in control of cell migration have been 
established: given the high level of domain and sequence 
conservation between CASS4 and NEDD9 [59], some 
of the additional roles described above are likely to be 
relevant.

Protein tyrosine kinase 2 beta (PTK2B) is highly 
conserved with FAK (90% sequence identity) and together 
with FAK comprises the complete focal adhesion protein 
tyrosine kinase family [90]. Intriguingly, PTK2B is 
expressed with great tissue selectivity, with preferential 
expression in the central nervous system [91]. PTK2B 
has a central kinase region flanked by a FERM (band 
Four point one (4.1), Ezrin, Radixin, Moesin) N-terminal 
region and a focal adhesion-targeting (FAT) domain at 
the C-terminal, which allows binding to paxillin [91-93]. 
Poly-proline sequences on FAK and PTK2B mediate their 
interaction with the NEDD9 or CASS4 SH3 domain. 
Auto-phosphorylation of PTK2B induced in response 
to integrin ligation triggers recruitment of several 
proteins, most prominently SFKs and GRB2, to initiate 
migration-inducing signaling [94-96]. In some studies, 
FAK was shown to oppose the role of PTK2B in inducing 
reorganization of actin association with focal adhesions 
and cell rounding, suggesting balanced function of these 
proteins may be important for tissue organization [97]. 

Importantly, NEDD9 and PTK2B are highly active 
in neurologically relevant settings. NEDD9 is expressed 
in the developing brain [61, 98], and regulates neural 
crest cell migration [99]. NEDD9 is also required for 
TGFβ-initiated cell cycle exit and neuronal differentiation 
in forebrain-derived embryonic progenitor cells 
[100]. NEDD9 is upregulated in response to retinoic 
acid in human neuroblastoma cells [101], regulates 
morphology in glioma and neuroblastoma [80], and has 
elevated expression and promotes survival and invasion 
in glioblastomas [78]. Gene expression profiling of 
the murine striatum after administration of different 
classes of psychotropics indicated that a cluster of cell 
cycle regulators, including NEDD9, were significantly 
enriched [102]; one study has also shown that NEDD9 
is upregulated in response to fluoxetine (Prozac), a 
psychotropic given to some patients with AD [103].  For 
PTK2B, expression levels are sharply elevated in the front 
brain shortly after birth [90, 104]. PTK2B localizes to 
neurites in rat pheochromocytoma cells upon stimulation 
with nerve growth factor [105], and is a key component 
of signaling pathways involved in neurite growth and 
synapse formation [106]. PTK2B and FAK association 
with adhesion complexes containing both integrins and 
receptor tyrosine kinases, such as EGFR, to mediate 
neurite induction by adhesion and growth factors [107]. 
Further relevant signaling aspects are based on PTK2B-
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SRC interactions, which couple signals from G-protein 
coupled receptors (GPCRs) to MAPK activation [96]. 
Like NEDD9, PTK2B induces the migration and invasion 
of glioblastoma cells; a role that distinguishes it from its 
paralog FAK [108].

Lastly, a recent study using a transgenic AD mouse 
model found that the retinoid X receptor (RXR) agonist 
bexarotene, used for the treatment of cutaneous T cell 
lymphoma [109], enhanced clearance of Aβ and improved 
cognitive function. Multiple studies have described a 
significant relationship between retinoic acid and NEDD9. 
The NEDD9 promoter contains binding elements for the 
retinoic acid receptor (RAR) and RXR (Figure 1; [110]), 
and NEDD9 is induced by retinoic acid in neural crest 
cells and neuroblastoma cells [99, 101]. Furthermore, 
studies of PTK2B in leukemia cells have found it to be 
upregulated in response to treatment with all-trans-retinoic 
acid (atRA) [111]. PTK2B signaling, once induced with 
atRA, was sustained for extended time periods, suggesting 
a positive feedback loop. Hypothetically, RXR agonists 
may also increase PTK2B signaling in AD mouse models, 
and inhibition of PTK2B limit the bexarotene-dependent 
reduction of Aβ.

PTK2B and NEDD9 in oxygen responses

In addition to cell-intrinsic defects associated 
with control of neurite growth and movement, PTK2B, 
NEDD9, and CASS4 may also influence environmental 
factors associated with AD. The brain is immensely 
metabolically active and accounts for roughly 20% of 
overall oxygen consumption [112]. Even temporary 
hypoxia can cause permanent damage to neurons [113]. 
Hypoxia, including particularly chronic hypoxia, has been 
strongly implicated as causative in neurodegenerative 
diseases, including AD [114]. 

While the topic has not yet been significantly 
addressed for CASS4, Sasaki et al. demonstrated that 
NEDD9 is highly induced by transient ischemia, and 
localizes to dendrites and the cytosol of neurons. In 
this context, NEDD9 helps initiate neural projection 
formation and may be important for neurite regrowth 
and tissue recovery following ischemic damage [115]. 
A study of NEDD9 in colon cancer cells has confirmed 
that its induction under hypoxic conditions is regulated by 
hypoxia-inducible factor 1α (HIF1α) and in turn modulates 
the interaction between HIF1α and its transcriptional 
coactivator p300 (Figure 1; [116]). While multiple studies 
find that NEDD9 is upregulated during hypoxia [115-118], 
one study profiling transcriptomic changes induced by 
differing states of oxygen tension indicated that a specific 
set of mRNAs, including NEDD9, is downregulated 
during hypoxia [119].  The reported discordance may be 
due to differences in experimental models used (changes 
in oxygen levels in vitro versus induced ischemia in vivo) 
and discrepancies in defining hypoxia (Chadwick et al. 

state that neurons in culture are typically kept at oxygen 
levels that are too high to be considered endogenous due 
to high oxygen consumption in the brain [119]). This 
topic clearly requires more investigation for definitive 
conclusions to be made.

Under normoxic conditions, PTK2B is expressed, 
but typically inactive. However, as shown in a study 
of rat brains, PTK2B is upregulated and increasingly 
phosphorylated (i.e., activated) in response to induced 
hypoxia in microglia [120]. Another study using a 
mouse hind-limb ischemia model showed that hypoxia 
acts as a stress signal that is detected by PTK2B, which 
phosphorylates and activates endothelial Nitric Oxide 
Synthase (eNOS). eNOS in turn produces nitric oxide 
(NO), which promotes vasodilatation. During this 
response, PTK2B also stabilizes AKT kinase activity 
and intracellular Ca2+ mobilization, which promotes 
VEGF activity [121, 122]. VEGF helps activate eNOS by 
triggering the phosphorylation of VEGFR1 and VEGFR2, 
which leads to PTK2B dependent Ser1176 phosphorylation 
of eNOS, inducing angiogenesis, migration, and 
cytoskeletal reorganization [121, 123].

PTK2B and NEDD9 in the vascular system 

Cerebrovascular pathologies are present in 60-
90% of patients with AD [124]. Recent studies have 
linked the function of both PTK2B and NEDD9 to 
vascular integrity, angiogenesis, and hypertension.  
Hypertension is of particular interest, for one, because of 
its general prevalence, and two, because it can be managed 
pharmacologically and with lifestyle adjustments [125, 
126]. Conflicting reports have been published regarding 
a correlation between hypertension and AD [127-131]; 
however, postmortem brain analyzes showed significantly 
less neuritic plaque and neurofibrillary tangle densities in 
individuals who had received hypertensive medication 
[132]. To corroborate these findings, in a large study of 
2,248 participants, it was determined that use of anti-
hypertensives (diuretics, angiotensin-1 receptor blockers 
and angiotensin-converting enzyme inhibitors) was 
associated with reduced risk of AD dementia [133]. 

PTK2B has been linked to key hypertensive events, 
such as increased cell growth in vascular smooth muscle 
cells, associated with angiotensin II induced PTK2B 
phosphorylation [134, 135], and significantly reduced 
expression of PTK2B in the hypothalamus of mice 
with established neurogenic hypertension compared 
to normotensive mice [136]. In a population-based 
case-control sample study of 2655 individuals, PTK2B 
variants were also indentified as associated with essential 
hypertension [137]; although, this observation was not 
confirmed in a GWAS, in which PTK2B variants were 
detected, but not seen as significantly associated with 
hypertension [138]. Strong evidence exists that suggests a 
direct signaling link between angiotensin, a critical player 
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in the renin-angiotensin system required for blood pressure 
regulation, vasoconstriction and sodium/potassium 
regulation [139, 140], and PTK2B. The angiotensin II 
receptor type 1 transphosphorylates PTK2B to regulate 
c-Jun expression [141, 142]. Furthermore, PTK2B is 
critical for angiotensin II-initiated ERK activity [143]. 
Intriguingly, it has been shown that angiotensin-converting 
enzyme-1 (ACE1) is elevated in the brains of patients 
with AD, so are the PTK2B modulators angiotensin II 
and angiotensin II receptor type 1 [144-146]. Finally, one 
recent GWAS study has linked NEDD9 to primary open 
angle glaucoma (POAG), a disease that could be caused 
by endothelial defects or hypertension. In this case, a 
NEDD9 intronic SNP was highly associated with POAG 
(rs11961171, P = 8.55E-13; [147, 148]). Further study is 
indicated.

Vascular insufficiency and chronic cerebral hypo-
perfusion are clearly involved to some degree in AD, 
although the cause and effect relationship has not been 
clearly defined [15, 124]. Aβ induces the potent angiogenic 
ligand VEGF [149], reportedly activating VEGF-receptors 
to increase angiogenesis and cell migration [150, 151]. 
VEGF is a major driver of angiogensis and it has been 
reported that angiogenesis increases vascular permeability 
and hypervascularity in AD [152]. NEDD9 and PTK2B 
have both been linked to angiogenesis and changes in 
their expression may contribute to hypo-perfusion and 
vascular permeability in AD. For example, NEDD9 has 
been defined as critical for a response to VEGF in cancer 
cells (Figure 1; [150]). When upregulated and activated, 
NEDD9, along with FAK, is a required target of VEGF 
signaling in invadopodia, leading to cell spreading and 
migration [150]. NEDD9 is also a downstream target of 
PTK2B, important for the regulation of endothelial cell 
cytoskeletal reorganization necessary for migration during 
angiogenesis (Figure 1; [3, 153]). Amyloid fibril exposure 
also increases PTK2B activation in cultured microglia 
[154]. If similar activation occurs in endothelial cells, 
PTK2B is positioned to increase endothelial permeability 
and regulate cell-cell adhesion through its previously 
described interaction with VE-cadherin (Figure 1; [155-
157]). Work on two transgenic AD mouse models has 
shown that the VEGFR inhibitor sunitinib re-establishes 
proper expression levels of proteins involved in vascular 
integrity, such as Aβ, thrombin, tumor necrosis factor-α, 
interleukin-1β, interleukin-6, and matrix metalloproteinase 
9; NEDD9 and PTK2B were unfortunately not evaluated 
in this study [158]. 

PTK2B and NEDD9 in inflammation 

Neuroinflammation has been suggested to play an 
important role in progression of Alzheimer’s disease [33, 
159] and epidemiological studies have suggested anti-
inflammatory agents may have beneficial effects in AD 
[160]. Thus far, long term randomized studies have not 

convincingly shown that anti-inflammatory therapeutics 
benefit patients with AD; however, the Alzheimer’s 
Disease Anti-inflammatory Prevention Trial (ADAPT), 
a randomized study of 2528 elderly persons, led to the 
conclusion that nonsteroidal anti-inflammatory drugs 
(NSAIDs) have an adverse effect in late stage AD, 
but reduced the incidence of AD after 2-3 years [161]. 
ADAPT emphasizes that better understanding of the 
pathophysiology of AD and the involved inflammatory 
processes is critical if the inflammatory process is to be 
effectively targeted with therapeutic intent. 

Neuroinflammation involves the activation of 
microglia, astrocytes, marcrophages and lymphocytes, 
production of inflammatory cytokines, release of 
neurotransmitters and production of reactive oxygen 
species [159]. NEDD9 is important both for lymphocyte 
signaling [73, 162-164] and lymphocyte migration [79]. 
NEDD9 has also been implicated in T cell-mediated 
inflammation, predominantly on the basis of an association 
with ABL [164-166], with phosphorylation of NEDD9 
by ABL and subsequent activation of RAP1 (Figure 1; 
[165]). PTK2B is required for neutrophil degranulation 
[167] and inhibition of PTK2B blocks inflammation in 
murine models of acute lung injury [168] and asthma 
[169]. PTK2B has also been implicated in the activation of 
T cells [170, 171] and T cell spreading [172, 173]. In light 
of the effects of NSAIDs on early stage AD, as reported 
by the ADAPT study, and the implication of NEDD9 and 
PTK2B not only in the inflammatory process, but also in 
AD, additional biological observations regarding NEDD9 
are particularly relevant. NSAIDs such as ibuprofen, 
asprin, naproxen and rofecoxib suppress inflammation 
by inhibiting cyclooxygenase 2 (COX2) activity [161]. 
Prostaglandin E2 (PGE2) is a downstream product of 
COX2 and is therefore suppressed by NSAID treatment 
[174]. In a first study in colorectal cancer, PGE2 was 
shown to dramatically upregulate NEDD9 expression 
[175], raising the possibility that a COX2-PGE2-NEDD9 
axis is also involved in AD.

NEDD9 in microtubule network stabilization 

Tau is one of the hallmark proteins of Alzheimer’s 
disease [15], and involved in the pathological formation 
of tau neurofibrillary tangles [17, 176]. However, tau 
normally is involved in the assembly and stabilization of 
microtubules within neurons (Figure 2; [177]), a critical 
component of proper neuronal functionality [178] and a 
process disrupted in AD [179-181]. NEDD9 regulation 
of AURKA activity was first shown to regulate the 
appropriate organization of microtubules in mitosis [83]. 
In a particularly exciting finding, AURKA was found to 
be active in post-mitotic neurons, and to play a significant 
role in microtubule remodeling during neurite extension. 
This involves interactions between AURKA, atypical 
protein kinase C (aPKC), and NDEL1, a partner of the 
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LIS1 gene (mutated in lissencephaly) that regulates 
dynein. AURKA phosphorylation of NDEL1 was essential 
to sustain a robust frequency of microtubules from the 
centrosome, anchoring neurite projection [182-184]. 
To date, although PTK2B and NEDD9 are abundant in 
neurites, a PTK2B-NEDD9-AURKA-NDEL1 axis has not 
been considered in neurite extension or neurodegenerative 
diseases. Providing additional linkages, glycogen synthase 
kinase 3 beta (GSK-3β) phosphorylates tau contained in 
neurofibrillary tangles, and influences the formation of 
Aβ [185-188]. The NEDD9-regulated kinase AURKA 
has been shown in cancer cells to phosphorylate GSK-
3β, increasing its activity [189]. In some cell types, the 
E3 ligase SMURF2 negatively regulates GSK-3β [190], 
but stabilizes NEDD9, promoting AURKA activity [191], 
raising the possibility of a feedback loop.

Some “canonical” activities of NEDD9 and PTK2B 
may also influence the formation of tau neurofibrillary 
tangles as well as APP-associated plaque formation 
(Figure 2). The SFK FYN binds NEDD9 (and potentially 
CASS4) [1, 192, 193], and directly regulates the function 
of PTK2B [194]. Conversely, studies of some CAS 
family members have shown that CAS-SFK binding is 
important for activating the SFK [195]. Importantly, FYN 
is responsible for increased phosphorylation of tau [196-
198], a process that induces the dissociation of tau from 
microtubules, eventually leading to tangles composed 
of hyper-phosphorylated tau (Figure 2; [15, 199]). In 
another linkage, some in vitro studies have suggested that 
the activity of Aβ as a neurotoxin requires the induction 
of α2β1 and αVβ1 integrins, which in turn anomalously 
activate SFKs and PTK2B, and increase NEDD9 and 
CASS4 phosphorylation [154, 200].

NEDD9 and PTK2B in calcium signaling 

Defects in calcium signaling have been suggested 
to play a significant role in the development of AD, 
and some evidence suggests that Aβ is responsible for 
disruption of calcium homeostasis [201, 202]. Aβ affects 
calcium permeability and signaling in brain tissue [203, 
204] as well as calcium channel activity [205]. PTK2B is 
dependent on calcium for activation [105] and modulates 
NMDA receptor function and MAPK signaling (Figure 
2; [104, 206]). NEDD9 activity also regulates and is 
regulated by calcium signaling. It has been shown in 
multiple studies that the calcium-regulating hormone 
calcitonin induces association and phosphorylation of 
NEDD9, paxillin, FAK, and PTK2B, promoting changes 
in cellular shape and motility patterns [207-209]. Although 
this signaling has been predominantly studied in kidney 
cells and osteoclasts, it is likely relevant in other tissues. In 
a second connection to calcium signaling control, NEDD9 
activation of AURKA supports phosphorylation of the 
widely expressed polycystin 2 (PC2) calcium channel, 
to limit the channel’s activity and decreases cytoplasmic 

calcium. Reciprocally, calcium induction of calmodulin 
(CaM) binding to AURKA supports the AURKA and 
NEDD9 interaction [210-212]. Relevant connections 
between calcium homeostasis and NEDD9 and PTK2B 
are hence clearly established and it would likely be of 
immense value to investigate the functional impact of this 
interplay in the context of AD. 

Conclusions, and return to cancer biology 

Alzheimer’s disease, and particularly LOAD, is 
immensely complex, and our understanding of this disease 
on a molecular level is still limited. While genetic analyses 
to date imply heterogeneous origins for LOAD, the fact 
that three genes with close functional relatedness have 
separately been identified as contributing to this disease is 
highly suggestive of an important conserved pathway. For 
historical reasons, the bulk of molecular characterizations 
of NEDD9, CASS4, and PTK2B have stressed their 
roles in cancer. However, the data summarized above 
provide a roadmap for systematic investigation of these 
proteins in the regulation of hypertension, angiogenesis, 
hypoxia, calcium signaling, inflammatory response, and 
microtubule dynamics: all phenotypes highly relevant 
to LOAD. Given the most likely function of the SNPs 
is to activate or depress signaling of the NEDD9-
CASS4-PTK2B axis, their action in LOAD may involve 
simultaneous subtle regulation of all these phenotypes, 
with cumulative effects in aged individuals.

Finally, while the main focus of this review has 
been on the roles of NEDD9, CASS4, and PTK2B in 
LOAD, many of the LOAD-relevant processes can 
further highlight the significance of these proteins in 
cancer. In cancer, discussion of action of the NEDD9-
CASS4-PTK2B scaffolding and signaling axis almost 
invariably focuses on the regulation of cell migration 
and invasion, following the upregulation of NEDD9 and 
activation of PTK2B in many tumors. Of note from a 
therapeutic standpoint, inhibitors of FAK are in clinical 
development [213-216] and these inhibitors are also 
active against PTK2B [214]. The data reviewed above 
suggest that use of these inhibitors may have significant 
side effects impinging on function of the vascular and 
immune systems. At this point, whether such effects would 
be beneficial or negative is difficult to predict; however, 
we suggest that accumulated data now indicate that 
specific analysis of this question is worthy of preclinical 
investigation. 

These data also suggest additional ways of thinking 
about NEDD9, PTK2B, and CASS4 in tumor cells. 
For example, renal cell carcinoma (RCC) is almost 
entirely dependent on loss of VHL and induced hypoxic 
signaling involving VEGFR [217-219]. FAK/PTK2B 
inhibitors may be expected to behave differently in this 
class of tumors than others with less dependence on this 
signaling pathway. We believe that in order to advance 
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cancer therapy it is important to target signaling nodes, 
functions, and malignant cellular reprogramming in 
order to maximize prevention, treatment and diagnosis 
[220-223]. Understanding the roles of scaffolding 
proteins is important in this regard, as these proteins 
often interconnect signaling cascades and phenotypic  
revulators. The described collection of functional 
relationships for NEDD9, CASS4 and PTK2B in AD is 
a generalizable approach of thinking about genotypes, 
phenotypes and ultimately functionality to understand 
diseases ranging from Alzheimer’s to cancer.
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