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Geothermal hot springs are a natural setting to study microbial adaptation to a wide
range of temperatures reaching up to boiling. Temperature gradients lead to distinct
microbial communities that inhabit their optimum niches. We sampled three alkaline,
high temperature (80–100◦C) hot springs in Yellowstone and Iceland that had cooling
outflows and whose microbial communities had not been studied previously. The
microbial composition in sediments and mats was determined by DNA sequencing
of rRNA gene amplicons. Over three dozen phyla of Archaea and Bacteria were
identified, representing over 1700 distinct organisms. We observed a significant non-
linear reduction in the number of microbial taxa as the temperature increased from warm
(38◦C) to boiling. At high taxonomic levels, the community structure was similar between
the Yellowstone and Iceland hot springs. We identified potential endemism at the genus
level, especially in thermophilic phototrophs, which may have been potentially driven by
distinct environmental conditions and dispersal limitations.

Keywords: hot springs, thermophiles, microbial ecology, rRNA amplicons, biogeography

INTRODUCTION

Archaea and Bacteria inhabit nearly every environment on Earth, including many that are
inhospitable to multicellular life, such as hot springs. As geothermal water cools, outflowing from
the source, temperature, chemical and redox gradients form. Distinct microbial communities
occupy the various niches of such gradients, based on individual species adaptation to different
temperature and chemical optima (Stetter, 1999; Reysenbach and Shock, 2002). Hot springs around
the world have been used for decades as natural laboratories to study the effect of environmental
parameters on microbial evolution, diversity and physiology (Castenholz, 1969; Brock and Darland,
1970; Skirnisdottir et al., 2000; Purcell et al., 2007; Hamilton et al., 2012; Menzel et al., 2015; Alcorta
et al., 2018). Extreme temperature and pH values have been shown to have the largest contribution
in restricting microbial diversity, although the magnitude of their effects are dependent on the
hot spring and were also influenced by geochemistry and other environmental factors (Meyer-
Dombard et al., 2011; Hamilton et al., 2012; Cole et al., 2013; Wang et al., 2013; Sharp et al., 2014;
Chiriac et al., 2017; Merkel et al., 2017; Power et al., 2018; Tang et al., 2018; Zhang et al., 2018).

Hot springs have also been used to test hypotheses on factors and mechanisms that
lead to microbial diversification and biodiversity patterns (Ward and Cohan, 2005; Martiny
et al., 2006). The hypothesis that microbes in general have a high dispersal rate, that would
homogenize genetic variations that may arise as result of local ecological and evolutionary events,
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has been challenged by studies of microbes in geothermal
hot springs (Whitaker et al., 2003; Papke and Ward, 2004).
Because numerous thermophilic microbes that do not form
endospores do not survive for extended periods desiccated in
air (Castenholz, 1969; Beblo et al., 2009) their dispersal ability
over large geographic distances is limited. Therefore, while
microbial communities that inhabit geochemically similar hot
springs on different continents are expected to be physiologically
and taxonomically similar, some of the individual species may
evolve as endemic populations, similar to plants and animals
on distant islands. This has been demonstrated by comparing
thermophilic Synechococcus (Bacteria) and Sulfolobus (Archaea)
in hot springs from North America, Europe and Asia (Papke et al.,
2003; Whitaker et al., 2003; Becraft et al., 2020).

Here we studied the microbial diversity across temperature
gradients in three alkaline hot springs from Yellowstone
National Park (YNP) and Iceland for which there was no prior
microbial data available. We hypothesized that even though those
individual hot springs are geographically isolated, they would
share the same general microbial community composition at
high taxonomic levels (and potentially physiological activities) at
similar temperatures along the gradient. While multiple previous
studies identified clear effects of temperature on community
richness (Cole et al., 2013; Cuecas et al., 2014; Sharp et al., 2014;
Power et al., 2018) some studies on springs with temperatures
below 80◦C did not (Wang et al., 2013). Selecting hot spring
gradients that span a wide range of temperatures up to boiling,
enabled us to test the degree of diversity variation across
temperature intervals. At the same time, because of the large
geographical distance separating the hot springs in North
America from those in Iceland, we performed analyses for
potential genetic variation between shared taxa at equivalent
temperatures. As relatively few comparative studies of distant hot
springs around the world have previously been conducted, we
aimed to expand such microbial diversity comparisons and also
enable future integrative studies.

MATERIALS AND METHODS

Icelandic Hot Spring Samples
Microbial mats, sediments, and water samples were collected
on June 9, 2016 at a hot springs field in the village of
Flúðir, Iceland (GPS coordinates 64◦08′13′′ N 20◦18′34′′ W).
The main hot spring, Vaðmálahver (Figure 1), is alkaline (pH
∼8.5) and the source water is 98◦C (boiling). The outflow
of Vaðmálahver gradually cools and the water discharges in
a nearby river. Several hot spring sources from the same site
discharge in Hverahólmi, the oldest public swimming lagoon
in Iceland. The temperature in the main source as well as in
the outflow, sediments and in the microbial mats was measured
using a Fisherbrand Traceable Waterproof Thermometer (Fisher
Scientific cat no. 02-402-0) that had a stainless steel temperature
probe at the end of a long (10 ft) wire cable positioned either
manually or with a telescopic pole. The pH was measured
onsite using non-bleeding pH indicator strips (pH 5–10 range,
EMD Millipore) on source water and along the outflow. Water

and sediment gravel (approximately 90% water-10% gravel by
volume) from the main source were collected for geochemical
analysis using a stainless-steel cup (500 ml) at the end of a
telescopic pole and immediately poured into sterile 100 mL
Pyrex glass bottles, capped with no air headspace and secured
using butyl rubber stoppers and aluminum crimps. The samples
were left to cool naturally to room temperature and then stored
and transported cold. A sulfide test done on site using lead
acetate strips (Sigma-Aldrich) was negative (limit of detection
3–5 mg/l). Submerged microbial mats and sediments (∼1–
2 grams) were collected using sterile syringes and stainless-steel
spatulas and placed into plastic tubes containing ceramic beads
and 750 µl XpeditionTM Lysis/Stabilization Solution (Zymo
Research, Irvine, CA) and lysed by bead-beating for one minute
with a battery-operated tube shaker. That ensured cellular lysis,
inactivation of degradative enzymes and stabilization of the DNA
until further processing. A total of seven different spots were
sampled from and around the Vaðmálahver spring, ranging
from 98 to 47◦C (Supplementary Figure S1 and Table 1).
The samples in the outflow were sequentially collected going
upstream to higher temperatures, all the way to the source. This
is an important consideration in sampling hot spring outflows,
as collecting going downstream in the runoff would lead to
contamination of lower temperature samples with sediments
and mats disturbed upward. The main source of an adjacent
spring (temperature of 92◦C) that flows into Hverahólmi was
also collected, as well as mat and water samples from the lagoon
(38◦C). The microbial community from the lagoon (250 ml
water sample) was collected on a Millipore Sterivex 0.2 mm
syringe filter and preserved by adding Xpedition solution into
the filter cartridge and then capping. A microbial mat sample was
collected from a submerged rock in the lagoon and processed as
were the other mat samples. With the exception of the lagoon
water (planktonic sample), all other samples that we collected
for microbiological characterization from all the hot springs were
mats and gravel/sediment. After reaching the laboratory the lysed
samples were stored at −20◦C until DNA extraction or at 4◦C
(samples for geochemical analyses).

The second location in Iceland was also an alkaline spring
(pH 8.0) at Hurðarbak (Figure 1), in the Borgarfjörður region
[GPS coordinates 64◦41′18′′ N, 21◦24′10′′ W], approximately
80 km NW of Flúðir. Samples were collected on June 16,
2016. Five sampling spots were selected, with temperatures
ranging from 99–102◦C (the source spring) to 46◦C in the
outflow channel (Supplementary Figure S2 and Table 1). For
geochemical analysis a water sample was collected from the
source spring. Sample collection and processing were performed
as described above.

Yellowstone National Park Hot Spring
Samples
Microbial mats, sediment, and water samples were collected on
December 31, 2016 at Mirror Pool, an alkaline (pH 8.0) thermal
feature from the Upper Geyser Basin, in the Cascades Group
[GPS coordinates 44◦28′59′′ N, 110◦51′01′′ W] (Figure 1). Nine
sites were sampled along the main pool and gradient outflow
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FIGURE 1 | Overview of sampled thermal features. (A) Vaðmálahver, Flúðir (Iceland). (B) Hurðarbak, Borgarfjörður (Iceland). (C) Mirror Pool, Yellowstone National
Park (United States). Actual sample collection points are presented in the Supplementary Figures S1–S3.

of the spring, where temperatures ranged between 83◦C–52◦C
(Supplementary Figure S3 and Table 1). Because the outflow
of the pool was larger than for the hot springs in Iceland it was
feasible to identify spots with the same temperature accessible
for collection using spatulas. Therefore, three adjacent replicate
samples (∼1 cm3 each) separated by less than 10 centimeters were
collected for each temperature value, to determine the degree
of diversity fluctuation across small scales. From the main pool,

the collected samples were more distant and were scooped out
from the stainless-steel canister. A water sample for geochemical
analysis was also collected from the main pool. The samples were
collected and processed as already described.

Water Chemistry Analysis
The chemical composition of the hot spring source water
samples was performed at The University of Tennessee Knoxville
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TABLE 1 | Environmental samples used in the study. Except for FB2.Pk, which
was a water sample, all others were mats/sediment.

SampleID Location Thermal Feature Temperature, oC Replicate

MP1A YNP MirrorPool 52 1

MP1B YNP MirrorPool 52 2

MP1C YNP MirrorPool 52 3

MP2A YNP MirrorPool 58.6 1

MP2B YNP MirrorPool 58.6 2

MP2C YNP MirrorPool 58.6 3

MP3A YNP MirrorPool 65.5 1

MP3B YNP MirrorPool 65.5 2

MP3C YNP MirrorPool 65.5 3

MP4A YNP MirrorPool 69 1

MP4B YNP MirrorPool 69 2

MP4C YNP MirrorPool 69 3

MP5A YNP MirrorPool 72.5 1

MP5B YNP MirrorPool 72.5 2

MP5C YNP MirrorPool 72.5 3

MP6A YNP MirrorPool 78 1

MP6B* YNP MirrorPool 78 2

MP6C YNP MirrorPool 78 3

MP6D YNP MirrorPool 83 1

FV2 Iceland Vaðmálahver 87 1

FB1 Iceland Hverahólmi sr. 92 1

FB2.Pk Iceland Hverahólmi 38 1

FB3.Mat Iceland Hverahólmi 38 1

FV1 Iceland Vaðmálahver 98 1

FV3 Iceland Vaðmálahver 72 1

FV4 Iceland Vaðmálahver 68 1

FV5 Iceland Vaðmálahver 67 1

FV6 Iceland Vaðmálahver 63 1

FV7 Iceland Vaðmálahver 47 1

HD1 Iceland Hurðarbak 100 1

HD2 Iceland Hurðarbak 81 1

HD3 Iceland Hurðarbak 67 1

HD4 Iceland Hurðarbak 61.4 1

HD5 Iceland Hurðarbak 45.5 1

MP6B∗ did not yield sufficient sequences.

Water Quality Core Facility. Carbon and nitrogen content were
determined by thermal combustion and infrared detection with a
Shimadzu carbon/nitrogen analyzer. The concentration of metals
was measured by inductively coupled argon plasma (ICP) optical
emission spectrometry using a Thermo-Scientific iCAP 7400 ICP
spectrometer. Ions were measured by ion chromatography with
a Thermo-Scientific R©/Dionex ICS-2100 (anions) and ICS-1100
(cations), with background suppression for low detection limits.

DNA Extraction
Total genomic DNA from environmental samples was isolated
using the ZR Soil Microbe DNA Kit (Zymo Research) following
the manufacturer’s protocol. To isolate DNA from the high
temperature sediment samples collected in the larger volume
bottles, 25 mL of those samples subjected to centrifugation
(12,000 × g for 20 min), the water carefully decanted, and the

pellet suspended and lysed using the Zymo Lysis/Stabilization
Solution following by processing as above. The concentration of
DNA was determined using a Qubit dsDNA HS assay kit and
fluorometer (Thermo Fisher Scientific).

Microbial SSU rRNA Gene Amplicon
Sequencing
The V4 hypervariable region of the small subunit ribosomal
RNA gene (SSU rRNA) was amplified using universal
bacterial/archaeal 515F and 806R primers (Bates et al.,
2011) fused to Illumina sequencing adapters, following
the procedure developed by Lundberg et al. (Lundberg
et al., 2013). To increase the coverage of archaeal groups
not recognized effectively by the standard 515F and
modified 806R primers (5′ GTGCCAGCMGCCGCGGTAA
and 5′ GGACTACHVGGGTWTCTAA, respectively), we
supplemented the reaction with further modified versions
that included 20% 515FCren (5′ GTGKCAGCMGCCGCGGT
AA, for Crenarchaeota), 5% 515FNano (5′ GTGGCAGYCG
CCRCGGKAA, for Nanoarchaeota) and 5% 805RNano (5′
GGAMTACHGGGGTCTCTAAT, for Nanoarchaeota), similar to
what was described in Liang et al. (2018). 12-nucleotide barcode
sequences were incorporated into the second stage amplification
reaction to enable sample multiplexing. The final amplicons
were pooled, purified using Agencourt AMPure XP bead and
quantified using Qubit. A diluted purified pooled amplicon
sample (9 pM), containing 20% phiX DNA was denatured
and sequenced (2 × 250 nt) on an Illumina MiSeq instrument
(Illumina Inc., San Diego, CA) using a v2 500 cycle kit, according
to manufacturer’s protocol.

Amplicon Sequence Analyses
The amplicon primer regions were trimmed from the raw
FASTQ sequence files using cutadapt (Martin, 2016). The
sequence reads were then de-multiplexed based on barcode
sequences using the QIIME (Caporaso et al., 2010) python
script split_libraries_fastq.py followed by splitting by individual
samples using split_sequence_file_on_sample_ids.py. For one
of the samples (MP6B) the number of sequences was very
low (<500 sequences) and that sample was removed from
analyses. Demultiplexed FASTQ paired reads were imported into
QIIME2 v2019.7 (Bolyen et al., 2019) on a desktop computer.
The reads were paired with VSEARCH (Rognes et al., 2016),
quality filtered and denoised using Deblur (Amir et al., 2017).
Resulting amplicon sequence variants (ASV) were aligned and
used to generate a phylogenetic tree using the align-to-tree-mafft-
fasttree pipeline from the q2-phylogeny plugin. To calculate
alpha−diversity metrics [observed OTUs, Pielou’s eveness,
Shannon’s index and Faith’s Phylogenetic Diversity (Faith, 1992)]
beta diversity metrics [weighted UniFrac (Lozupone et al., 2007)
and Bray−Curtis dissimilarity], and input the resulting matrices
into principle coordinate analyses (PCoA) and visualization plots,
we used the q2−diversity workflow, with rarefaction to 5000
sequences per sample (based on plateauing of the observed
diversity and retaining of all samples). A general temperature
classification of samples was generated by assigning each sample
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to groups separated by 5oC (from 40oC to 100oC). Environmental
parameters that could impact alpha diversity were tested using
Spearman correlation and analysis of variance (ANOVA), using
q2 diversity alpha-correlation and q2 longitudinal (Bokulich
et al., 2018b). To test for factors that contribute to microbial
diversity differences between the samples (actual temperature,
general temperature, location, hot spring) we used multi-way
permutational multivariate analysis of variance (PERMANOVA)
(q2 diversity adonis tests), comparing the variance explained
by the various parameters singly or in combinations. Pairwise
tests within metadata categories were performed by one-way
PERMANOVA using the q2 diversity beta-group-significance.

To assign taxonomy to ASVs we used the
q2−feature−classifier (Bokulich et al., 2018a) (classify−sklearn)
against the Silva-132-99 SSU rRNA database (Pruesse et al.,
2007). A table with the taxonomic classification of the
reads for every sample is provided as a supplementary file
(Supplementary Table S1). The raw FASTQ files are available in
the NCBI SRA (accession numbers SRR11066910–SRR11066942,
Bioproject PRJNA605860).

Phylogenetic Analyses
Phylogenetic trees to compare selected Yellowstone and Iceland
ASVs with related organisms from GenBank were generated
using PhyML in the software package Geneious1. BLASTN search
algorithm was used to identify relatives of the Yellowstone
and Iceland bacteria and archaea in public sequence databases
followed by the phylogenetic reconstructions.

RESULTS AND DISCUSSION

Geochemical Comparisons of the Three
Hot Springs
The three hot springs were selected because of their high
temperature (80–100◦C at the source), similarities in pH and the
presence of discharge channels with gradual cooling that harbor
distinct microbial mats. Mirror Pool is a large (∼15× 20 meters)
non-erupting deep pool, in the Upper Geyser Basin thermal
region (Cascade Group complex) of Yellowstone National Park.
Abundant silica deposits are present both in the pool and on
its edges and the outflow channel. The temperature and pH
we recorded are similar to those reported in the YNP Research
Coordination Network database2, 76–80◦C and pH 8, measured
in 1999 although we could not find previous geochemical data.
Similar to other alkaline-siliceous chloride-type springs in that
thermal region (Fournier, 1989), Mirror Pool has high levels of
chloride, sodium, silica and arsenic but is low on sulfur or sulfate,
calcium and magnesium (Table 2). While the concentration of
dissolved sulfide was below the limit of detection using lead
acetate test strips (∼5 mg/l), other hot springs in the Cascade
Group, which share the same overall chemistry, were shown to
be very low in sulfide (0.02 mg/l) (Thompson and DeMonge,
1996). Its relatively low flow rate and close proximity to the forest

1www.geneious.com
2http://rcn.montana.edu/Features/Detail.aspx?id=8999

TABLE 2 | Chemical composition of hot spring water samples.

Mirror Pool Vaðmálahver Hurðarbak

TC 101.6 24.39 11.94

TIC 4.84 3.01 2.24

TOC 96.79 21.38 9.71

Cl 271.79 24.89 32.01

NO3 0.19 0.06 0.07

SO4 13.78 54.97 57.13

HPO4 0.1 0.13 0.15

F 19.34 1.14 1.84

Na 400.09 78.23 69.87

K 10.3 0.73 0.83

Mg 0.02 0.11 0.08

Ca 0.75 5.89 4.26

Al 0.33 0.05 0.05

Cu 0 0 0.01

Fe 0.04 0.15 0.17

Si 119.55 31.38 20.23

S 4.69 25.03 23.01

Ni 0.03 0.01 0

Pb 0.18 0.04 0.03

Cr 0.01 0.01 0.01

Be 0.01 0 0

As 1.32 0.01 0.02

Sb 0.03 0 0

Y 0.01 0.01 0.01

All values in mg/l. TC, total carbon; TIC, total inorganic carbon; TOC, total organic
carbon. Mn, Zn, Cd, Co, Ba, Se, Tl, Ag: not detected (<0.01 mg/l).

line are probably linked to the relatively high dissolved organic
carbon (∼100 mg/l). Unlike Mirror Pool, the two sampled hot
springs in Iceland were much smaller (<2 m in diameter), boiling
and actively discharging, likely explaining their lower dissolved
organic carbon content (10–20 mg/l). The overall mineral content
of both springs was also lower than that of Mirror Pool, although
they had higher levels of sulfate, calcium, iron and sulfide. Sulfide
concentration is also higher in the two Icelandic hot springs
(1.34 mg/l in Vaðmálahver and 1.2 mg/l at Hurðarbak), based on
published measurements (Arnorsson and Gunnlaugsson, 1983;
Ali, 1997). We could not find matched data in the literature on
other dissolved gasses that we could not measure onsite (O2, H2,
CO2, CO, CH4). We recognize therefore that, as the water flows
from the source and cools, there may be changes in the water
chemistry that we have not accounted for, such as dissolved gases,
precipitation of minerals, microbial metabolic products.

Temperature Differentially Influences the
Microbial Alpha Diversity
The combined sequencing of the SSU rRNA amplicons from
all samples resulted in over 5.7 million sequences. After de-
multiplexing, quality-based filtering, denoising, chimera and
singleton removal, the number of sequences for individual
samples ranged from 5,315 to 332,920, with an average of
∼115,000 sequences per sample and a total of 1729 amplicon
sequence variants (ASVs) (unique taxa). Because the type of
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clustering algorithm and selection of similarity level impacts the
number of traditional operational taxonomic units (OTUs), we
only used ASVs for calculation of diversity indices. Depending on
the degree of sequence variability in the V4 region for the various
taxa, we expect ASVs to provide resolution to genera, species and
below, based on comparisons of know species of Archaea and
Bacteria [e.g (Shakya et al., 2013)].

For studying the microbial diversity within each sample (alpha
diversity) we used both direct counts of the number of ASVs as
well as metrics that take into account the evenness of diversity
(Pielou’s evenness), abundance and distribution of the taxa
(Shannon’s index) or the phylogenetic diversity (Faith’s diversity).
In Mirror Pool, where we were able to take spatially separated
samples at the same temperature, there were differences in alpha
diversity between environmental replicates, with the coefficient
of variation ranging from 0.2%–12%. The higher deviations
were for high temperature samples. Those differences were,
however, minor compared to the temperature-linked differences.
At the Icelandic hot springs, temperature had the largest impact
and was inversely correlated with the number of detected taxa
(ASVs) and phylogenetic diversity (Spearman p = 0.006 and
p = 0.000, respectively) (Figure 2). The decline in number and
diversity of microbial taxa with temperature does not appear
to be linear and is steeper in the ranges corresponding to
the transition between mesophily and thermophily (35–45oC)
and between thermophily and hyperthermophily (>80◦C). Such
non-linear relationships have been previously reported for hot
spring communities in Canada, New Zealand, United States
(Nevada) and Thailand where wide temperature ranges were
present within individual thermal systems (Cole et al., 2013;
Cuecas et al., 2014; Sharp et al., 2014). ANOVA tests of potential
multiple effects on the alpha diversity confirmed that, while
the temperature value had the largest influence (P-Value from
F-Ratio = 3.4e-05), the individual thermal feature was significant
too (P-Value from F-Ratio = 3.6e-03, passing pairwise T-tests
with BH-FDR). In Mirror Pool, where the available temperature
range was narrower, its effect on alpha diversity was minor. When
only strict thermophilic temperature values were analyzed for the
Icelandic features as well (50–80◦C, the range sampled in Mirror
Pool), the temperature effect on alpha diversity was absent, which
may explain reports of no temperature effect on species richness
(Wang et al., 2013). Also, when analyzing the temperature
distribution of non-phylogenetic alpha diversity evenness indices
(Pielou’s, Shannon’s), we observed that samples spanning the 67–
80◦C were sharply higher relative to what appears to be relatively
linear distribution across the other two temperature ranges
(Figure 2). While we cannot provide a definitive explanation for
these differences, one possibility is that in the 67–80◦C range
there are major shifts in the microbial communities, with the
stratified microbial mats dominated by photosynthetic groups
(Cyanobacteria, Chloroflexi) being replaced by various extreme
thermophilic taxa (Thermi, Aquificae, Crenarchaeota) that are
not spatially organized, with no dominating members. As the
temperature further increases, the number of organisms that
can survive decreases and certain taxa dominate (Pyrobaculum,
Ignisphaera, Thermocrinis), leading to a reduced evenness. We
further investigated this by calculating the Shannon’s index at

different sequence similarity clustering levels (between 97% and
75% similarity levels). Interestingly, the effect is maintained even
at distances corresponding to family order levels OTUs (∼90%
level OTUs), and the diversity index begins to somewhat flatten
for the thermophilic range in the class-phylum categories (80-
75% level OTUs) but is followed by the abrupt drop at the
extreme temperatures (>80◦C). This suggests that the non-linear
distribution of Shannon’s evenness index is linked to major shifts
on how the communities are structured across the temperature
gradient. These results and observations highlight the importance
of sampling multiple temperature ranges in hot springs and the
choice of diversity indices in studying such environments.

Temperature and Biogeography Effects
on Beta Diversity
While alpha diversity analyses revealed the microbial community
structure within individual samples collected across temperatures
and locations, it does not enable a direct comparison of
communities between samples (beta diversity) (Lozupone and
Knight, 2008). Because some individual ASVs may represent
closely related ecotypes, species or genera, we also aimed to
compare the community structure across samples, temperature
and locations taking into account taxonomic (and potential
physiological) relatedness of the various organisms. We therefore
used weighted UniFrac as a quantitative beta diversity metric
that incorporates both the phylogenetic distance between ASVs
and their relative abundance (Lozupone and Knight, 2005,
2008). The multi-dimensional UniFrac distance matrices were
condensed through a principal coordinate analysis (PCoA) into
a three-dimensional space, in which the microbial diversity
characteristics of each sample is represented by a discrete data
point. Communities that have similar types and abundance of
species are closer to each other in that space than those that
consist of different types of microbes. The PCoA plot shows
that most samples from close temperature values cluster together
(are similar) regardless of the hot spring or location (Iceland
or Yellowstone) (Figure 3), with most of the variation (∼77%)
explained in the three main coordinates. A test of the combined
effect of temperature and location (which includes underlying
chemical differences) to beta diversity revealed over 80% of the
variation explained by those two factors (ADONIS R2 = 0.877,
p = 0.001). Temperature was, however, the most important
driving factor (PERMANOVA pseudoF = 10.4, p = 0.001,
ANOSIM R = 0.77, p = 0.001) (Figure 4), which is also
evident based on the PCoA plot (Figure 3), where samples
are distributed primarily by temperature rather than location
or thermal feature. Most sample replicates from Yellowstone
grouped tightly together, except for some at higher temperatures
that display a larger dissimilarity. Therefore, even though there
are distinct differences in some of the measured chemical
composition of the springs at the source, these appear to be
secondary factors in shaping of the microbial communities
when we compared these alkaline hot springs. Shaping of
the microbial communities by other physical and chemical
factors have nevertheless been documented in comparisons of
thermal environments, for example hydrogen concentration
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FIGURE 2 | Microbial alpha diversity versus temperature. (A) Scatterplots of various diversity indices versus temperature. Linear or polynomial regression and
goodness of fit are shown. For the Shannon’s index, the effect of excluding the upper cluster values (circled) on linear regression fit is shown. (B) Scatterplots of
diversity indices vs. temperature after excluding the Cyanobacteria and Chloroflexi sequences.

(Spear et al., 2005) pH (Power et al., 2018; Colman et al., 2019)
and minerals (Mathur et al., 2007). We also recognize that,
even though temperature was the dominant factor measured
here, changes in temperature along the outflows may be driving
specific changes in water chemistry that we did not measure. Such
temperature-associated changes also could impact the microbial
communities, but we cannot distinguish them here. For example,
it has been shown that in acidic geothermal springs, water
cooling results in precipitation of metals, changes in dissolved
gasses, generating chemical energy gradients that in turn shape
the microbial communities along the gradient (Macur et al.,
2004). To our knowledge, such chemical gradients have not been
measured in thermal alkaline outflows.

Microbial Taxonomy Across Temperature
Gradients and Hot Springs
The 1729 unique sequence variants were assigned to 182 genera,
corresponding to 5 phyla of Archaea (9 classes) and 40 phyla
of Bacteria (86 classes) (Figures 5, 6). The temperature gradient
that forms in the three distinct hot spring systems creates distinct
niches where organisms that are best adapted to those conditions
thrive. In all those systems, such niches can be distinguished
even macroscopically, based on the morphology and color of

the mats (Supplementary Figures S1–S3). The deep amplicon
sequencing that we achieved revealed the presence and relative
abundance of numerous groups of organisms including the rare
taxa. At the lowest temperature (38◦C), the water and microbial
mats of the Hverahólmi lagoon are dominated by a large
diversity of mesophilic and mildly thermophilic heterotrophic
as well as photosynthetic bacteria, including Alpha and
Betaproteobacteria (Roseomonas, Rhodobacter, Tepidimonas),
Bacteroidetes (Chitinophaga, Saprospira) and Cyanobacteria
(Cyanobium, Leptolyngbya) (Figure 6). The overall diversity is
slightly higher in the mat than in the water column although
the overall community structure and taxonomic composition
are the same (Figures 2, 3). Some differences may, however, be
due to the difference in collection and processing between the
two sample types (filtration versus complete mat biomass). As
the lagoon receives a constant stream of high temperature hot
spring water, we also detected numerous extreme thermophilic
and hyperthermophilic archaea and bacteria in the lagoon
(e.g., Pyrobaculum, Aquificae, Thermi) at <0.1% of total
sequences. While those organisms increase the alpha diversity,
the lagoon being the most diverse of the sampled niches,
at tens of degrees below their optimum they most likely
represent a physiologically inactive, non-dividing component of
the community (Stetter, 2006). Some, depending on their capacity
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FIGURE 3 | Representation of hot springs microbial beta diversity through EMPeror plots of the principal coordinates analysis output for weighted UniFrac distances.

to survive low temperatures and exposure to oxygen, may have
the potential to colonize other hot springs by different dispersal
mechanisms (water, wind).

The thermal areas (50–80◦C) of all three hot springs share a
variety of common organisms including Armatimonadetes,
Chlorobi, Planctomycetes at the lower range, and
Thaumarchaeota, Aquificae (Thermocrinis) and Thermi, at
the upper temperature range. There are though some specific
differences, including in the distribution of Aigarchaeota

(Crenarchaeota). In Mirror Pool we observed two distinct types
of Aigarchaeota. The most abundant phylotype is related to
Candidatus Caldiarchaeaum subterraneum, an uncultured, likely
heterotrophic archaeon identified in subsurface geothermal
aquifers (Nunoura et al., 2011; Takami et al., 2015). The Mirror
Pool lineage was also identified in other Yellowstone alkaline
hot springs (Queens Laundry) (Meyer-Dombard et al., 2011)
and, based on relative abundance, appears to prefer temperatures
around 70◦C although was present also at lower temperatures.
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FIGURE 4 | Weighted UniFrac location-temperature group significance plot. Distances are relative to the lowest temperature group (Flúðir Hverahólmi, Iceland,
40◦C). PERMANOVA F-test significance p = 0.001. IS, Iceland.

The Yellowstone lineage is absent in the two Icelandic hot springs
that we sampled, which, however, hosts a related archaeon, more
closely related to Candidatus Caldiarchaeum subterraneum,
over a similar temperature range (Supplementary Table S1,
Figure S5). The other major group of Aigarchaeota was
represented by several phylotypes related to the more recently
described Candidatus Calditenuis aerorheumensis from Octopus
Spring (Yellowstone), an organism proposed to potentially
chemoautotrophically use oxygen as a terminal electron acceptor
(Beam et al., 2016). Related lineages have been found in a variety
of other alkaline and circumneutral hot spring including the
Great Boiling Spring in Nevada (Rinke et al., 2013) Belcher
Spring (Yellowstone) (Colman et al., 2015) Iceland (Mirete
et al., 2011) and even in a shallow marine hydrothermal vent
from Papua New Guinea (GenBank EF100632, Meyer-Dombard
D.R., unpublished) (Supplementary Figure S5). In Mirror
Pool these organisms inhabit the higher temperature range,
unlike the Caldiarchaeum-type, presumably as the very low
sulfide level allows sufficient dissolved oxygen. In the two
Icelandic hot springs the Calditenuis-type lineages were present
at much lower relative abundance. We could not test redox
levels in the different niches of the hot spring runoff therefore
these potential associations to oxygen and sulfide content
remain speculative.

The dominant community members between 50–65◦C
were oxygenic and anoxygenic chlorophototrophs (diverse
Cyanobacteria, Chloroflexi and Chloracidobacterium), forming
characteristic green, orange and red mats depending on the
site and temperature, as it has been shown in many other hot
springs around the world (Miller et al., 2009; Klatt et al., 2013;

Wang et al., 2013; Cuecas et al., 2014; Thiel et al., 2016). There
were, however, some notable differences between Mirror Pool
and the Icelandic features (Figure 6). Synechococcus/Leptococcus,
an abundant member of the mats in Yellowstone, as well as
Gloeomargarita, were absent in the two Icelandic hot springs.
The striking absence of Synechococcus in Icelandic hot springs
has been documented decades ago along with an overall
lower diversity of thermophilic Cyanobacteria (Castenholz, 1969;
Hreggvidsson et al., 2017). Two potential explanations have been
proposed. As the light levels in Iceland severely decrease during
the winter months, that could limit the survival of phototrophs
that require a higher energy level. In addition, during the
winter months at high latitudes, the temperature gradient
changes, which would require upstream outflow colonization,
a double challenge with the low light levels (Castenholz,
1969). Alternatively, it has been hypothesized that thermophilic
Synechococcus and other species that are sensitive to freezing
and desiccation are less likely to survive the time required for
dispersal from sources in North America or Eurasia (Miller and
Castenholz, 2000). As it has been well documented that some
Cyanobacteria are highly sensitive to sulfide (Castenholz, 1977;
Cohen et al., 1986; Skirnisdottir et al., 2000; Hamilton et al.,
2012) that may also contribute to differences between the springs,
as the levels in Vaðmálahver and Hurðarbak reach those toxic
levels (∼1 mg/l). The Icelandic mats harbored, however, diverse
other Cyanobacteria, primarily at 50◦C and below, including
Chlorogloeopsis and Leptolyngbya. We also observed important
differences across Chloroflexi between the thermal regions.
Chloroflexi are more tolerable to higher levels of sulfide and
can detoxify it using a type II sulfide:quinone oxidoreductase or,
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FIGURE 5 | Microbial diversity (phylum level) at the three thermal springs depending on general temperature (40–100◦C). Circle size indicates the inferred relative
abundance, based on amplicon data (in %).
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FIGURE 6 | Most abundant genera/families at the three thermal springs depending on general temperature. Circle size indicates the inferred relative abundance
based on amplicon data (in %).
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FIGURE 7 | Neighbor joining trees (JC corrected distances) of potential endemic amplicon sequence variants (ASVs) from Iceland and Yelowstone (Mirror Pool).
Numbers on branch tips indicate abundance across the entire dataset. Reference sequences and accession numbers from public rRNA databases and location
were included. The numbers at nodes indicate bootstrap support. Scale bar indicates inferred number of substitutions per site.

some species, can use it as an electron donor for photoautotrophy
(Bryant et al., 2012). The Mirror Pool mats are dominated by
Roseiflexus, while the Icelandic mats are primarily composed
of Chloroflexus. Mats with different abundance of Chloroflexus
versus Roseiflexus have been found across hot springs in YNP
and, because they were not correlated with the concentration
of sulfide, unidentified environmental factors appear to drive
those differences (Klatt et al., 2013). There are complex
physiological interactions between photosynthetic autotrophs
and heterotrophs in the mats as well as microbial partitioning
driven by light levels, chemical gradients and competition
(Ramsing et al., 2000; Ward and Cohan, 2005; Klatt et al.,
2013; Cuecas et al., 2014; Nowack et al., 2015). Distinguishing
the contribution of biogeography versus geochemistry in the
composition of Icelandic versus Yellowstone mats clearly requires
additional studies.

Above 70–73◦C, the upper temperature limit for
photosynthesis, the microbial mats disappeared sharply,
and all communities were composed primarily of Archaea,
Aquificae, Armatimonadetes and Thermi, as well as a variety
of other phyla including uncultured lineages (Figure 5). As
the highest temperature in Mirror Spring was 82◦C, we could
not directly compare strict hyperthermophilic communities
(>85◦C) between the Yellowstone and Iceland springs. Both
sources of Hurðarbak and Vaðmálahver springs (90–100◦C)
were dominated by the strictly hyperthermophilic Crenarchaeota
Pyrobaculum and Ignisphaera but also contained low levels
of Nanoarchaeota. Pyrobaculum (ord. Thermoproteales) are
predominantly anaerobes, with one species isolated form Iceland
(P. islandicus) being a strict anaerobe, facultative lithoautotrophs
(Huber et al., 2006). That may explain why they are abundant
in the more reduced, sulfate rich and organic poor Hurðarbak
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and Vaðmálahver. Ignisphaera, an anaerobic heterotroph, a
less characterized member of the Desulfurococcales, with one
species isolated from New Zealand being very sensitive to
sodium chloride (Niederberger et al., 2006) which may explain
its absence from Mirror Pool. Hurðarbak also had a significant
population of Thermocrinis, an autotrophic member of the
Aquificae that dominated the community at 80 ◦C but was a
minor component in both Vaðmálahver and Mirror Pool. As
Thermocrinis have been isolated both from YNP and Iceland
(Huber et al., 1998; Eder and Huber, 2002), it is not clear what
causes their differential relative abundance between the springs
we studied. Another chemical characteristic that we cannot
clearly link to a microbial differential feature is the significantly
more abundant organic carbon in Mirror Pool, although that
may result in overall higher microbial productivity. The relatively
few studies that have correlated chemical gradients of springs
with microbial composition and productivity revealed limiting
energetic and nutritional factors that impact the communities in
different microenvironments (Macur et al., 2004; Colman et al.,
2016; Lindsay et al., 2018; Havig and Hamilton, 2019). Future
combined analyses of datasets generated from multiple studies
and locations should better define environmental parameters that
shape the composition of those communities and the abundance
of specific organisms.

Potential Endemism at Icelandic and
Yellowstone Springs
Inspection of unique sequence variants revealed potential
lineages that may be endemic to hot springs in Iceland
or Yellowstone. Geographic separation of thermophilic
communities or Archaea and Cyanobacteria between multiple
sites across three continents has previously been shown to
result in divergence of local populations that would ultimately
lead to speciation (Castenholz, 1969; Papke et al., 2003;
Whitaker et al., 2003). Therefore, phylogenetic analysis was
used to characterize several closely related sequences between
Icelandic and Yellowstone hot springs, to test whether short
amplicon sequences many provide sufficient resolution. The
included taxa were Archaea, Chloroflexi and Cyanobacteria
lineages (Figure 7), taxa that have previously analyzed in
the context of biogeography. The genetic distance between
those sequences suggests indeed they represent related but
distinct species or subspecies. Some of the sequences from
Mirror Pool are very closely related or identical to prior
sequences reported from other Yellowstone springs. Because
we did not find close homologs from Icelandic hot springs
in rRNA sequence databases, the analyzed Vaðmálahver
and Hurðarbak amplicons had their closest relatives in
hot springs from China. The analysis of the Aigarchaeota
phylotypes (Supplementary Figure S5), discussed in the
previous section, may also point to endemism, potentially
driven by a combination of environmental factors (temperature
and redox levels) and geographic separation. Across the
entire dataset, a large fraction of ASVs were specific to
either Yellowstone or Iceland. Specifically, out of the 654
ASVs with at least 100 sequences between all samples

(>0.003% of the 3.8 million sequences assigned to ASVs),
56% were only identified in the Icelandic springs, 37% only
in Yellowstone, while only 7% of the ASVs were common
between YNP and Iceland. Some of unique ASVs were
high abundance taxa (e.g., a Ca. Caldiarchaeum ASV was
represented by over 50,000 sequences from Iceland and no
sequence from YNP while a Chloroflexus ASV had ∼240,000
sequences from YNP and no sequence from Iceland). The
distribution of all ASVs in the Icelandic and Yellowstone
springs and their taxonomic classification is provided in the
Supplementary Table S2. Because the resolution enabled
by ASVs varies across microbial taxa, it is not possible to
conclude that certain species or subspecies are unique to one
of another location, as multiple ASVs were classified to the
same taxonomic rank.

While preliminary, based on few sampled sites and short
sequences, these observations support the hypothesis that
endemic lineages evolved in those hot springs and are in
line with the previous studies comparing Icelandic geothermal
systems with those from North America, continental Europe
and Asia. The taxon differences could also be due to differences
in chemical composition of the hot springs, which may
have selected for related but globally distributed species.
Nevertheless, the studies by Papke and colleagues (Papke
et al., 2003; Papke and Ward, 2004) that included more
locations and deeper phylogenetic analyses, concluded that
chemical differences did not explain observed differences in
species distribution across continents. Independent analyses
of hot springs across the world should therefore enrich our
understanding of the links between the ecological diversity
and evolutionary history of thermophilic organisms, at local
and global scales.
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