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Brain-computer interfaces (BCIs) aim to enable people to interact with the external world through an alternative, nonmuscular
communication channel that uses brain signal responses to complete specific cognitive tasks. BCIs have been growing rapidly
during the past few years, with most of the BCI research focusing on system performance, such as improving accuracy or
information transfer rate. Despite these advances, BCI research and development is still in its infancy and requires further
consideration to significantly affect human experience in most real-world environments. ,is paper reviews the most recent
studies and findings about ergonomic issues in BCIs. We review dry electrodes that can be used to detect brain signals with high
enough quality to apply in BCIs and discuss their advantages, disadvantages, and performance. Also, an overview is provided of
the wide range of recent efforts to create new interface designs that do not induce fatigue or discomfort during everyday, long-term
use. ,e basic principles of each technique are described, along with examples of current applications in BCI research. Finally, we
demonstrate a user-friendly interface paradigm that uses dry capacitive electrodes that do not require any preparation procedure
for EEG signal acquisition. We explore the capacitively measured steady-state visual evoked potential (SSVEP) response to an
amplitude-modulated visual stimulus and the auditory steady-state response (ASSR) to an auditory stimulus modulated by
familiar natural sounds to verify their availability for BCI. We report the first results of an online demonstration that adopted this
ergonomic approach to evaluating BCI applications. We expect BCI to become a routine clinical, assistive, and commercial tool
through advanced EEG monitoring techniques and innovative interface designs.

1. Introduction

An episode of the TV series Star Trek first shown in 1966
describes a man, Captain Pike, who suffers from locked-in
syndrome. He is cognitively intact, but his body is paralyzed,
leaving him confined to a wheelchair controlled by his brain
wave responses to flashing lights that indicate “yes” and
“no.” Dr. Octopus, the villain in the movie Spiderman 2,
which premiered in 2004, used brain-controlled equipment
to operate four mechanical arms designed with tentacle-like
flexibility and gripping capabilities. ,at machine was
controlled by thought through an interface at the spinal cord
level. Jake Sully, the protagonist of Avatar, which premiered
in 2009, was in a wheelchair in his human body, but he could

walk, run, and jump in the form of his avatar, a 10-foot alien.
All those characters are fictional representations of the ul-
timate goal of research into brain-computer interfaces
(BCIs), sometimes called brain-machine interfaces. Human
physical interactions, including communication, require
motor control processes that use neuromuscular systems to
activate and coordinate muscle movements. An individual’s
intent triggers the activation of a specific brain area, sending
signals through the peripheral nervous system to muscles
that perform the movement necessary to complete the
intended task. During the past several decades, much re-
search has been done to bypass nonfunctional muscular
control channels, attempting to translate a person’s intent by
analyzing brain signals to empower patients with cognitive
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or sensorimotor problems [1–4]. ,e primary goal of BCI
technology is to provide communication capabilities that
can improve the quality of life for people severely disabled by
neuromuscular impairments including amyotrophic lateral
sclerosis (ALS), brainstem stroke, cerebral palsy, or spinal
cord injury. For example, Sellers and Donchin [5] and
Nijboer et al. [6] have reported that ALS patients can
communicate using a P300 speller. Pfurtscheller et al. trained
a quadriplegic patient to control an electrically driven hand
orthosis using EEG signals recorded through the sensori-
motor cortex [7]. In a case study performed by Leeb et al., the
spinal-cord-injured subject was able to generate bursts of
beta oscillations in an EEG by imagining the movements of
his paralyzed feet, and those oscillations were used for self-
paced BCI control of a wheelchair in virtual reality [8]. Rapid
progress toward those goals is being made by many BCI
research groups, allowing BCI research to expand from
communication to rehabilitation medicine through neuro-
feedback for stroke, autism, attention deficit hyperactivity
disorder, and other disorders [9–12]. However, although
significant advancement has been made in BCI research,
much more progress must be made before BCI can have a
significant effect in real-world environments [13–15]. In
particular, previous research has generally lacked un-
derstanding of (or perhaps simply failed to pay attention to)
ergonomics issues, such as aesthetic designs, user-friendly
interaction methods, and usability. Progress in BCI research
has mainly been made by enhancing BCI performance with
respect to accuracy, information transfer rate (ITR), or the
number of possible selections. ,us, most of the BCI lit-
erature focuses on advanced signal processing methods or
new applications or task designs, and the applications
controlled by state-of-the-art interfaces have largely been
intended for research-oriented environments. Most current
BCI techniques face two major challenges that prevent them
from being useful in real-world settings.

(1) Advanced monitoring of brain activity: BCI research
has used various neural signals that can be recorded
noninvasively, such as electroencephalograms
(EEGs), magnetoencephalograms, functional mag-
netic resonance imaging, and near-infrared spec-
troscopy. Of those, the EEG is the most commonly
used method because it is noninvasive, offers high
temporal resolution and portability, and has a rea-
sonable cost. Conventional wet Ag/AgCl electrodes
are used most frequently to measure EEG signals
because their characteristics have been widely
studied and discussed in detail [16–18]. ,e quality
of EEG signals measured using those electrodes with
skin preparation techniques and conductive gels is
excellent. However, the requirement for wet elec-
trodes greatly limits the applicability of BCIs in
everyday use [19–22]. For practical use, BCIs should
avoid typical EEG preparation procedures, including
head measurement for accurate electrode placement
and scalp preparation that requires an abrasive paste
or gel to reduce skin-electrode impedance. Fur-
thermore, electrodes for daily BCI use should not

make users feel uncomfortable or look unusual. It
should be possible to take EEG signal measurements
from simple caps that contain EEG electrodes in
appropriate montages without the need to remove or
specially treat scalp hair.

(2) Interface paradigm design: In a state-of-the-art BCI
system, the control command, such as moving a
cursor, is typically assigned to a specific mental state.
,e subject needs to perform a specific mental task to
encode the desired control command through an
attention shift or other voluntary regulation of the
EEG. Currently, several types of EEG signals have
been recognized: sensorimotor rhythm (also known
as the μ/β rhythm), slow cortical potential, steady-
state visual evoked potential (SSVEP), and event-
related P300 potential. According to the literature
survey performed by Hwang et al. [23], the most
frequently used BCI paradigm is the motor imagery
method. During actual or imagined movement,
slow negative voltage shifts occur in EEGs recorded
over the sensorimotor cortex, and the intention of
a subject can be detected using that voltage
shift. Recent motor imagery-based BCIs have
used rhythmic EEG activity called event-related
desynchronization/synchronization. During actual
or imagined movement, event-related desynchro-
nization occurs predominantly over the contralat-
eral brain motor area, making it useful as a signal
for a BCI system. ,ose methods do not require
external stimuli to induce the desired EEG re-
sponse. However, some drawbacks, including poor
multidimensional control, high probability of error,
and a need for long-term training, have led to a
decrease in the use of motor imagery from 2007 to
2011. During that time, the proportion of research
into the visual P300 and SSVEP paradigms has
increased significantly. P300 and SSVEP require
little training time and show a relatively high in-
formation transfer rate compared with other BCI
paradigms. However, the requirement for a visual
stimulus, such as flashing digits, letters, or other
symbols that a user has to watch, has limited the
flexibility, accessibility, and usability of those BCIs in
real-world applications. Ideally, human-computer
interactions should be free from sudden changes in
luminance or high-contrast visual objects to minimize
user visual fatigue and discomfort, especially for long-
term use.

In 2012, Liao et al. proposed the concept of augmented
BCI (ABCI) that would be appropriate for everyday use [24].
ABCI aims to expand the application of BCI technologies
from their current laboratory or clinical settings to normal
daily life by making them function while people move and
interact with their environment. According to Liao et al.’s
definition, ABCI includes nonintrusive and rapid-setup EEG
solutions that require no or minimal training and thereby
provide stability, robustness, comfort, and longevity for
accurate long-term data collection. It also includes advanced
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algorithmic approaches to analyzing and interpreting brain
signals measured under noisy, real-world conditions. In this
review, we emphasize new paradigm designs that fit the
scope of ABCI and will not induce fatigue or discomfort
during everyday, long-term use. First, we survey BCI articles
that discuss ABCI research. ,en, we demonstrate SSVEP-
based and auditory steady-state response- (ASSR-) based
BCIs that use recently developed polymer foam-based ca-
pacitively coupled EEG electrodes. Our demonstration study
was approved by the Institutional Review Board of the Seoul
National University College of Medicine, Seoul, Korea.

2. Advanced EEG Monitor

Technological advancements have greatly simplified the
measurement and assessment of biopotential signals, par-
ticularly electrocardiograms. However, the sites for EEG
electrodes are mostly covered with hair, and EEG signals are
weaker than those used in other bio-potential measurement
tools, which makes the use of dry electrodes in EEG difficult.
Most dry EEG electrodes make signal measurements by
penetrating the outermost layer of the skin, the stratum
corneum, using microelectromechanical or carbon nano-
tube (CNT) techniques [25–28]. However, those types of dry
electrodes are somewhat invasive, and electrodes that
penetrate tissue always carry the risk of infection. In ad-
dition, those techniques do not allow EEG signals to be
recorded through hair, and therefore, hair and scalp prep-
aration is still required.

Another approach is to use electrode-finger-based
sensors for EEG acquisition over hair (Figure 1(a))
[29, 36, 37]. ,is kind of electrode offers high geometric
conformity between the electrode fingers and the irregular
scalp surface, thus maintaining low electrode impedance.
Additionally, the flexible substrate in which the spring
probes are inserted permits the attachment of the sensor to
the scalp without pain when force is applied. Similarly, a
flexible, low-cost electrode about the size of a toothbrush
made of polymer silver-coated bristles was suggested in 2011
(Figure 1(b)) and showed BCI feasibility using the motor
imagery and oddball paradigms [30]. ,e main drawback of
those electrodes is that they still require skin preparation to
ensure contact between the finger-electrode and the scalp.
Also, some participants reported prickling and other un-
comfortable sensations. Figure 1(c) shows a reverse-curve-
arch-shaped dry EEG electrode 3D-printed from sterling
silver to increase the skin-electrode contact area over hair
[31]. ,e curvature of the arches was designed to match the
curvature of the scalp to maximize the contact area and
disperse the pressure, thereby lessening the pain induced by
conventional finger-type EEG electrodes.

Lee et al. proposed an electrode composed of a CNT/
aPDMS (adhesive polydimethylsiloxane) nanocomposite
material (Figure 1(d)) [32]. ,is electrode is elastic, highly
conductive, self-adhesive, and able to make conformational
contact with and attachment to a hairy scalp. Hundreds of
conductive cylindrical pillars coated with a Parylene C
insulation layer were fabricated on a conductive disk. ,e
CNT/aPDMS layer was then attached to the disk to transmit

the EEG signal to the pillar and eliminate the air gap caused
by hair, thereby maximizing the capacitance between the
electrode and the scalp. ,e top of the disk was designed to
be solderable, enabling the electrode to be connected to a
variety of commercial EEG acquisition systems. Even though
positive results have been published, these electrodes still
have some drawbacks: they require multistep preparations
and obtrusive wiring interfaces.

Epidermal electronics is an emerging class of integrated
electronic systems that achieve thicknesses, effective elastic
moduli, bending stiffness, and areal mass densities that
match the skin [38, 39]. ,is technology has been proved
feasible for many medical applications, such as monitoring
vital signs. In particular, Norton et al. demonstrated an
ultrathin, foldable neural electrode platform that could
measure EEG signals from the surfaces of the outer ear (the
auricle) and adjacent regions (the mastoid), as shown in
Figure 1(e) [33]. ,e epidermal EEG electrode offers con-
formal contact and adequate adhesion based on van der
Waals interactions alone in a manner that is mechanically
unnoticeable to the user. It stayed well attached to skin with
a complex surface topology (the auricle and mastoid) for
more than 2weeks, offering continuous monitoring without
frequent removal or reapplication. ,at demonstration also
showed BCI capabilities using SSVEP and P300. ,e elec-
trode is soft, stretchable, and lightweight, so it can offer long-
term, high-fidelity recording of EEG signals in daily life
without user discomfort. However, the current sensing
platform requires careful device mounting and complete
dissolution of the polymer backing to allow successful EEG
acquisition. Further progress in this area should consider
people who do not want stick on temporary tattoos on their
bodies.

A capacitive noncontact electrode that can measure EEG
signals despite insulation by hair is another promising al-
ternative to conventional wet electrodes for next-generation
EEGmeasurement. An EEG could bemeasured through hair
using displacement current with capacitive coupling.
According to an electronic model of capacitive EEG mea-
surement described in various studies, the capacitive mea-
surement of EEG signals is characterized by very high
electrode impedance created by the insulating effect of hair
between the sensor and the scalp. Because the electrode
impedance in a capacitive electrode is much higher than that
in conventional wet electrodes, a high-input impedance
amplifier is used as the active electrode in each sensor to
convert the displacement current into voltage. Designing
such an input impedance amplifier is a major challenge. Chi
et al. developed a capacitive electrode that uses a custom
integrated, high-impedance, low noise analog front-end
[40]. ,e amplifier fully bootstraps both the internal and
external parasitic impedances by including a low-leakage on-
chip biasing network without external resistors that operates
from hundreds of giga ohms to tera ohms. ,ey also
demonstrated an SSVEP-based phone dialing application
that used the developed capacitive EEG electrode with two
subjects [41].,e result was feasible, but the average ITR was
lower than that with conventional wet electrodes. Around
the same time, Baek et al. suggested a polymer foam-based
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capacitive EEG electrode that combines an electrode face
with polymer foam adaptive to head topography
(Figure 1(f)) [34].,e rigid surface of previous conventional
capacitive electrodes cannot adapt to head curvature and the
hair-made irregular surface that produces hundreds of
micrometer-wide air gaps between the scalp and the elec-
trode face. ,e use of foam minimized the loss of electrode
contact area and generated increased contact impedance.
,e soft foam used in Baek’s study enabled intimate elec-
trode contact on the hairy scalp topography, thereby in-
creasing the effective contact area. In addition, the foam-
surfaced electrode maintained stable contact during motion,
minimizing how much the electrode slid over the hair
through its cushioning effect and textures. ,is electrode
also showed BCI feasibility under SSVEP and ASSR [35].,e
current capacitive electrode designs involve bulkier struc-
tures than the wet EEG electrodes widely used both clinically
and academically. To translate laboratory nonclinical work
into real-world clinical applications, studies should consider
methodologies that maximize coupling capacitance while
using small capacitive electrodes because the size of an EEG
electrode is directly related to the spatial resolution of the
EEG. Table 1 summarizes the features, strengths, and
drawbacks of the dry EEG electrodes reviewed above.

New EEG electrodes will improve the state of the art and
increase practicality, efficacy, and ease of use. Aesthetic
perspectives also should be considered. For applications
outside of hospital and laboratory environments, EEG
measuring devices should not make users look strange.

3. Interface Paradigm Design

,e SSVEP approach has been widely used in BCI systems
because it is simple and precise about the stimulus fre-
quency. SSVEP-based BCIs provide high ITRs with minimal
user training and require fewer EEG channels than other
techniques. However, they can be annoying or fatiguing for
some users, which makes them impractical. Some efforts to
alleviate visual fatigue have created higher-frequency
SSVEP-based BCIs that use a stimulus frequency of more
than 35Hz to decrease the feeling of flickering. However,
more people were unable to complete BCI tasks with high-
frequency SSVEPs than with low-frequency SSVEPs [42–
45]. In 2014, Chang et al. proposed amplitude-modulated
(AM) visual stimuli to elicit integer and noninteger har-
monic SSVEPs, including both low- and high-frequency
bands [46]. As shown in Figure 2(c), the AM signal was
presented as an amplitude variation in a carrier signal, as

(a) (b)

(c)

Solderable

Disk

PDMS
ring

CNT/
aPDMS

(d)

5mm 500μm

(e)

Shielding

Pre-amp.
Rigid sensing

plate
Polymer foam

(f)

Figure 1: Several types of EEG electrodes: (a) active comb-shaped (electrode finger type) electrode [29], (b) bristle electrode [30],
(c) reverse-curve-arch-shaped electrode [31], (d) carbon nanotube-based capacitive electrode [32], (e) epidermal electrode on the auricle
[33], and (f) foam-surfaced capacitive electrode for use over hair [34, 35].
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described in equation (1). Different combinations of carrier
and modulation frequencies elicited different harmonic
frequencies from the low- to high-frequency range, while the
visual stimulus actually flickered at a high frequency. ,eir
experiments demonstrated that AM SSVEP with an opti-
mized combination of harmonic frequencies performed as
well as a typical SSVEP. Subject evaluations indicated re-
duced eye fatigue and less flickering sensation. Similarly, in
2015, Dreyer and Herrmann showed frequency-modulated
(FM) visual stimuli for SSVEP BCI [47]. ,e FM signal,
simply expressed in equation (2), encodes stimulation in a
carrier wave by varying the instantaneous frequency of the
wave (Figure 2(d)). ,is contrasts with AM, which varies the
amplitude of the carrier wave while the frequency remains
constant. In their experiment, they used different FM
stimulation combinations that all had their lower sidebands
at 10Hz, allowing them to use FM stimulation to evoke a

10Hz SSVEP peak without the conscious perception of a
10Hz flicker. FM-SSVEPs with different carrier and mod-
ulation frequencies can reliably be evoked with spectral
peaks at the low FM sideband of 10Hz. Subjective per-
ceptibility ratings for flickering decreased as the FM carrier
frequencies increased, while the peak amplitude and signal-
to-noise ratio remained the same.

SAM � −
1
2

cos 2π fc + fm( t(  + cos 2π fc −fm( t(  ,

(1)

SFM � sin 2πfct + M sin 2πfmt( ( . (2)

Several recent studies have proposed a half-field stim-
ulation pattern based on the brain mechanism of visual
selective attention [48–51]. ,e user is expected to con-
centrate their eyes on a fixation point in the middle of two

Table 1: Summary of representative dry EEG electrodes.

Type Fabrication Flexibility Ref. BCI
application Strengths Drawbacks

Electrode finger

Copper pin Stiff [29] SSVEP

(i) Simple manufacturing
procedure for mass

production Subjects felt pain or
discomfort from the pressure(ii) Small size (d� 15mm) for

good spatial resolution

Spring loaded pin
coated with gold Soft [36] N/A

(i) Small size (d� 15mm) for
the good spatial resolution Equipment required for

electrode fixation(ii) High level of geometric
conformity between the sensor

and the scalp surface

Flexible polymer pin Soft [37] N/A
Subjects reported that they
were more comfortable than
the conventional EEG system

Slight erythema was found
after 10–35 h, but it faded

rapidly after the electrode was
removed

Toothbrush Silver-coated bristles Soft [30]

(i) Motor
imagery Better comfort than wet or

pin-based electrodes

(i) Requires multistep
preparations

(ii) P300 (ii) Some subjects felt prickling
sensation(iii) N100

Reverse-curve-
arch-shaped

Sterling silver using
3D printer Stiff [31] N/A Maximized contact area and

dispersed pressure

(i) Obtrusive wiring interfaces.
(ii) Equipment required for

electrode fixation

Epidermal
(tattoo)

Microfabrication
with polyimide Soft [33]

(i) SSVEP (i) Soft, stretchable, and
lightweight

(i) Cannot be applied to hairy
scalp

(ii) P300 (ii) Conformal contact,
adequate adhesion

(ii) Sensor design problem for
people who do not want stick-

on, temporary tattoos

Capacitive

CNT/aPDMS Stiff [32]
(i) SSVEP

(i) Electrode could be
autonomously attached to the
scalp without the need for
additional equipment.

Require multistep
preparations, obtrusive wiring

interfaces
(ii) N100 (ii) Small size (d� 6mm) for

good spatial resolution

Custom-integrated
AFE Stiff [40, 41] SSVEP No need for external G- or T-

ohm for biasing network

(i) Weak for motion artifacts
(ii) Poor coupling interface

through dry hair

Polymer foam
surfaced Soft [34, 35]

(i) SSVEP (i) EEG measurement through
hair (i) Weak for motion artifacts

(ii) ASSR
(ii) Comfortable for users (ii) Low spatial resolution due

to relatively large size
(r� 36mm)

(iii) Higher signal quality than
with rigid capacitive electrodes
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flickers modulated to specific frequencies. Considering the
role of the optic chiasm, SSVEP was found to be strongly
modulated by spatial selective attention. ,e two stimulus
frequency components could be extracted from the con-
tralateral occipital regions because SSVEP enlarges sub-
stantially in response to a flickering stimulus at an attended
versus an unattended location. Yan et al. showed results
from a multicommand, half-field SSVEP BCI. ,e visual
display contained 9 visual targets with 18 flickers that were
realized by combining 3 stimulation frequencies. Test results
from 8 subjects showed an average classification accuracy of
75.8% [50]. Punsawad and Wongsawat also showed a half-
field SSVEP BCI, but they used only one visual stimulus with
two black boxes on both sides of the flicker to generate 4
commands by focusing to either side of the black box or on
the flicker or by closing their eyes. In this study, the average
classification accuracy was approximately 77% for 4 vol-
unteers [51].

Many researchers have tried to use auditory signals
instead of visual ones, especially for severely impaired users
who have difficulty in controlling their voluntary extraocular
movements or fixing their gaze on specific visual stimuli. As
with the visual paradigm, auditory BCIs have also used
unpleasant auditory stimuli that might be annoying or fa-
tiguing to users. Research using spoken or sung syllables or
polyphonic musical or even natural sounds has shown that
such stimuli are perceived as more pleasant, and in some
cases, they even lead to better classification performance.
Lopez-Gordo et al. presented a novel fully auditory BCI
based on a dichotic listening paradigm using human voices
(two distinct streams of letters or sentences) as the stimulus
[52]. ,e stimuli were read out simultaneously to the
subjects for binary classification using selective attention.
Prior to stimulation onset, an auditory question was read to
the subject by an experimenter, followed by a beep sound
indicating the beginning of the dichotic listening task. ,e
subjects were asked to pay attention to the stimulus delivered
to the left ear if the correct answer to the auditory question
given before the beep sound was “yes/true” and to the

stimulus delivered to the right ear if the answer was “no/
false.” ,e classification was established by recognition of
the early component of human auditory evoked potentials,
namely, the N1 and P2. Based on experimental results with
12 participants, they concluded that an auditory BCI evoked
by natural speech showed promising results in terms of
performance, usability, training, and cognitive effort. Höhne
et al. explored spoken and sung syllables as the auditory
stimuli [53]. Syllables that contained the vowels “i,” “æ,” or
“o” were recorded by three different speakers and presented
from the left ear only, right ear only, or both ears. ,is made
a 3× 3 matrix auditory paradigm, and a nine-class auditory
BCI experiment was conducted with 9 healthy subjects, as
described in Figure 3. Compared with a conventional,
artificially generated monotone, the spoken or sung stimuli
were expected to contain richer internal classification cues,
including harmonics, pitch, and voice characteristics, as well
as higher levels of variance and jitter in the auditory event-
related potential (ERP) responses. ,e experimental results
showed better classification performance when using the
syllables than that when using the monotone and an increase
in the subjective ergonomic ratings. Treder et al. used
polyphonic music as the auditory stimulus in a multi-
streamed oddball paradigm [54]. ,e subject was asked to
shift their selective attention to one of three different musical
instruments, bass, drums, or keyboard, in a musical audio
clip. ,e attended instrument could be classified with an
average accuracy of 91% among 11 participants. Heo et al.
proposed a novel stimulation method to minimize auditory
stress by replacing the monotone carrier with familiar music
and natural sounds in an ASSR-based paradigm [55]. ,e
sounds of a violin and a piano were used as music carriers,
and a cicada singing and water streaming were used as
natural sounds. ,e violin and water streaming sounds were
amplitude-modulated with a 38Hz message frequency, and
the piano and cicada singing sounds were modulated with a
42Hz message frequency. ,e experimental results with six
healthy subjects demonstrated that a high ergonomic rating
could be acquired while maintaining high average binary
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Figure 2: Example of time series simulation waves and their spectra: (a) a sinusoidal carrier wave at 50Hz, (b) a message wave at 11Hz, and
(c) an amplitude-modulated signal, and (d) a frequency-modulated signal. Note that the spectra for the modulated signals show peaks at the
sidebands at the carrier frequency±message frequency.
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classification accuracies, 74%, 89.67%, and 87.67%, for the
monotone, music, and natural sound carrier waves, re-
spectively. In conclusion, the use of pleasant sounds in-
cluding a human voice or polyphonic musical or natural
sounds instead of the conventional unpleasant monotone
beep sound needs to be considered because the sounds can
affect the level user interest and cognitive effort, even leading
to improved classification performance.

4. Experiments and Results

In the current experiments, we used dry EEG electrodes [34]
with BCIs using [46] SSVEP and [55] ASSR. ,ree healthy
subjects (all males aged 26 to 30) who had no history of
neurological disease and no neuropathological abnormali-
ties agreed to carry out capacitive EEG measurements under
new ABCI paradigms. ,e EEG data were recorded using
foam-surfaced capacitively coupled electrodes at the O1 and
O2 sites in a normal baseball cap for SSVEP detection and at
the Oz, Cz, T7, and T8 sites for ASSR detection. All signals
were recorded with a reference electrode at A2 and a
grounding electrode at FpZ. ,e reference and grounding
electrodes were not active capacitive electrodes but passive
dry electrodes that did not require conduction gel or paste.
Signals were measured through hair and transmitted
through a hardware module composed of a high-pass filter
(HPF), a low-pass filter (LPF), a 60Hz notch filter, and an
amplifier with a gain of 10,000. ,e HPF and LPF were used
to reduce fluctuation and for antialiasing, respectively, and
were designed as 4th-order Butterworth filters from 0.05 to
30Hz. EEGs were digitized at a 512Hz sampling rate using
an analog-to-digital converter (NI-DAQ Pad 6015, National
Instruments Co., TX, USA) and recorded using a Matlab
data acquisition toolbox (Matlab2008b, Mathworks, Inc.,
Natick, MA, USA).

For the SSVEP-based ABCI application, four visual
stimuli were positioned around an LCDmonitor in two LED
arrays (SMD 5050-3, Korea) with a diffusion film. Four
targets (left, up, right, and down) flickered in an amplitude-
modulated sinusoidal wave with different combinations of
carrier and modulation frequency. ,e AM stimulus was
digitally generated in eight bits at 1000Hz using a

microcontroller unit (ATmega128, Atmel, USA) and then
converted into an analog signal again to operate the LEDs
using a digital-to-analog converter (LTC1657CN, Texas
Instrument, USA). From equation (1), the spectrum of S(t)
has a peak frequency of fc+ fm and fc− fm. In this study, the fcs
were high frequencies (50 and 51Hz) to reduce eye fatigue,
and the fms were low frequencies near the α-band (9–12Hz)
to achieve a large SSVEP amplitude and allow high-
frequency stimuli carrying low-frequency information to
be generated. Figures 2(a)–2(c) provide examples of c(t),
m(t), and S(t) and their spectra. When fc and fm were 50 and
11Hz, respectively, spectral peaks of S(t) appeared at 39Hz
(=(50− 11) Hz) and 61Hz (=(50 + 11) Hz). All subjects
performed an offline experiment first to determine the
optimal EEG analysis time window size when measuring
AM-SSVEP after exposure to only visual stimulation
without an actual BCI application. Using programmed
auditory instructions, the subjects were asked to focus on
one of the four targets for 15 s. Each run contained 40 trials,
and 2 runs with a 10min break between them constituted the
offline experiment. Each target was attended equally, 10
times per run. Time window sizes from 5 to 10 s with 1 s
resolution were tested to investigate time-sensitive changes
in the AM-SSVEP-based ABCI system performance. EEG
frequency recognition under AM-SSVEP was performed
using a canonical correlation analysis (CCA) to find the
maximal correlation between the EEG electrode signal and
signals from amatrix of templates corresponding to the AM-
SSVEP stimulus frequencies, fc+ fm and fc− fm. Figure 4
shows the classification accuracies and ITR for each par-
ticipant with respect to different time window sizes. Based
on the trade-off relationship between the time window size/
accuracy and ITR, we selected 7 or 8 s as the optimal analysis
window size. ,en, the online experiments were conducted
using electrode-equipped caps. ,e task for the online ex-
periment was a simple 2D maze in which a cursor (blue dot)
could be moved in four possible directions toward a target
position (red dot) (Figure 5(a)). ,e movement direction
was determined by the SSVEP responses from focusing on
one of four targets, which were oriented in the four cardinal
directions. Figures 5(b)–5(d) illustrate the movement map
that each participant actually performed using AM-SSVEP

(a) (b) (c)

Figure 3: Graphical representation of the auditory stimuli set composed of spoken and sung syllables proposed by Höhne et al. [53].
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BCI, and Table 2 summarizes the online experimental results
for each subject. Efficiency (EFF) was defined as the mini-
mum number of commands necessary to reach the target
position divided by the number of commands issued during
the run [56]. All subjects successfully completed the task,
and average accuracy (ACC), EFF, and ITR were 86.07%,
79.46%, and 8.78 bits per minute, respectively. ,e AM
stimuli were perceived as less annoying than conventional
visual stimuli, but we found no other differences between the
experimental conditions. ,e feasibility of the AM-SSVEP
BCI using foam-surfaced capacitive EEG electrodes for
successful BCI performance and low eye fatigue was con-
firmed using our current offline and online experiments. A
demonstration video can be found at https://youtu.be/
YYbHM4HDTeg.

For the ASSR-based ABCI, 37 and 42Hz were selected as
the message frequencies because the optimal modulation
frequency for ASSR has been reported to be around 40Hz. A
water stream and insect sound were chosen as alternatives to
the conventional pure tone burst to provide a natural and
pleasant sensation. Also, subjects could easily distinguish the

different sound streams. ,e water stream, amplitude-
modulated with a 37Hz message frequency, was pre-
sented in the left sound field, and the insect sound,
amplitude-modulated with a 42Hz message frequency, was
presented in the right sound field. Each of our three par-
ticipants sat in a comfortable chair in front of a pair of
commercial speakers (BR-2100S, Britz International, Paju,
Korea) while wearing a cap containing the foam-surfaced
capacitive electrodes. First, subjects performed an offline
experiment. Following programmed visual and auditory
instructions provided right before the onset of each stimulus,
each participant was asked to concentrate on one of the
stimuli (L or R) for 20 s. ,is process was repeated 50 times,
and ten-fold cross validation was applied to compare our
results with the performance reported in [35], which used
the same EEG system but a pure-tone sinusoidal carrier
sound for an ASSR BCI. We calculated the frequency spectra
using a nonparametric periodogram method with a 1 s
sliding time window and 50% overlap. ,e spectral density
of each electrode over the stimulus message frequency ±1Hz
range was extracted from the averaged frequency spectra and
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Figure 4: Offline AM-SSVEP analysis: (a) classification accuracy and (b) ITR for each participant with respect to different time window
sizes. Bar graph indicates accuracy and ITR averaged over three subjects.
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Figure 5: Graphical representation of online AM-SSVEP BCI task: (a) 2D maze in which a cursor (blue dot) can be moved along four
possible directions to the target position (red dot); (b–d) movement map that each participant actually performed using the AM-SSVEP BCI.
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fed into a linear discriminant analysis classifier as a feature
vector. Classification accuracy and ITR with respect to the
time window size are presented in Figure 6. ,e average
value (bold line) showed a pattern similar to that in [35]:
accuracy increased linearly with respect to window size. ,e
online experiments were performed after allowing the
subjects to have a brief rest. During the resting time, par-
ticipants took off the electrode cap briefly, and then they put
it back on right before starting the online experiment. An
analysis window size of 14 s, derived from [35], was used in
the online experiments. Ten trials of selective attention to
either the left or right stimulus were performed during the
online experiments, and the results are shown in Table 3: the
number of correct decisions (NUM) 8/10, specificity (SPEC)
0.82, sensitivity (SENS) 0.79, and ITR 1.33 bits per minute.
SPEC and SENS were calculated by assuming positive to be
left (L) and negative to be right (R). ,ese results are
comparable to previously reported results from a study of
the same EEG system and ASSR-based technique using
conventional pure tone carrier sounds (NUM 7.2/10, SPEC
0.64, SENS 0.76, ITR 0.7 bits per minute). A video dem-
onstration can be found at https://youtu.be/uPF_MjNEefA.

5. Discussion and Conclusion

,is paper has focused on the challenges faced when moving
from BCI systems designed for experimental use in labo-
ratory settings to those intended for use in real-world en-
vironments. We have discussed the problems with EEG
sensing technologies and new BCI paradigms and explored
representative methods for handling laboratory, more re-
alistic, or real-world settings.

We also demonstrated results from an ABCI system that
uses foam-surfaced capacitive EEG electrodes with the AM-
SSVEP and natural ASSR paradigms. In our AM-SSVEP
experiments, we found that classification accuracy was in-
creased with the analysis time window size. However,
compared with Chang’s result derived using conventional
Ag/AgCl electrodes [46], an increased time window was
required to sufficiently reject the extra noise seen with ca-
pacitive measurements. EEG signals longer than 4 s were
suitable for reliable AM-SSVEP BCIs in Chang’s study,
whereas 8 s were required for the capacitive AM-SSVEP BCI
in this study. In our experience, a time window of 8 s is the
longest used to determine a single command by SSVEP
response. ,at long time window is required to capacitively
measure AM-SSVEP because of the low signal-to-noise ratio.
A time window of 6 s was enough for a successful conven-
tional SSVEP-based spelling task with capacitive EEG mea-
surement performed by Baek et al. in 2013 [35]. For online

BCI, a direct comparison between the online BCI perfor-
mance in the current study and Chang et al.’s result [46]
cannot be made due to the duration of processing, the
classified command, and our use of a different task with a
different number of possible selections. Chang et al. stored
EEG data in a 4 s data buffer every 0.5 s.,e existing data were
shifted, removing the initial 0.5 s of data to generate a new 4 s
segment. ,en, the AM-SSVEP was recognized within the 4 s
EEG signal by using the CCA method every 0.5 s. If four
consecutive temporal decisions were the same, the corre-
sponding decision was selected as the final decision. In ad-
dition, a customized frequency was combined with the best
performance of each subject to create a CCA reference signal
for frequency recognition. In our experiment, decisions were
made at every fixed time window without any data shifting or
window sliding. Also, the frequency of the reference signal in
the CCA was not optimized for each subject. We chose those
parameters for convenience in the experimental setting.
Nevertheless, all the participants succeeded in carrying out the
cursor navigation task with relative ease. All of the subjects
indicated that they preferred working with the AM-SSVEP
approach despite the lower accuracy rates and reduced speed
of operation because the flickering was less tiring and required
less effort from the eyes. ,e ASSR-based BCI paradigm was
used in 2011 by Kim et al. with conventional EEG electrodes
and auditory stimuli generated using periodic amplitude-
modulated and pure sinusoidal tones [57]. ,ey imple-
mented a pilot online ASSR-based BCI and tested it with one
subject. ,eir experimental result showed a classification
accuracy of 71.4%. Our previous study, performed in 2013 by
Baek et al., used the same auditory stimulation but foam-
surfaced capacitive electrodes instead of gel-based electrodes
for the EEG sensing; we had an average accuracy of 72% for 5
subjects [35]. Compared with previous studies, we found a fair
average classification accuracy of 80% for 3 participants under
ABCI conditions in this study, and we acquired the EEG
signals over hair using foam-surfaced capacitive electrodes
and natural sound.

Although the number of subjects in the current dem-
onstrations is too small to be representative of the general
population, our results are in general agreement with
published values for healthy adults, and we suggest that our
demonstration offers sufficient power to assess the feasibility
of ABCI applications. However, our results represent just a
small sample of the broad future potential of ABCI tech-
nologies. As BCIs become more popular with different user
groups, including healthy people, their increasing com-
mercial possibilities will likely encourage new applied re-
search efforts that will make BCIs even more practical.
Consumer demand for reduced cost, increased performance,

Table 2: Results of the AM-SSVEP-based online BCI experiments (ACC: accuracy in %, ITR: information transfer rate in bit·min−1, LPM:
letters per minute in letter min−1, and EFF: efficiency in %).

Sub. Time window Output path (error underlined) ACC (%) EFF (%) ITR (bits/min)
S1 7 s DDDDDDDDLLLLUULLLULLLDDD 84 80 8.01
S2 8 s DDLLRLLLUULLDDDDDDULLDDD 95.65 86.96 12
S3 8 s UDDLLLLDUULLLLDDDDDDUUDLLDDD 78.57 71.43 6.34
Mean 86.07 79.46 8.78
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and greater flexibility and robustness could contribute sub-
stantially to making BCIs mainstream tools.,e development
of ABCIs requires clear validation of their real-life value in
terms of efficacy, practicality, and impact on quality of life.
Future BCI systems should (1) be comfortable, convenient,
and offer aesthetically acceptable mountings, (2) be easy to set
up, (3) function for many hours without maintenance, (4)
perform well in all environments, (5) operate by telemetry
instead of requiring wiring, and (6) interface easily with a
wide range of applications. Before the results of ongoing and
planned research efforts for ABCI become available, BCIs
using various methods remain a fascinating research toy. If
the intensive research into various aspects of ABCI continues
to increase exponentially, as it has done recently, BCI systems
could become routine clinical, assistive, and commercial tools
in the not-too-distant future.
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