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Cerebral ischemia (IS) is one of the main cardiovascular diseases threatening life and disability. Like most cardiovascular events,
the disease progression of is affects a variety of signaling pathways and changes multiple overexpressed genes in the body. -e use
of new therapeutic agents to interfere with the disease progression of cardiovascular diseases (such as is) can be achieved by
selectively regulating small molecules of the target set of different signal pathways, also known as selective multipharmacology.
Phenotypic screening can be an effective method to solve this problem, but the lack of targeted methods for ischemic stroke limits
its impact. Here, we aim to identify IS-specific targets by RNA sequencing data with a network-based approach. Molecular
docking approach was applied to screen over 210,000 molecules from SPECS compound library. Screening of this enriched library
resulted in 605 candidates that led to several potent active hits. -e novelty analysis suggested that the structure scaffolds of the
compounds were dissimilar to existing IKKB inhibitors, and further biological test result confirmed two identified compounds
represented novel IKKB inhibitors. Further, docking exploration with IKKB (PDB id: 4KIK) showed that the three selective
compounds were stable inside the binding pocket of IKKB which shared a homology of compound-protein interactions in
comparison with the bioactive inhibitor of CHEMBL1762621. Our screening method is expected to produce selective multidrug
lead compounds for the development of treatments for complex diseases, such as ischemic stroke.

1. Introduction

Cerebral ischemia (IS) is the most destructive manifestation
of atherosclerosis and systemic hypertension. It is the second
highest source of death and the third leading source of
disability across the world [1]. At slightly over 16 million 900
thousand cases, the disease has a relatively high incidence
rate globally [2]. Based on previous studies, the primary
causes of the stroke are inflammation, atherosclerosis, blood
coagulation, and platelet activation [3]. -e use of rapid
chemical and rapid mechanical thrombolysis following
stroke incidence is considered a traditional treatment
method. -ese interventions require immediate treatment
and therapy Also, the risks of intracranial hemorrhage and

other forms of bleeding have been observed in heightened
thrombolysis [4]. Consequently, the immediate detection of
ischemic stroke events by serum biomarkers may have
important clinical value for disease prevention, treatment,
and prognosis. Currently, the treatment and detection of IS
is largely based on cardiac tomography imaging, including a
reliance on computed tomography as well as magnetic
resonance imaging (MRI) [5]. Ultimately, identification of
potential therapeutic agents for the prevention, detection,
and treatment of cerebral ischemia is overly important.

While the diagnosis of myocardial infarction is usually
based on the use of ECG, contemporary studies appreciate
the significance of circulating RNAs in the detection of the
dysregulated genes in chronic ischemic stroke. In particular,
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the stability of blood samples coupled with perceived fea-
sibility of detection renders them to be valuable genomic
data [6]. In the past, studies applied differential expression
analysis in the identification of the miRNAs that were
differentially manifested following probe sequencing.
However, this method is limited in its focus on the re-
sponsibility of a single target and thus fails to deal with the
complex disease like ischemic stroke; thus, we seek to build
the relationship between genes in a network perspective and
establish the relationship between genes and diseases for the
purpose of polypharmacology. -is problem can be solved
by a network-based approach of target identification from
enormous genomic data with weighted gene coexpression
network analysis (WGCNA) [7].

Nowadays, applying genomic and structural protein data
into the discovery of novel therapeutic agents was in trend as
it enhances the efficiency and accuracy of target identifi-
cation. L1000 was a comprehensive genetic map based on the
perturbation of compounds to disease and genes [8]. Here,
we follow a combination approach with network-based
approach of target and phenotypic screening to generate
novel molecules with selective polypharmacology that may
have potency in treating ischemic stroke.

Our approach combines disease-related targets selected
by genomic profiles as well as binding site identifications to
come up with several targets with druggable binding pockets
[9]. An estimate of 210,000 compounds from SPECS library
is docked against every disease-related targets [10]. Minute
molecules whose prediction is to simultaneously bind on
several proteins are identified and selected for phenotypic
screening using molecular docking. -e impact of the
compound on IKKB is also tested based on an inhibition
activity assay [11]. In uncovering probable approaches of
action, the compounds were identified for docking to the
IKKB protein complex in comparison with the bioactive
agents.

2. Materials and Methods

2.1. Genomic Data Preparation of Ischemic Stroke. -e cur-
rent study uses IS gene expression data sourced from theGEO’s
genomic database. Gene annotation was extracted with the
resultant data being retrieved such as Entrez ID as well as gene
symbols and based on an inherent reference to the platform
GPL570 (Illumina Inc.). In an effort to ensure the compara-
bility and integrity of the selected data sets, a calculation of
normalization with log 2 manifestation is made with RMA
package. -e mapping of the gene annotation in the identical
gene symbol corresponding tomultiple probes ismadewith the
probe with the biggest mean manifestation across all samples.
Consequently, the expressionmatrix of the samples ismixed up
based on the miRNA/gene symbols. All the samples are then
tested in an effort to alleviate the batch effect through reliance
on the SVA toolkit.

2.2. Differential Expressed Gene Screening. Following the
elimination of the abnormalities and duplicate, the nor-
malization of differential expressed genes was done and

calculations with package DEseq made. Lastly, genes with p

value below 0.05 and foldchange >1 were identified for more
network analysis.

2.3. Establishment of WGCNA Network and Detection of
Disease-AssociatedGenes. -e processing of data is achieved
using WGCNA tool in RStudio 3.6.0 software. In safe-
guarding reliability in network construction, the researchers
eliminated abnormal genes. Initially, a selection of the soft
threshold of network construction is made to ensure the
continuity of the adjacency matrix from 0 to 1, such that the
constructed network is consistent with the power-law dis-
tribution. -is process also ensures that it maintains
closeness with the actual state of biological network. -e
construction of the scale-free network is dependent on the
block module function, before carrying out the module
partition analysis and determining coexpression module of
the gene; then, the clustering and pairing of genes that have
similar expression patterns is done. -rough a reliance on
the dynamic algorithm, the clustered tree is divided into
branches to facilitate modules definitions, and modules then
are assigned across different colors for better visualization.
All the modules are summarized using module eigengene
(ME). -e modules are identified through their most sig-
nificant module eigengene (ME) and are determined as a
symbolic gene that represents the manifestation spectrum of
all genes within a specific module. -e definition of module
membership (MM) is based on the correlation between
module eigengene and individual gene. Moreover, the cal-
culation of gene significance (GS) within the module is
conducted to represent the correlation among traits and
genes.

2.4. Protein Structures Acquisition. Gene ensemble IDs from
the module with highest disease-correlation were converted
to gene symbols via the ID converter tool from David
website. Converted gene symbols were mapped to protein
identifiers using the web interface of mapping tool provided
by UniProt (http://www.uniprot.org/mapping). An anno-
tated set of 594 reference human proteins were acquired
from UniProtKB/SwissProt. FASTA sequence of each pro-
tein was retrieved for further alignment with the structures
in the RCSB Protein Data Bank (PDB). -e FASTA se-
quences were first queried against the pdbaa dataset using
BLASTTP (protein-protein BLASTv2.10.1). Tominimize the
searching scope to find the protein structures with signifi-
cant sequence identity to the query, only structures with E-
value <10-5 and >90% sequence identities were kept. -e
identified structures were scrutinized for the experiment
methodology, taxonomy for each structure chain, and the
structure resolution to determine that the structures were
from X-ray diffraction. -e filtered criteria for crystal
structures were with a resolution less than 3 angstrom (Å).
To reduce redundant structures identified from BLASTTP
and generate a set of representative structures related to each
queried proteins, the CD-HIT (v4.8.1) was introduced for
clustering the protein sequences of identified structures, and
the threshold of similarity was set as 0.7 with identity over

2 Journal of Healthcare Engineering

http://www.uniprot.org/mapping


90%, after which the cluster centers from CD-HITwere used
as representative sequence for binding sites identification on
the basis of structures. In total, 22 proteins that had one
minimum crystal structure were identified.

2.5. Binding Site Identification. For each cluster identified by
CD-HIT, the cluster centroid protein structure was further
used for binding sites identification. -e sitemap module in
Schrodinger software suite was incorporated to identify the
druggable binding sites on the crystal structures. -e single
chain of protein structures was acquired from PDB, and the
binding ligands were removed to acquire the monomeric
representative structures. Solvent molecules and bound li-
gands and any other heteroatoms were removed, and
selenomethionine residues were substituted with methio-
nine. -e Protein Preparation Wizard workflow was further
introduced for the preprocessing of monomeric structures.
Missing loops and side chains were summed using Prime
module. Disulfide bonds were then added, and each crystal
structure was protonated with PROPKA at pH 7.0. Binding
sites were identified in SiteMap with the processed protein
structure. For each structure, 10 binding sites were kept, with
all the other parameters unadjusted. -e binding sites with
Site score and Drug score over 0.9 were kept. -e average
coordinates of the sitemap spheres were defined as the
centroid of the binding site. Binding sites with a Drug score
above 1.0 were identified as druggable. In total, 192 drug-
gable binding sites were identified for 22 proteins.

2.6. Inferring the Binding Sites. All binding sites were eval-
uated in response to the contact surface, H-bond donor/
accepter, enclosure, hydrophilic/hydrophobic score, and the
binding site size and volumes for the identified proteins, to
keep only the most druggable binding sites. -e result
showed that 19 druggable binding sites from 12 proteins
were evaluated as the most druggable. To determine the
biological activities of all binding sites, functional annotation
for all proteins was performed and grouped accordingly.-e
ratio of proteins belonging to identical functional group was
calculated. All binding sites were with bioactive ligand in
reference to complex structure from PDB.

2.7. Molecular Docking. All molecular docking studies were
performed with the Schrodinger Software. -e docking
method was as described. 210,070 compounds from SPECS
database (obtained in July 2019) were prepared for ligand-
protein docking. -e crystal structure (PDB ID: 2ZVN,
3BRT, and 3BRV) was used to build the energy grid, which
was generated at the centroid of the most druggable binding
sites. -e protocol constraints including QikProp and
Lipinski filter were employed to determine compounds with
suitable pharmacological properties. Glide HTVS scoring
function was tested to evaluate the binding affinity of
compounds, and further compounds were ranked by pre-
dicted scores. Compounds ranked at the top 0.1%, 0.1%, and
0.05% with good scoring were filtered with XP, accordingly.

All other parameters were set as default settings in the grid
generation and docking.

2.8. Novelty Test of Compounds. Compounds ranked at the
top 0.1% and 0.05% from docking were compared with
biologically active compounds from bioactive inhibitor of
CHEMBL1762621 from CHEMBL24. Generally, the com-
pound structures were converted to Canonical Smile string,
and transformed toMorgan fingerprints with the OpenBabel
node from Knime. -e novelty of compound was defined
with a Tanimoto similarity (Tc) score lower than 0.2.

3. Results

3.1. WGCNA Network Construction and Identification of
Disease-Related Modules. One of the obvious advantages is
that WGCNA clustered genes into coexpression module,
which served as a network-based target identifying method
on RNA-seq data, and it has been proved as an effective
application in bionetworks, capturing gene, and disease-
related traits with high sensitivity to low abundance without
losing much information [12]. Previous studies have shown
thatWGCNA provides important modules and pathways for
many diseases [13–15] and solved the problem in identifying
coding genes that play a key role in cancerous and neuro-
degenerative diseases as well [16, 17]. -e preliminary
purpose of this step is to identify ischemic stroke-specific
genes based on the adjacency network between gene
modules established by the method of WGCNA [18]. -is
finding may help in identification of disease-related
modules.

Gene expression profiles (GSE26887) were collected for
IS patients from public open-source database of GEO. A
total of 20 IS and 20 normal samples have been annotated
with references to the sequencing platforms of Affymetrix.
-e genomic data were used to perform weighted gene
correlation network analysis to identify disease-related gene
modules that are correlated with the disease features in
ischemic stroke (p< 0.001, FDR< 0.01, and |log2fold
change| (log2FC)> 1) (Figure 1). In total, 141 genes were
identified as disease-related genes in IS patient samples.

In this study, a total of 4838 genes were screened to
establish the network. After removing the deleted and ab-
normalities, the genes were screened for subsequent analysis.
-e network construction parameters were defined when the
soft threshold power is adjusted to 6 to reach the scale-free
topological index of 0.9 (Figure 1(a)). Linear recession of
scale-free topology to log10 of k showed a robust correlation
(Figure 1(b), R2 � 0.87). -erefore, the network is closer to
the real biological network state as the node degrees in the
biological network follow a power-law distribution [19].

-e heatmap shows the disease-gene adjacency matrix of
the modules. -e resulting gene tree and corresponding
module colors are shown in Figure 1.-ere were 12 ischemic
stroke (IS) disease features (age scale, sex, percentage of
hypertension, percentage of smoking history, percentage of
hypercholesterolemia, percentage of obesity, percentage of
diabetes mellitus, family history, total cholesterol,
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high-density lipoprotein (HDL) level, and infraction vol-
ume), and the Framingham score [20] was correlated with
the gene expression level with WGCNA to identify the IS-
specific genes (Figure 1). Our network was based on the
genomic data of over 4000 genes from 40 samples; the result
showed the turquoise module exhibited a correlation co-
efficient of 0.88 with the Framingham score calculated.-us,
the turquoise module was identified as the IS disease-related
module (p value �1.8e− 12). Using our approach, the genes
in the disease-related module were identified for selection of
ischemic stroke-related targets.

3.2. Identification of Ischemic Stroke-Specific Gene and
Disease-Related Targets. -e use of target identification in
present implementations among phenotypic screening in
complex disease is highly limiting. -e current study
proposes a strategy that utilizes genomic profiles from
ischemic stroke in phenotypic screening.-is process starts
through the detection of druggable pockets within sets of
disease-specific protein structures sourced from the Protein
Data Bank (PDB). We searched for translation products
encoded by the 141 disease-specific genes and clustered the
protein sequences with CD-HIT to eliminate similar se-
quences with threshold of 90%, so as to find the repre-
sentative disease-specific proteins by assigning cluster
centroid [21]. Druggable binding sites were predicted based
on the SiteMap program on the disease-specific protein
surface and further evaluated its druggability via Drug
Scoring and Site Scoring [22].

We look into the result of the disease-related module of
IS; 141 disease-related genes with elevated gene significance
(GS) and module membership (MM) were further identified
for subsequent disease-related targets identification. An
analysis from the 20,192 reference proteins based on Uni-
Prot/kB [23] identifiers resulted in 594 proteins that were
encoded by the disease-related genes. For every gene, the
study identified with protein products has at least one high-
resolution crystal structure by mining the Protein Data Bank

(PDB). A total of 594 unique protein chains with a minimum
of one crystal structures from the PDB mapped to the 141
disease-related genes.

-e set of 594 protein sequences that encoded the dis-
ease-specific genes were obtained from the UniProt data-
base. Subsequently the sequences were aligned to decide the
sequence similarity with the others. -e encoding proteins
the disease-related genes implicated in IS disease-specific
module were clustered with CD-HIT to acquire the cluster
centroid as representative structure with a threshold of 0.9.
Among the 594 previously identified disease-specific pro-
teins implicated in ischemic stroke, a total of 22 cluster
centroids were identified in the proteins. In total, 22 clusters
of the 596 proteins were identified and 22 proteins were
regarded as the disease-related proteins.

3.3. Annotation of Binding Sites of theDisease-RelatedTargets.
-e study used the three-dimensional structure of disease-
related protein for ischemic stroke to scan the surfaces for
potential binding sites through the SiteMap program. -is
program selects binding sites through imposition of a 3D
grid across the entirety of the protein, thus determining the
energies of van der Waals on every point in the grid (site
point). -rough linkage of site points across the protein
surface protected against the solvent, the program detects
probable binding sites within protein surfaces. All binding
sites detected in the program are evaluated for their
druggability (Drug score) and their ability to bind a ligand
(Site score). -e ability to bind a ligand reduces the effect of
hydrophilicity in highly polar and charged sites. Binding
sites that have with DrugScore and SiteScore of 0.8 are
perceived to be able to fit small molecule ligands. In contrast
DrugScore and SiteScore values that are closer to 0.8 are
perceived “difficult” to drug. On the other hand, binding
sites with DrugScore and SiteScore values that are closer to
1.1 are considered to be overly “druggable.” In the current
study, binding sites with DrugScore and SiteScore values of
0.9 or greater are selected for probing and binding sites with
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Figure 1: Construction of the weighted-gene correlation network. (a) Histogram and dot plot of the scale free topology scale of k of the
disease-related gene network. (b) Dendrogram plot of clustered disease-related modules with hierarchy tree view and colors. (c) Heatmap of
characteristic gene adjacency. -e color bars on the left and below indicate the modules for each row or column.
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DrugScore above 1.0 are considered to be druggable. In
summary, 19 pockets in 12 proteins were identified as
druggable binding pockets of the disease-related proteins.

To further validate the protein family of the disease-
related proteins, p-fam database with a hidden Markov
model was used to decide the protein families [24].-e result
indicated the 22 disease-related proteins were assigned into 3
major families including NEMO, gelsolin, and serpin
(Figure 2).-e top-ranked protein family of NEMOwith the
highest ratio of disease-related proteins was applied for
further compound-docking identification with the cocrys-
tallized structure of the disease-related proteins (PDB ID
2ZVN, 3BRT, and 3BRV).

3.4. Docking of Compounds from SPECSChemical Compound
Library. To identify small molecules that inhibit disease-
specific proteins with IS, a chemical compound library of
SPECS with approximately 210,000 compounds was docked
to the druggable binding sites identified on structures of
disease-specific protein (PDB id: 2ZVN, 3BRT, and 3BRV).
-e number of druggable binding sites with Drug Scoring
and Site Scoring better than a given cutoff of 1.0 and 0.9 of all
compounds in the library was used. In this work, scoring
cutoff corresponding to a computational binding free energy
lower than −6.5 kcal/mol was used. For compounds docked
to 2ZVN, 3BRT, and 3BRV. Approximately 30% of the
compounds were predicted to bind to the binding sites of
2ZVN, 14% of the docked compounds were predicted to
bind to 3BRT and 8%, and 3BRV in the HTVS mode of
docking (Figure 2). Less than 0.1% (238), 0.1% (230), and
0.05% (137) of the compounds were predicted to bind to
2ZVN, 3BRT, and 3BRV with a good scoring of binding free
energy (Figure 2), respectively.

Small molecules with a good scoring of predicted
binding free energy of ischemic stroke-related targets
(2ZVN, 3BRT, and 3BRV) were identified for more testing.
About 605 compounds were identified based on their pre-
diction to target across the three IKKB proteins on the
identified binding sites. -e average value across predicted
compounds for each target is about 200. -e top scoring
compounds were grouped based on hierarchy through
reference to chemical similarity. For every cluster, the
corresponding compounds were qualified for phenotypic
testing. Docking with Schrodinger software suite scoring
model was utilized in predicting the binding affinities for
every pair to evaluate the interactions between protein and
compound.

3.5. Novelty Analysis of Compounds to Targets. To further
investigate the novelty of the compounds, the pairwise
similarity between the tested compounds and bioactive
IKKB inhibitors in the CHEMBL24 was calculated based on
the Morgan fingerprints using the fingerprint similarity
node from Knime. -e Tanimoto coefficients (Tc), ranging
from 0 (complete dissimilarity) to 1 (identical), were
employed to compare the chemical similarity between each
molecule pairs [25]. A pair of molecules with chemical
dissimilarity have low Tc value close to 0, whereas identical

pairs possess a Tc value equal to 1. About 95.2%, 98.3%, and
100% of the docked compounds, found to be potent in-
hibitor of IKKB, were all less than 0.2. Hence, the novel
chemotypes identified from virtual screening were reflected
by their low Tc values and are expected to be promising
novel candidates for IKKB.

3.6. Biological Activities. -e three screened compounds
based on the molecular docking with 4KIK evaluated the
inhibition activities against IKKB with purchased Elisa kit.
CHEMBL1762621, a bioactive IKKB inhibitor was used as
control. -e preliminary in vitro assay indicated that of the
three selected inhibitors, 7378 displayed promising inhibi-
tion potency against IKKB. Compound SPECS230-7890 also
displayed comparable inhibition activity against IKKB in the
comparison with the known IKKB inhibitor
CHEMBL1762621. Moreover, compound 7378 showed
stronger inhibition against IKKB than CHEMBL1762621.
-is implies that our phenotypical screening approach may
be considerable in filtering novel compound with bioactivity.

3.7. Exploration of Molecular Binding Mode of Compounds.
To explore the interactions of compounds on IKKB, mo-
lecular docking with SP mode in the Schrodinger program
were performed. -e study then examined the binding
modes of compound for every target as predicted by the
docking scoring function. Every target was then classified
based on the binding site’s structural context through results
of SiteMap as well as the protein’s functional context. -e
binding modes of 7378 were at binding sites inside the
enzymes’ active sites. -ree binding sites were next to
predicted binding pockets of the ligand of IKKB.

Further, we prepared IKK-beta protein complex proteins
for the docking calculation. CHEMBL1762621 is an active
inhibitor for IKKB, and its IC50 for IKKB is submicromolar.
We chose CHEMBL1762621 as control molecules to explore
the mechanism responsible for the interactions between the
selected compounds and IKKB. We performed docking of
inhibitor CHEMBL1762621 to the X-ray crystallographic
structures of the stable IKKB protein (PDB ID 4KIK).
Similarly, 7378 and other 2 compounds were predicted to
bind to sites adjacent to the active sites on 4KIK. -e
compound was predicted to bind with a similar pattern at
the protein-ligand interfaces at binding pocket of 4KIK. In
our docking studies, 7378 had a similar docking position
against IKKB, providing the same result as
CHEMBL1762621 against the same receptor. -e predicted
binding energy in the docking studies for 7378 was stronger
than CHEMBL1762621 against IKKB (−7.182 kcal/mol). -e
binding energy of compound 7890 and 27964 was −7.06 and
−6.21 kcal/mol against IKKB, which implied that both
compounds possessed a stronger affinity for IKKB than
CHEMBL1762621 (−3.183 kcal/mol). Compared with the
bioactive inhibitor CHEMBL1762621, the compounds 7378,
SPECS230-7890, and SPECS230-27964 were stabilized in-
side the binding pocket of IKK-beta protein, resulting in
good affinity against IKK-beta. In the compound
CHEMBL1762621-IKKB complex, the hydrogen bonded to
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Figure 2: Filtering compounds from SPECS library to targets implicated in ischemic stroke by docking to pockets identified by SiteMap of
IS-specific druggable proteins. (b) Histogram showing number of compounds docked to predicted IS-specific targets. (c–e) Histogram plots
portraying the rate of compounds that are predicted to bind the IS-specific targets of 2ZVN, 3BRT, and 3BRV, respectively. (f ) Pangram of
filtered 605 compounds to IS-specific targets.
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the side chain . . . of Glu612 and Ser611, π − π stacking
interaction with . . . Additionally, the ligand was predicted to
form van der Waals interaction with residue. -ese inter-
actions were maintained from the docking to IKKB with
7378.

4. Discussion

Coronary artery diseases, such as ischemic stroke, exhibit
multiple phenotypes that include inflammation, athero-
sclerosis, blood coagulation, and platelet activation [2]. -e
phenotypes were largely impacted from gene perturbations
as well as their transcription products that work in asso-
ciation with several signaling pathways. All the numerous
targets promoting inflammation, atherosclerosis, blood
coagulation, and platelet activation in ischemic stroke (IS)
progression pose an impending problem to the progression
of small molecule therapeutic agents that cure the disease.
Today, the most popular strategy of drug discovery for
coronary artery disease is to establish minute molecules to
modulate functions in single targets. -e concept has
contributed to little novel therapeutic compounds that are
effective against complex cardiovascular disease like IS.
Nowadays, phenotypic screening is used in the discovery of
drug to find novel therapeutic compounds. Phenotypic
screening thus results in approval of several drugs, but the
limitation in diversity of chemical libraries as well as the
reliance on in vitro cell lines, coupled with curation of large
bioassays datasets has always led to poor activity, thus
yielding little efficacy among patients.

A data-based strategy combining protein-ligand, struc-
tural, and genomic interaction data in enriching chemical
libraries with molecular docking reveals the prospect of
hurdling the limits for phenotypic screening in facilitating
drug discovery within coronary artery disease. -e study
applied a screening strategy integrating voluminous or-
thogonal datasets, such as (i) ischemic stroke genomic data
derived from patient records at GEO, (ii) 3D structures of
proteins enabling the detection of druggable pockets with
sitemap in proteins implicated in ischemic stroke, and (iii)
the predicted protein-ligand interactions using docking
method. Particularly, the current approach first utilized data
expression from GEO to identify disease-related gene
modules with good scoring of gene significance and module
membership. -e PDB is successively mined to select
existing protein structures, which are encoded by the genes.
-e study used CD-HIT in clustering these proteins by its
sequences. Druggable pockets across the structures are
detected for use in structure-based screening that identifies
probable small molecule inhibitors. -e proteins that have
enrichments in the protein family (p-fam) for involvement
in protein-ligand engagements and contain druggable
pockets have uses in structure-based docking of a chemical
entity library of SPECS with over 210,000 compounds. -e
affinity scoring of protein-compound complex were grouped
to select the top ranked 0.1% molecules that bind to the IS-
specific proteins. -e resultant compounds are tested for

pairwise similarity with the bioactive drugs from CHEMBL
utilizing Tanimoto coefficient (Tc) scoring function by
comparing chemical descriptions like Morgan fingerprints,
and bioassays and molecular docking were performed to
explore the binding poses and protein-compound interac-
tion. -e current strategy poses inherent benefits compared
to conventional phenotypic screening because libraries with
enormous compounds have the potential for rapid en-
richment to identify small collections for candidates. -e
molecular docking was further performed to explore the
mode of action of compounds.

Molecular docking was further utilized in uncovering a
prospective approach for compound 7378. Protein function
annotation uncovered potential targets of 7378, including
IKKB. A specific target (IKKB) was one of the targets of 7378
that came out of the structure-based docking analysis. An
evaluation of the predicted binding mode shows that these
compounds can bind on the catalytic site in the structure. It
may be true that targets other than IKKB show direct
binding with 7378. Furthermore, IKKB is a key regulating
protein for signaling transduction that interacted in various
protein to protein engagements. Even though the study
confirmed the binding to IKKB, it failed to establish whether
the compound directly limits IKKB upstream or down-
stream signaling transductions. Still, the designing of the
compound was based on the selective binding across many
targets, and it is likely that target redirection or binding on
other targets will happen. Furthermore, technical experi-
ments beyond the context of the current study are necessary
in exploring the specific workings of the compound.

In the recent past, multiple signaling pathways associ-
ated with regulation of tumor have been confirmed to relate
to heart disease, including mTOR-Akt signaling pathway
[26], JAK-STAT signaling pathway [27], and NF-κ B (NF-κ
b) signaling pathway [28], which has a significant role in the
progression of tumors associated inflammatory response.
-ere is an association between the hyperactivation of NF-
kB within cells and cancer, inflammation, and other human
diseases [29].

-e nuclear factor κB (NF-κB) is localized within the
cytosol after complexion with IκBα. -e core elements of
NF-kB cascade may control the translocation and activation
of NF-kB transcription factor. Proinflammatory stimuli
phosphorylate the IKKβ subunit of IκBα kinase (IKK)
complex, thus causing its activation [30]. Activation of IKK
now phosphorylates IκBα results in its degradation and
consequent release of NF-κB, which is translocated to the
nucleus to work as a factor of transcription. IKKβ has a
significant role in ischemia-induced brain damage
[12, 31–38]. It further functions as a regulator of vascular
stability and is a therapeutic target for cancer and inflam-
matory ailments.-us, significant effort has been committed
to identification of minute molecules inhibiting IKKβ in the
treatment of ischemic stroke. Our screening method is
expected to produce selective multidrug lead compounds for
the development of treatments for complex diseases, such as
ischemic stroke.
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