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Macrophages and microglia play crucial roles during central nervous system develop-
ment, homeostasis and acute events such as infection or injury. The diverse functions of 
tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model 
of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. 
However, the complexity of macrophage function can only be achieved by the existence 
of varied, plastic and tridimensional macrophage phenotypes. Understanding how 
tissue macrophages integrate environmental signals via molecular programs to define 
pathogen/injury inflammatory responses provides an opportunity to better understand 
the multilayered nature of macrophages, as well as target and modulate cellular pro-
grams to control excessive inflammation. This is particularly important in MS and other 
neuroinflammatory diseases, where chronic inflammatory macrophage and microglial 
responses may contribute to pathology. Here, we perform a comprehensive review of our 
current understanding of how molecular pathways modulate tissue macrophage pheno-
type, covering both classic pathways and the emerging role of microRNAs, receptor- 
tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss 
pathway parallels in microglia, novel markers helpful in the identification of peripheral 
macrophages versus microglia and markers linked to their phenotype.
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iNTRODUCTiON

Macrophages in the central nervous system (CNS) play important homeostatic and immune defense 
roles (1). While microglia originate from early yolk sac myeloid progenitors and become self-
regenerating CNS-resident cells (2–4), macrophages originate from peripheral blood monocytes. 
Microglia are essential for appropriate synaptic pruning during development (1). During steady 
state condition, microglia also facilitate learning and memory and remove cellular or other debris. 
Upon CNS infections and injury, microglial activation and peripheral macrophage recruitment and 
activation occur. Both macrophages and microglia have the capacity to recognize pathogens or 
injured cells, activating phagocytic, antigen-presenting and cytokine/chemokine secretion functions 
that modulate immunity and mediate pathogen or cellular debris elimination (1). Macrophages 
and microglia also contribute to resolution stages of inflammation and tissue regeneration via 
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switching to anti-inflammatory cytokine patterns, promoting 
intercellular matrix synthesis and angiogenesis. The complexity 
of macrophage function is mirrored by the existence of varied, 
plastic and multilayered macrophage phenotypes in  vivo (5). 
However, for simplicity, a model of inflammatory/classical M1 
and resolution/alternatively activated M2 macrophages has been 
widely used.

Understanding the molecular programs that define inflam-
matory versus resolution phenotypes provides the opportunity 
to target and modulate these cellular programs to control the 
excessive inflammation typical of chronic inflammatory CNS 
conditions such as Multiple Sclerosis (MS) and CNS injury. In 
recent years, our understanding of how environmental signals 
are integrated into macrophage phenotype has greatly advanced. 
The classic roles of NOTCH, PI3K/AKT, MYC, PPAR, and inter-
feron regulatory factors (IRFs) in macrophage polarization have 
been further established while prominent roles for metabolism, 
microRNAs (miRNAs) and receptor-tyrosine kinases (RTKs) 
are now clear. The ability to distinguish microglia from CNS 
macrophages and inflammatory vs. resolution macrophages 
has greatly advanced with the discovery of new markers. In this  
review, we discuss these findings and present the current 
understanding in the field of molecular mechanisms and mark-
ers of inflammatory versus resolution macrophages, as well as 
therapeutic implications of macrophage modulation for the CNS 
autoimmune disease MS.

MACROPHAGeS AND MiCROGLiA: 
SiMiLAR BUT NOT THe SAMe 
(DeveLOPMeNTAL ORiGiN,  
FUNCTiONS, AND MARKeRS)

Microglia and macrophages have many functions in common. 
They both help to maintain homeostasis during embryogenesis 
and into adulthood (6–8). Additionally, both cells are sentinels 
in their respective environments, scanning for foreign invaders 
and pathogens (9–12). Both cell types also differentiate into a 
spectrum of proinflammatory to proregenerative subsets in 
response to injury or insult (13, 14). In addition to the roles 
microglia play in fighting infection and clearing debris via 
phagocytosis, microglia are also important in neuronal pro-
liferation and differentiation and the formation and pruning 
of synaptic connections in neuronal networks (15, 16). Based 
on the specific genes expressed in microglia and the subset of 
functions unique to microglia, one can postulate that other 
tissue-specific macrophages have roles exclusive to their tissue 
that monocyte-derived macrophages cannot replace.

Monocyte-derived CNS macrophages and microglia have 
similar morphologies and phagocytic functions but their origins 
are distinct. Until a short time ago it was believed that solely 
circulating monocytes replenish tissue macrophage popula-
tions, including those in the CNS, but this view is now rejected 
based on new reports in the literature (17, 18). Although bone 
marrow derived monocytes can enter tissues such as the CNS 
and differentiate into macrophages, microglia and other tissue 
macrophages are now thought to originate most exclusively from 

earlier embryonic progenitors (19). Embryonic hematopoiesis 
consists of three main waves, namely primitive, transient 
definitive and definitive hematopoiesis. Primitive hematopoiesis 
originates from yolk sac blood islands around embryonic day 
(E)7, yielding progenitors as early as E7.5 (19). The transient 
definitive hematopoiesis wave starts around E8 when hemogenic 
endothelium develops, producing erythromyeloid precursors 
(EMPs) (19). Upon establishment of circulation starting at E8.5, 
EMPs migrate to the fetal liver where they support definitive 
hematopoiesis (19). EMPs will also eventually migrate and sup-
port bone marrow hematopoiesis in the adult.

Three models of fetal microglia and tissue macrophage ontog-
eny have been proposed (19). Two models favor the view that 
most microglia but few of other tissue macrophages derive from 
the early wave of primitive hematopoiesis in the yolk sac (20, 21). 
The remaining model instead supports the view that EMPs from 
transient definitive hematopoiesis give rise to most microglia 
and other tissue macrophages (22). All these models are all in 
agreement on the embryonic origin of microglia, with little or 
no contribution from monocytes. Sublethally irradiated C56BL/6 
CD45.2+ newborn mice reconstituted with hematopoietic cells 
isolated from CD45.1+ congenic mice had 95% microglia were 
of host origin (CD45.2+ cells gated on CD11b+CD45int, then 
Ly6G-F4/80+) 3 months after transplant, while over 30% of cir-
culating leukocytes were of donor origin (2). These data support 
the idea that microglia are a distinct population not populated/
replenished by circulating monocytes. Kierdorf and colleagues 
added to our knowledge by identifying the earliest yolk sac 
progenitors with the potential to become microglia to be CD45− 
c-Kit+ erythromyeloid precursors (EMPs), and these differenti-
ated into Iba-1+ Cx3cr1− cells with microglial-like morphology 
(3). Two transcription factors important in driving EMPs to 
differentiate into microglia and CNS macrophages are PU.1 and 
IRF-8. Pu.1 gene deficient animals lacked microglia completely, 
while mice-lacking the Irf8 gene had significantly reduced num-
bers of microglia (3). Upon analysis of the yolk sac progenitors, 
they found that PU.1 is necessary for the initial transition from 
EMPs (c-KIT+) to early microglial precursors (CD45+ c-KITlo 
CX3CR1−); whereas IRF-8 acts downstream of PU.1 and plays 
a role in the transition from early to mid-stage microgliogenesis 
(CD45+ c-KIT− CX3CR1+) (3). Another molecule important in 
shaping microglial development is negative regulator of reactive 
oxygen species (NRROS, aka LRRC33). Nrros gene deficient mice 
lack normal CD11bhiCD45lo microglia, and CX3CR1-driven 
deletion of Nrros leads to impaired expression of Sall1 (lineage-
specific transcription factor important for maintenance in adult 
microglia) and other microglial genes needed for microglial 
development and function (23). Interestingly, Nrros−/− mice have 
normal numbers of myeloid progenitor cells in the CNS at E10.5, 
but the CD11bhiCD45lo microglial population was largely absent 
by E14.5, suggesting NRROS is important in early microglial 
development.

Can Microglia Be Differentiated from 
Peripheral Origin Macrophages?
Discriminating between peripheral macrophages and microglia 
has been a difficult technical issue. Microglia and macrophages 
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share many markers such as CD11b, F4/80, CX3CR1 and 
IBA1 (13). High levels of CD45 expression (CD45hi) have long 
been used to discern peripheral macrophages from microglia, 
which express lower levels of CD45 (24). However, peripheral 
macrophages may downregulate CD45 once in the CNS or in 
response to injury (25). CX3CR1 (aka fractalkine receptor) 
is expressed by microglia throughout development and into 
adulthood (26). Since it is not expressed by other CNS-origin 
cells (27), CX3CR1 can be used to detect microglia in naive tis-
sues. During inflammation, however, peripheral macrophages, 
monocytes and T  cells also express CX3CR1 and infiltrate 
the CNS (28). The use of irradiated Cx3cr1–green fluorescent 
protein (GFP) knock-in mice (27, 28) as recipients of WT bone 
marrow yields a model in which only microglia express GFP 
and peripheral macrophages can be detected by use of donor 
markers. Another model, a tamoxifen-inducible Cre mouse line 
crossed with a red fluorescent protein (RFP) Cre reporter mouse 
line (Cx3cr1YFP-CreER/wt:R26RFP), can differentially label microglia 
and recruited macrophages by pulsing mice with tamoxifen and 
then following the YFP+RFP+ labeled cells (29). Macrophages 
will turnover quickly and lose RFP expression, while microglia 
will retain RFP expression because they are long-lived. Besides a 
marker and chemoattraction role, CX3CR1 has an essential role 
in promoting a resting microglial phenotype and neuroprotec-
tion (30). Cx3cr1−/− mice had worsened neurologic dysfunction 
in the EAE model (31). In contrast, post-spinal cord injury 
(SCI) recovery was enhanced in Cx3cr1−/− mice (32), suggesting 
context and CX3CR1 expression on cells beyond microglia and 
macrophages influence disease outcomes. Soluble CD163, which 
is cleaved from CD163 on macrophage/microglia membranes, 
may also be a marker for MS or for inflammation in general 
(33–35). In addition, many markers co-expressed by peripheral 
macrophages and monocytes are present on activated microglia 
as well. For example, CD169 is a marker for macrophages (13) 
that was recently identified on early activated microglia in MS 
and EAE lesions (36). MERTK is another common marker for 
many tissue specific macrophages including microglia (13).

The most prominent difference between microglia and 
macrophages appears to be their developmental origin. One 
marker specific to microglia that does not stain infiltrating 
peripheral immune cells is TMEM119 (25, 37). TMEM119 
protein is expressed on all microglia by postnatal day 14 (P14) 
and remains expressed in post-sciatic nerve crush injury, LPS 
injection and optic nerve crush injury (25). Specifically, Ccr2RFP/+ 
mice (in which RFP is only expressed in infiltrating monocytes) 
showed IBA1+TMEM119− cells were mostly RFP+ and RFP+ 
cells were never TMEM119+, suggesting TMEM119 is a stable 
resident microglia marker that does not recognize infiltrating 
macrophages. Importantly, TMEM119 is a marker for both 
mouse and human microglia (25) and is maintained in MS 
lesional tissue (38). The availability of this marker has revealed 
that many microglial markers are induced, while macrophage 
markers are suppressed, in peripheral macrophages that infiltrate 
the CNS (38). FCRLS is another highly expressed gene specific 
to murine microglia, but there is no ortholog in humans (39). 
Another microglial-specific marker P2RY12, a purinergic 
receptor associated with homeostatic microglia not detected 

on lymphatic tissue (38), is highly expressed in normal white 
matter of MS patients. However, as microglia become stimulated 
in active MS lesions, P2RY12 is sometimes downregulated, while 
proinflammatory genes such as iNOS and CD86 are upregulated 
(38), confounding the distinction of microglia from peripheral 
cells during inflammation. Since another report found that 
P2RY12 remains elevated after EAE induction (39), this may be 
a human/mouse model difference. TMEM119 seems to be the 
most discriminatory of the new markers and has allowed to sort 
microglia based on their developmental origin. These studies 
have revealed other genes specific of this population that may 
lead to additional methods for microglial detection (25).

MACROPHAGe/MiCROGLiA 
PHeNOTYPeS, FUNCTiON,  
AND NOMeNCLATURe

The dual role of macrophages and microglia in promoting 
inflammation vs. resolution is mediated by distinct gene expres-
sion programs and macrophage phenotypes. This inflammatory 
phenotype is induced by ligation of pathogen recognition recep-
tors (PRRs), such as Toll-like receptors (TLRs), on macrophages 
to pathogen- or danger-associated molecular patterns (PAMPs 
or DAMPs) from microbes or damaged/dying cells (40). These 
signals may be combined with inflammatory cytokines produced 
by Th1  cells, such as IFN-γ. In vitro, this phenotype has been 
modeled by stimulation of bone marrow-derived macrophages 
or microglia with LPS (+IFN-γ). Macrophages activated in this 
manner have long been known as classically activated or M1 
macrophages (41). In 2014, in an effort to reach consistency and 
clarity in the field, novel nomenclature that follows the letter 
M by a parenthesis enclosing the stimuli used for activation 
was proposed (42). For example, M1 macrophages stimulated 
with LPS and IFN-γ are indicated as M(LPS  +  IFN-γ) while  
macrophages stimulated with LPS alone would be labeled 
M(LPS). Macrophages differentiated with GM-CSF, or M(GM-
CSF) macrophages, have also been described to have a proin-
flammatory phenotype (43). This nomenclature is providing an 
extremely useful standardized tool to communicate macrophage 
experimental data. In this review, we use this nomenclature 
when the specific stimulation is known, while the simple M1 vs. 
M2 notation is used when referring to a general inflammatory 
vs. resolution/alternatively activated phenotype of macrophages.

Functionally, M1 macrophages are responsible for fighting 
bacterial infections and adopt a phenotype characterized by 
microbicidal, antigen-presenting and immune potentiating abili-
ties. This is accomplished by induction of inducible nitric oxide 
synthase (iNOS, encoded by the Nos2 gene), which synthesizes 
microbicidal nitric oxide (NO) in most rodent models (44, 45). It 
is important to note, however, that iNOS induction does not occur 
in human macrophages. In addition, M1 macrophages recruit 
additional cells to the site of infection and bridge innate and adap-
tive immunity. This is accomplished by induction of chemokines 
and inflammatory cytokines interleukin (IL)-6, IL-12, IL-1β, 
IL-23, and TNF-α that recruit immune cells to sites of infection 
and polarize them to type I responses and by CD80 and CD86 
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TABLe 1 | Inflammatory phenotype macrophage/microglia markers.

M(LPS + iFNγ) M(iL-4)

Transcription 
factors

Mouse pSTAT1 pSTAT6, Irf4

Human pSTAT1, IRF1, IRF5 IRF4

Amino acid 
metabolism

Mouse iNOS Arginase-1

Human IDO1

Scavenger 
receptors

Mouse Mrc1 (CD206), CD163

Human MRC1 (CD206), CD163

Cytokines Mouse TNFα, IL6, IL12A,  
IL23A, IL27

Human TNF, IL1B, IL6, IL12A,  
IL12B, IL23A

Others Mouse CD38, CD80,  
CD86, FPR2

RELMα (FIZZ1), CHI3L3 (YM-1), 
ALOX15, EGR2, c-MYC

Human CD40 ALOX15
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costimulatory molecule expression to prime T cells (42, 46). Our 
lab has recently characterized CD38 as a marker that is increased 
in inflammatory murine bone marrow-derived M(LPS + IFN-γ)  
macrophages and decreased in M2 macrophages compared 
to untreated M0 macrophages (47). CD38 upregulation is 
also observed in a sepsis model (47) as well as Experimental 
Autoimmune Encephalomyelitis (EAE), the mouse model of MS 
(48). Given that CD38 is a surface marker that allows live cell 
sorting for downstream applications, it provides an advantage 
over intracellular markers such as iNOS. Although CD38 is 
known to be an ectoenzyme that catalyzes conversion of NAD 
to ADP-ribose and induces calcium signaling inside the cell (49), 
its exact role in inflammatory phenotype is unknown. However, 
it appears to play an important role, as CD38 induction by LXR 
and NAD depletion is necessary to limit bacterial uptake and 
inflammatory cytokine production (50). Future studies will be 
necessary to determine whether CD38 plays a similar role in 
human macrophages. For a listing of current inflammatory 
phenotype markers in macrophage/microglia, see Table 1. Like 
macrophages, microglia secrete inflammatory cytokines IL-1β, 
IL-6, IL-12, and TNF-α when exposed to LPS (+IFN-γ). Similarly, 
they upregulate iNOS and CD38 (51–56). Although most studies 
have been done in murine microglia, LPS + IFN-γ also induces 
M1 phenotype in primary human microglia (57).

The evolution from acute inflammation to a resolution phase 
occurs as initial neutrophils undergo apoptosis and monocytes, 
which will switch to a resolution/M2 phenotype, predomi-
nate in the tissue (58). Key lipid mediators in promoting the 
resolution phase include classical eicosanoids, phospholipids 
and sphingolipids, endocannabinoids (eCBs) and specialized 
proresolving mediators (SPMs) (59). The classical eicosanoids 
thromboxanes (TX) and prostacyclins antagonize inflammation 
while phospholipids and sphingolipids such as phosphatidylser-
ine (PtdlSer), when recognized by macrophages, promote M2 
switch (60). eCBs such as N-arachidonoylethanolamine (AEA) 

and N-palmitoylethanolamine (PEA) have immunomodulatory 
roles, particularly in neuroinflammation (61). Last, but not least, 
SPMs have major proresolution activities. Main SPMs include 
lipoxins (LX)A4 and LXB4, resolvins (Rv) RvD1-6 derived from 
docosahexanoic acid (DHA), RvE1-3 derived from eicosapen-
tanoic acid (EPA), protectin D1 and maresins. In particular, 
maresins have been shown to shift to a resolving macrophage 
phenotype (62), which can also be induced by exposure to Th2 
cytokines like IL-4 and IL-13, parasites, fungal cells, apoptotic 
cells, immune complexes, adenosine, or transforming growth 
factor (TGF)-β (63). In vitro, four M2 type macrophages were 
initially described, corresponding to macrophages stimulated 
with IL-4 or IL-13 (M2a), IL-1R ligands or immune complexes 
(M2b), IL-10, TGF-β or glucocorticoid (M2c) and IL-6 and 
adenosine (M2d) (64). This notation has now been replaced with 
the M(stimulus) nomenclature that clearly defines the inducing 
stimulus (42). For, example, macrophages stimulated with IL-4 
are indicated as M(IL-4) and pro-M2 macrophages differenti-
ated with M-CSF are called M(M-CSF).

It is currently being debated whether resolution/wound heal-
ing macrophages are an evolution of initial inflammatory mac-
rophages under the changing local environment or, rather, they 
originate from newly recruited peripheral monocytes. Similarly, 
resolution spectrum macrophages may revert to an inflamma-
tory phenotype if new inflammatory stimuli are encountered 
(65). Resolution macrophages suppress IL-12 secretion and 
may secrete anti-inflammatory mediators IL-10, TGF-β, IL-1R 
antagonist (IL-1RA), and decoy IL-1R II (66). In addition, these 
macrophages express arginase-1 instead of iNOS, switching 
arginine metabolism from production of NO to ornithine and 
polyamines for collagen and extracellular matrix synthesis (67). 
M2 markers arginase-1, resistin-like alpha (RELMα/FIZZ1), 
and chitinase 3-like protein 3 (CHI3L3/YM1) are detected 
in murine but not human macrophages (68–70), although it 
should be noted that a portion of murine M1 stimulated cells 
also upregulates arginase-1 (42, 47). Murine M(IL-4), but not 
M(LPS + IFN-γ), bone marrow derived macrophages (BMDMs) 
can be identified by flow cytometry detection of the intracel-
lular transcription factor EGR2 (47), which is related to the M2 
transcription factor C-MYC. C-MYC (47, 71) and CD206 (41) 
are M2 markers common to murine and human macrophages. 
CD169 [aka sialic acid binding Ig-like lectin-1 (SIGLEC-1)] 
in certain in  vivo macrophage populations (72) and tyrosine-
protein kinase Mer (MERTK) in M2c macrophages (73) have 
also been identified as markers useful in flow cytometry (13, 74). 
CD169 and MERTK are also expressed in microglia.

Does macrophage and microglial phenotype modulate neu-
roinflammation and MS? The hypothesis that an inflammatory 
phenotype in macrophages or microglia is damaging to the CNS 
while a resolving phenotype contributes to neuroregeneration 
was introduced by the Popovich group in the late 2000s (75). 
They found that while inflammatory macrophage responses 
cause neurotoxicity, resolving macrophage responses instead 
promote neuron viability and regenerative growth toward repair 
(75). Evidence supporting this hypothesis, which has important 
therapeutic implications, has since accumulated in multiple 
neuroinflammatory paradigms. We will discuss below the latest 
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evidence for a role of macrophage and microglial phenotype on 
modulation of CNS neuroinflammation and remyelination in 
multiple sclerosis and its animal model EAE.

Activated microglia are one of the first observations very early 
in MS while both monocyte-derived macrophages and activated 
P2RY12−/lo microglia are found later in active lesions (38). Large 
numbers of macrophages and microglia, coinciding with myelin 
breakdown, are a hallmark of the acute MS lesion (76). High 
oxidative activity and expression of IL-1β and IL-23p19, all 
characteristic of inflammatory macrophages and microglia, are 
observed in these lesions. Exacerbated and fast-progressing EAE 
occurs in mice with a microglial-specific Nr4a1 deficiency which 
results in increased microglial activation and NO production, 
consistent with the damaging M1 responses. Neurodegenerative 
microglia characterized by a TREM2-APOE pathway signature, 
are generated after neuron phagocytosis, further establishing a 
neurodegenerative cycle (77). Inflammatory microglia do in turn 
induce a subtype of inflammatory astrocytes, termed A1, which 
can no longer sustain neurons and induce neuron and oligoden-
drocyte cell death. A1 astrocytes are abundant in the CNS of 
various neurodegenerative diseases, including MS lesions (78).

So, what about resolution? It is unclear what exactly makes an 
active MS lesion evolve toward resolution. PtdlSer, a phospholipid 
present in myelin, may play a role. PtdlSer liposomes suppress 
NO and inflammatory cytokine production in macrophages 
and in vivo treatment ameliorates EAE (79). The early resolving 
lesion contains instead lipid-laden, aka foamy, macrophages or 
microglia spread throughout the lesion and forming a layer at 
the lesion edge. There is no evidence of remyelination in early 
resolving lesions but examples of remyelination in late resolv-
ing lesions are fairly common (80). Interestingly, foamy mac-
rophages or microglia abound within these remyelinated areas 
(80, 81), as if consistent with a reparative role. Consistent with 
a beneficial role of resolution macrophages, mice deficient in 
the M2-promoting factor SOCS3 suffer from chronic and more 
severe EAE while adoptive transfer or promotion of resolution 
spectrum macrophages suppresses EAE disease (82–84). Besides 
being less neurotoxic and chemotactic, M2 macrophages may 
play an active proregeneration role. Consistent with the latter, 
a shift from inflammatory to resolving phenotype in microglia 
and infiltrating macrophages is observed during remyelina-
tion (81). The shift to M2 phenotype drives oligodendrocyte 
differentiation in an activin A-dependent manner (81). Taken 
together, these findings provide a framework for the importance 
of inflammatory macrophage and microglial phenotype in 
driving MS neuroinflammation and the therapeutic promise of 
promoting opposing M2 responses.

CLASSiC MOLeCULAR MeCHANiSMS 
MODULATiNG MACROPHAGe 
PHeNOTYPe

The distinct phenotypic features of inflammatory vs. wound-
healing macrophages are controlled by a network of molecular 
pathways that relay environmental signals via signaling cascades 
to impact gene expression and cellular metabolism (see Figure 1 

for a summary of molecular pathways that modulate macrophage 
phenotype). PI3K/AKT, NOTCH, PPARs, MYC, and IRFs have 
been known to modulate macrophage phenotype. Novel data 
demonstrating crucial roles for metabolism, RTKs, miRNA 
and epigenetic modifications will be discussed in a subsequent 
section.

Pi3K/AKT
The PI3K/AKT pathway is activated in response to environmen-
tal stimuli such as PAMPs, cytokines/chemokines and hormones 
to regulate cell survival, proliferation, and differentiation. This 
pathway plays a pivotal role in the activation phenotype of mac-
rophages [for a thorough review, see Vergadi et al. (85)]. PI3K 
activates downstream kinase AKT that may exist as three differ-
ent isoforms, namely AKT1, AKT2, and AKT3. AKT signaling 
is considered to be an activation dampening signal that controls 
NO and inflammatory cytokine production after TLR signal-
ing (86–88) and promotes anti-inflammatory cytokines such 
as IL-10 (89, 90). However, AKT signaling is also required for 
normal M1 responses (91–93). The AKT1 and AKT2 isoforms 
play opposing roles in macrophage polarization. AKT1 KO 
macrophages show enhanced iNOS and IL-12 production and 
bacterial clearance (91, 94, 95). These effects were mediated by 
induction of the pro-M1 factor miR-155 (96, 97) that suppresses 
the target CCAAT/enhancer-binding protein beta CEBPβ  
(91, 95), a pro-M2 factor (98). In contrast, AKT2 deficiency has 
the opposite effect, resulting in macrophages that express CEBPβ 
and signature M2 markers such as arginase-1, YM1, REMLα, and 
the regulatory cytokine IL-10 (91, 99). AKT2 KO macrophages 
appear to adopt this phenotype via high levels of miR-146 (93), 
which has been associated with dampening of inflammatory 
responses via targeting of IRAK1, TRAF6, and IRF5 leading 
to suppression of TLR signaling in macrophages and microglia 
(100–103). Consistent with AKT signaling dampening inflam-
mation, Akt3 gene deficient mice suffered more severe disease 
in the murine EAE model of MS, an effect mediated by both 
peripheral macrophages and microglia (104).

Downstream, the PI3K/AKT pathway regulates cellular meta-
bolism via the tuberous sclerosis (TSC)/mammalian target of 
rapamycin (mTOR) pathway. This is interesting in light of the 
prominent role metabolism plays in determining macrophage 
polarization (see metabolism section below). Some data suggest 
that mTOR signaling inhibits M1 and promotes M2 polarization 
(105–108). In contrast, other results are more consistent with 
mTOR signaling promoting M1 polarization (105, 106, 109–112). 
However, further clarity on the precise roles of TSC and mTORC1 
and mTORC2 gene isoforms on metabolism and phenotype is 
required.

In summary, AKT signaling relays diverse extracellular signals 
to engage the metabolic regulator mTOR pathway. While AKT 
signaling can activate inflammatory responses, it is essential for 
promoting a dampening response, thereby promoting resolution.

Notch
Notch signaling controls embryonic development and differen-
tiation in multiple tissues and organs. Notch receptors NOTCH 
1-4 are expressed on the cell surface, where they bind Jagged 
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recognition receptors (PRR) such as Toll-like receptors (TLR) result in Janus activated kinase (Jak)2 and nuclear factor kappa B (NF-κB) activation. Signals received 
via Notch receptors, cytokine receptor (CtkR), chemokine receptor (CCR), and Fc receptor (FcR) stimulation are also integrated, defining gene expression and 
downstream metabolic reprogramming. Interferon regulatory factors (IRFs) 5 and 8 promote inflammatory gene expression while IRF 4 promotes resolution 
phenotype genes. Gene expression promotes changes in nutrient uptake and metabolic pathways that support inflammatory or resolution macrophage phenotype. 
LPS, lipopolysaccharide; IFN-γ: interferon-γ; GM-CSF, granulocyte monocyte colony stimulation factor; IC, immune complexes; TGF-β, transforming growth factor-β; 
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receptor; ADAM, A disintegrin and metalloproteinase; RBP-J, recombination signal binding protein for immunoglobulin kappa J region; MAML, mastermind-like; 
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(JAGGED1, JAGGED2) or Delta-like (DLL1, 3, 4) family ligands 
on neighboring cells. Binding triggers A disintegrin and metal-
loproteinase (ADAM)/γ-secretase-catalyzed release of the Notch 
receptors intracellular domain (ICD), allowing ICD transloca-
tion to the nucleus, where it heterodimerizes with recombina-
tion signal binding protein for immunoglobulin kappa J region 
(RBP-J). While RBP-J normally acts as a corepressor recruiter, 
the ICD/RBP-J complex promotes gene expression via recruit-
ment of mastermind-like coactivator (MAML) (113, 114). 
In murine macrophages, increased expression of NOTCH1, 
NOTCH2, and Notch ligands DLL4 and JAGGED1 has been 
observed in response to inflammatory cues such as LPS, IFN-γ, 
or IL-1β (115, 116). NOTCH/RBP-J signaling in macrophages 
results in enhanced NF-κB signaling and induction of pro-M1 
transcription factors IRF1 and IRF8 that in turn drive expression 

of multiple classical activation genes (115–121). Accordingly, 
reduced levels of inflammatory cytokines IL-6, IL-12, and IFN-γ 
are observed in response to LPS + IFN-γ in macrophages defi-
cient in Notch1 or treated with the γ-secretase inhibitor DAPT 
(122, 123). Notch signaling also increases M1 phenotype by 
modulating glucose flux to the tricarboxylic acid (TCA) cycle, 
respiratory chain components and reactive oxygen species (ROS) 
generation (124). Microglial responses are similarly impacted by 
NOTCH signaling (125–127). Macrophage-specific Notch gene 
deficiency or γ-secretase inhibitor DAPT treatment suppress 
clinical disease in in vivo disease models, including EAE (126, 
128, 129). Overall, NOTCH signaling appears to have a pivotal 
role in the development of pathogenic macrophage responses 
and therapeutic strategies that target NOTCH signaling may be 
beneficial in inflammatory diseases, including MS.
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Peroxisome Proliferator Activated 
Receptors
Peroxisome proliferator activated receptors (PPARs) are nuclear 
hormone receptors that act as transcription factors and play 
important roles in development, differentiation and metabolic 
regulation (130). PPAR ligands include fatty acids, prostaglan-
dins (PG) such as PG J2 and leukotrienes (LT) such as LT B4 
(131). PPARs heterodimerize with the retinoid X receptor (RXR) 
and bind DNA, modulating target gene transcription. There are 
three PPAR receptors, PPAR α, β/δ, and γ. Stimulation of mac-
rophages with M2 stimuli such as IL-4 and IL-13 induces PPARγ 
and PPARβ/δ, which are necessary to stabilize M2 phenotype 
(132, 133).

PPARα activation has been linked to anti-inflammatory innate 
immune responses in macrophages. PPARα agonists have thera-
peutic activity in several inflammatory disease models [reviewed 
in Ref. (134), including EAE (135)]. Similarly, PPARα deficient 
mice suffer from worsened EAE disease (136). PPARα activation 
has also been shown to promote regulatory macrophages and 
mediate microbiota/gut homeostasis (137).

PPARγ activation has long been known to promote M2 
polarization and suppress inflammatory cytokines in mouse and 
human macrophages (138–140). Activation of PPARγ with the 
flavonoid apigenin suppresses M1 macrophage inflammatory 
cytokine IL-1β and iNOS expression and promotes expression of 
alternatively activated phenotype markers by modulating NF-κB 
signaling (141). Similar suppression of LPS-induced inflamma-
tory microglia has been reported via increased PPARγ signals 
(142). Accordingly PPARγ agonists suppress CNS neuroinflam-
mation in the EAE model (143).

PPARβ/delta is thought to play an anti-inflammatory role, 
although immune activating effects have also been reported. 
For example, induction of M2 polarization by IL-4 and IL-13 
is dependent on PPARβ/δ (144, 145). In addition, PPARβ/δ 
agonists suppress intestinal inflammation and EAE (146–148). 
However, studies in human monocyte-derived macrophages 
have shown that PPARβ/δ agonists both suppress inflammatory 
cytokines and suppress cytotoxic T  cell inhibitory molecules 
PD-1L and IDO (149).

In summary, PPAR nuclear receptors are activated by resolu-
tion phase lipid mediators, promoting CNS macrophage and 
microglia phenotype switching toward resolution. Therefore, 
PPARs stand out as potential therapeutic targets in neuroinflam-
matory disease.

c-Myc
c-Myc is a transcription factor that modulates cellular survival 
and proliferation and metabolism, with important roles in angio-
genesis, tumorigenesis, and immune responses (71, 150). c-MYC 
was found first to be induced by M2 stimuli such as IL-4 and 
IL-13 (71). In human macrophages, c-MYC translocates to the 
nucleus and controls the expression of half of the M2-associated 
genes (71). Human M2 markers SCARB, ALOX15, and MRC1 are 
directly promoted by c-MYC while others are indirectly induced 
(71). C-MYC also promotes STAT6 and PPAR-γ expression, fur-
ther stabilizing M2 phenotype (71). In mice, c-Myc has also been 

found in human tumor-associated macrophages (TAM) (151) 
and transcriptional profiling of murine BMDM has demonstrated 
that c-Myc is also a selective marker of murine M2 macrophages 
(47). c-Myc expression correlated with detectable Egr2 protein, 
specifically labeling M(IL-4) but not M (LPS + IFN-γ) BMDM 
macrophages (47).

The exact role of c-MYC in M2 macrophages is not entirely 
clear. c-MYC may influence macrophage proliferation, which 
is consistent with the loss of proliferation observed during M1 
macrophage stimulation (152). A pivotal role of c-MYC may be 
to metabolically program the macrophage. While HIF-1α induc-
tion in M1 macrophages promotes use of glucose via aerobic 
glycolysis to yield lactate and produce ROS, c-MYC expression 
in M2 macrophages may allow glycolytic activity necessary for 
M2 differentiation (153), providing additional sources of fuel 
for TCA cycle/oxidative phosphorylation (152). To summarize, 
c-MYC is gaining recognition as a mouse to human-conserved 
pro-M2 transcription factor. While much research is needed 
to understand c-MYC’s mechanistic actions, its connections to 
metabolic regulation of phenotype provide an intriguing area 
for exploration.

interferon Regulatory Factors
Interferon regulatory factors are transcription factors that are 
activated in response to cytokines, via JAK/STAT signaling, and/ 
or PAMPS and play important roles in innate and adaptive 
immunity. There are nine IRF family members, named IRF1-9 
(154), which modulate macrophage phenotype. Our current 
understanding is that IRF1, 5 and 8 promote classical activation 
while IRF4 promotes alternative activation (155).

IRF5 is strongly induced by LPS and IFN-γ and GM-CSF 
stimuli and plays a prominent role in M1 activation. IRF5 
interacts with RelA to bind target gene loci (156), resulting in 
enhanced IL-12 and IL-23 (157). IRF5 also promotes M1 polari-
zation by association to MyD88 (158). IRF5 variants have been 
linked to MS (159), possibly via enhanced inflammatory activa-
tion. Suppression of IRF5 in EAE, via inhibition of the Aurora 
Kinase A, reduced inflammatory cytokines and improved 
clinical disease (160). Another IRF, IRF1, also contributes to 
M1 phenotype via induction of iNOS and IL-12 (161). IFN-γ 
stimulation of macrophages induces Batf2, which was shown be 
an M1-specific factor than interacts with IRF1 to induce Nos2, 
Tnf-α and Ccl5 (162). IRF8 contributes to M1 phenotype by 
activating IL-12 transcription in cooperation with IRF1 (163). 
The clinical relevance of IRF8 is highlighted by the link between 
IRF8 variants and MS (164, 165). Mice with a myeloid-specific 
deletion of IRF8 are resistant to EAE. IRF8 activates microglia 
and drives an IL-12 and IL-23 rich environment that promotes 
Th1 and Th17 responses (166). In contrast, IRF4 is instead a 
major mediator of M2 polarization (167). IRF4 inhibits patho-
gen sensing via suppression of MyD88 signaling (167, 168) and 
collaborates with histone deacetylase Jumanji D3 (Jmjd3) to 
promote expression of M2 genes Arg1, CD206, Ym1, and Fizz1.

Overall, IRFs essentially link cytokine and PAMP extracel-
lular stimuli to signaling that enhances (IRF1, 5, 8) or suppresses 
(IRF4) inflammatory transcriptional programs. The association 
of IRFs to MS risk and EAE disease by impacting macrophages 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 2 | Summary of miRNAs linked with M1 or M2 phenotype.

M1 stimulated

miRNAs with proinflammatory effects

microRNA Modulated Pathways

miR-92 Mkkγ
miR-101 Mkp1
miR-105 Tlr2
miR-155 Inpp5d/SHIP-1, Cebpb, Creb, Bcl6, Sfp1, IL-13Ra, SOCS1 

and Sfp11, MafB, and Tspan14
miR-223 Pknox1

miRNAs with anti-inflammatory effects

microRNA Modulated Pathways

miR-21 NFkB, Il6, Tnfa, Tlr4, and Tlr8
miR-101 Dusp1
miR-125b Irf4
miR-146 Irak1, Traf6, Irf5, Tlr4, and Stat1
miR-223 Cebpb, Rasa1, and Nfat5

M2 stimulated

miRNAs with proinflammatory effects

microRNA Modulated Pathways

miR-26 Atf2 and Tnf
miR-27 Trc4, Irak4, Il6, Il1β, Tnfα, Nos
miR-let7b Tlr4, Tnfα
miR-let7i Tlr4

miRNAs with anti-inflammatory effects

microRNA Modulated Pathways

miR-23/27a/24-2 Jak1/Stat6, Irf/Pparγ, Tlr4, and Irak4
miR-21 Arg1, Il4α, Mrc1, and Pge2
miR-146 Irak1, Traf6, Irf5, Tlr4, and Stat1
miR-181 Il1a, Il6
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and microglia highlight the importance of IRFs and their poten-
tial as therapeutic targets.

eMeRGiNG PATHwAYS

MicroRNA
MicroRNA are small (~22 nucleotides) RNAs that are regulated 
in response to inflammatory signals, modulating macrophage 
and microglia activation and phenotype. The biogenesis of 
miRNA starts with transcription of a primary (pri-miRNA) 
transcript that undergoes several processing steps (169). The 
first involves Drosha/DCGR8 complex cleavage to generate a 
double-stranded hairpin precursor termed pre-miRNA. This is 
followed by pre-miRNA export to the cytoplasm, where Dicer 
eliminates the hairpin yielding a miRNA–miRNA duplex. One 
miRNA strand is then loaded onto the RISC complex for binding 
to target mRNA transcript. miRNA generally suppresses target 
gene expression via either induction of mRNA degradation or 
inhibition of translation (170).

In the context of inflammatory stimuli, miRNA modulate 
their expression and macrophage polarization (see Table 2). The 

importance of miRNA in macrophage/microglia polarization 
in now well documented. miRNA such as miR-155, miR-146, 
miR-101, miR-21 and let-7 family are induced in response 
to inflammatory stimuli while miR-223, miR-125b, and the 
miR-23/27a/24-2 cluster are instead downregulated. Among 
these miRNAs, miR-155 stands out as a miRNA necessary for 
inflammatory phenotype. miR-146 is instead induced by inflam-
matory stimuli to dampen the inflammatory response. These two 
miRNAs and the pathways they control are therefore discussed 
in detail below, together with a summary of the contributions 
of other miRNAs to pathways that modulate macrophage and 
microglia phenotype.

miR-155 is robustly induced in CNS inflammatory condi-
tions such as MS and spinal cord injury (171–174). Several 
cells in the CNS, including macrophages (175), microglia (176), 
astrocytes (177), and neurons (178) may express miR-155. 
miR-155 is the most highly upregulated miRNA after exposure 
to a range of inflammatory stimuli including M [LPS + (IFN-γ)]  
conditions in both murine/human macrophages (96, 173, 
179–183) and microglia (173, 176, 184). In contrast, exposure 
to alternatively activating stimuli such as IL-4 does not induce 
miR-155 (96, 185). The quick and swift induction of miR-155 
suggests that miR-155 plays a crucial role in determining the 
classically activated macrophage phenotype. In support of this 
hypothesis, miR-155 delivery into macrophages or microglia 
via exosomes enhances inflammatory gene expression, including 
IL-6 and IL-12 (186). miR-155 in microglia also modulates 
phenotype via suppression of SOCS-1 and enhancement of NO 
and cytokine production (176). So, what are the global effects 
of miR-155 on M1 phenotype? Transcriptional profiling in 
miR-155 KO macrophages exposed to M(LPS + IFN-γ) condi-
tions reveals that approximately half of the M(LPS +  IFN-γ) 
signature is miR-155 dependent (96). These results indicate 
that miR-155 is required for full expression of inflammatory 
macrophage signature. Among the most impacted genes, 
inflammatory cytokines such as IL-1β, IL-6 and IL-12, inflam-
matory enzymes such as iNOS and costimulatory molecules 
such as CD86 and CD40 and adhesion and migration molecules 
such as CD49E and CCR7 stand out (96, 97). These data are 
consistent with clinical improvement of EAE, SCI and stroke in 
animals deficient in miR-155 or treated with miR-155 antisense 
oligonucleotide inhibitors (171, 187). Since miRNAs typically 
suppress targets rather than promote them, the inflammatory 
gene activation effects of miR-155 are expected to be mediated 
by suppression of deactivating genes. Validated miR-155 tar-
gets include transcripts of the Inpp5d, Cebpβ, Creb, Bcl6, Sfp1, 
IL-13Rα, Socs1, Sfp11, MafB, and Tspan14 genes. We found that 
the transcripts of target genes Inpp5d, Ptprj, MafB and Tspan14 
inversely correlated with miR-155 (96). Targeting of Inpp5d by 
miR-155 promotes AKT signaling (188) in murine macrophages. 
In addition, CEPBβ has been shown to promote alternatively 
activated genes IL-10, IL-13Ra, arginase-1, RELMα (98) and 
targeting by miR-155 may suppress M2 phenotype. This is in 
contrast to the later finding that CEBPβ targeting by miR-223 
is essential to prevent inflammatory macrophage development 
and colitis (189). MAF suppresses IL-12 and promotes IL-10 
production in macrophages (190, 191) and its inactivation by 
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miR-155 may be required to initiate the inflammatory gene 
expression program.

Although miR-146a/b are coinduced with miR-155 in response 
to M1 stimuli (192), they have opposite effects. While miR-155’s 
role is to release the brake on inflammation, miR-146 instead sets 
off a series of events that will eventually dampen inflammation. 
miR-146 targeting of TRAF6, IRAK1, TLR4, and STAT1 appear 
to mediate some of these effects by limiting responsiveness 
to inflammatory stimuli (100–102). Similar results have been 
observed in microglia, where miR-146 has been shown to pro-
mote M2 phenotype by targeting IRAK1/TRAF6 (103).

Other miRNAs modulated with macrophage/microglia 
phenotype include miR-124, miR-125b, miR-223, miR-101,  
miR-21, the let-7 family and the miR-23a/27a/24-2 cluster. Effects 
on phenotype appear to be achieved through targeting to JAK/
STAT, NF-kB, or MAPK pathways and CEBP, PPAR, or IRF fam-
ily transcription factors as further described below or in Table 2.

The CEBP family of transcription factors is targeted by  
miR-124, miR-223, and let-7 family miRNAs in macrophages and 
microglia. miR-124 and miR-223 target CEBPβ, which promotes 
macrophage development (98) and both inflammatory (193–196) 
and alternatively activating cytokines (197, 198). miRNA-124 
is expressed in microglia, promoting a resting phenotype, but 
not in peripheral origin macrophages/monocytes (199). miR-124 
treatment suppresses microglia and macrophage activation, T cell 
infiltration and clinical disease in EAE and other CNS inflam-
matory models, suggesting it may beneficial in MS (199, 200).  
miR-223 maintains a deactivated state through targeting of CEBPβ 
(189). miR-let-7c is associated with less inflammatory GM-CSF 
induced macrophages, where it suppresses the pro-inflammatory 
TF CEPBδ (201). miR-let-7i (202) and miR-let-7b (203) have also 
been shown to dampen inflammation by suppression of TLR4 
expression.

Many miRNAs modulate macrophage phenotype by damp-
ening or promoting the NF-kB pathway that proinflammatory 
stimuli induce. For example, miR-125b promotes activated 
microglia phenotype by suppressing A20/NF-κB signaling (204). 
miR-let-7f also targets the NF-κB negative regulator A20, result-
ing in enhanced IL-1β and TNF-α (205). In addition, let-7b also 
acts as a TLR7 agonist in microglia, activating TLR signaling 
and downstream NF-kB activity and leading to inflammatory 
microglia and neurodegeneration (206). Consistent with this, 
let-7b correlates with TNF-α production in tumor-associated 
macrophages (207).

In summary, miRNAs are now established as important 
regulators of macrophage and microglia that modulate neuroin-
flammation and neurodegeneration. miR-155 and miR-146 have 
robust pro- and anti-inflammatory roles, respectively, that may 
be therapeutically harnessed in MS and other neuroinflamma-
tory diseases.

Metabolism
Metabolism is taking center stage in our understanding of path-
ways that modulate macrophage phenotype. While it was under-
stood that inflammatory macrophages necessitate metabolic 
adaptations to offset high energy requirements, the realization 
that metabolism in fact determines inflammatory or regulatory 

phenotype is possibly a paradigm shift. Since metabolic pathway 
choice depends on enzyme activity, it provides interesting new 
(or repurposed) therapeutic strategies for inflammatory disease, 
further discussed in section 8. For a summary of how metabolic 
pathways differ in M1 and M2 macrophages, refer to Figure 2.

Differences in amino acid metabolism have long been 
observed among macrophage phenotypes (208, 209). While 
M1 macrophages upregulate iNOS to convert arginine to NO 
for microbial killing, M2 macrophages induce arginase-1 and 
catabolize arginine to produce polyamines and proline for col-
lagen biosynthesis. Additional differences in ATP generation 
(glycolysis vs. mitochondrial oxidative phosphorylation), pen-
tose phosphate pathway activity, and TCA use have recently been 
demonstrated (210).

• ATP generation. Most tissues, including M2 macrophages, use 
mitochondrial oxidative phosphorylation (34 ATP/glucose 
or 129/palmitic acid) as a source of energy. In contrast, M1 
macrophages rely on aerobic glycolysis to lactate (2 ATP/
glucose) for energy generation (211). Aerobic glycolysis is also 
known as Warburg metabolism and this phenotype has also 
been observed in cancer cells (212).

Why a lower ATP output pathway would be chosen by M1 
macrophages is intriguing. Glycolysis may provide rapid ATP 
production. However, new evidence that NO production in M1 
macrophages strongly inhibits oxidative phosphorylation by 
impairing the electron transport chain (213) provides an alterna-
tive explanation for the need to use an alternative pathway for 
ATP generation.

While M1 macrophages have increased glycolytic activity as 
compared to M2 macrophages, M2 macrophages also depend to 
some extent on access to glucose and its oxidation via glycolysis. 
Although the TCA cycle in M2 macrophages was thought to be 
mostly fueled by fatty acids (210), recent work by has shown 
that an active glycolysis pathway is essential for TCA/oxidative 
phosphorylation and M2 phenotype (153).

• Pentose phosphate pathway (PPP). The PPP directs some glu-
cose-6P away from the glycolysis pathway and into generation 
of ribose-6P and derivatives. This pathway yields nucleotides 
to support DNA replication and RNA transcription and 
NADPH for ROS and NO generation. In addition to increased 
glycolysis, high PPP activity is characteristic of M1 macro-
phages (214).

• Krebs/TCA cycle. M2 macrophages rely almost exclusively 
on ATP generation via oxidative phosphorylation coupled 
to an intact TCA cycle (213, 215, 216). In contrast, in M1 
macrophages the TCA cycle is “broken” at two steps: citrate to 
α-ketoglutarate and succinate to fumarate (217, 218). Reduced 
isocitrate dehydrogenase activity leads to citrate accumula-
tion in M1 macrophages. Citrate supports M1 phenotype by 
promoting FAS and membrane biosynthesis, prostaglandin 
and itaconate production. Itaconate inhibits succinate dehy-
drogenase causing the second break in the cycle and succinate 
accumulation (219). Succinate stabilizes HIF-1α and promotes 
IL-1β production in LPS stimulated macrophages (217, 218). 
The second break in the TCA cycle is linked to a reversal in 
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electron transport chain direction that fuels an increase in 
mitochondrial membrane potential and supports classic M1 
NO and ROS generation (217).

In summary, M1 and M2 macrophages use opposing meta-
bolic pathways to fulfill energy and biosynthetic requirements. 
M1 macrophages favor glycolysis to lactate and PPP pathways 
to provide energy and support NO and ROS generation. M2 
macrophages instead rely on TCA cycle for ATP generation. This 
metabolic dichotomy is not a consequence of M1 or M2 phe-
notype, but rather a requirement for either phenotype, therefore 
providing exciting opportunities for therapeutic targeting.

Receptor-Tyrosine Kinases
Receptor-tyrosine kinases have been proposed to fine-tune 
macrophage function in immunity and tissue homeostasis. 
Macrophages are known to express RTKs within three families of 

RTKs, namely platelet-derived growth factor receptor (PDGFR), 
the AXL/TYRO3/MERTK family, and the RON superfamily. 
Colony stimulation factor receptor 1 (CSF1R) is involved in 
macrophage development and is a member of the PDGFR super-
family (220). The PDGFR family receptors are characterized by 
5 Immunoglobulin (Ig)-family domains and a kinase domain. 
The TAM (TYRO3/AXL/MERTK) family is instead character-
ized by two Ig-like domains, two fibronectin III repeats and a 
Kinase domain (221, 222). Finally, the human RON receptor 
(STK in mouse) is a member of the MET family of RTKs  
(223, 224). Ligation of RTKs to ligands, such as M-CSF to CSF1R, 
apoptotic cell phosphatidyl serine (PtdSer) via grown arrest 
specific 6 (Gas6) and Protein S bridging to TAM family RTKs 
and macrophage-stimulating protein (MSP) to STK results in 
activation of kinase activity (225–227).

The active form of STK ligand MSP is generated via the 
coagulation cascade (228) and has a crucial role in the response 
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of macrophages to inflammatory cytokines and LPS. MSP 
dampens NO and PGE2 production via suppression of iNOS and 
COX-2 expression (229–231). TAM receptors mediate apoptotic 
cell removal after PtdSer is recognized via Gas6 or Protein S, 
activating MerTK and reducing TNF-α and LPS responsiveness 
(232). NO activity, IL-12 production and MHCII expression are 
also controlled by MSP: MSP exposure prior to LPS  +  IFN-γ 
activation inhibits these signature M1 factors via arginase-1 
induction (233). Consistent with the proresolving role of RTKs, 
macrophages from Tyro3, MerTK, and Axl triple KO mice dis-
play enhanced IL-12, MHCII, and costimulatory molecules in 
response to LPS (234).

The AXL RTK is also induced in mouse and human mac-
rophages by type I IFNs and TLR3 stimulation (235). This induc-
tion may signal enhanced apoptotic cell removal needs during 
inflammation. The Rothlin group added a relevant layer to the 
physiologic role of TAM RTKs AXL and MERTK in resolution 
of immune responses to infection and promotion of tissue repair 
(60). They found that including apoptotic cell ligands for TAM 
RTKs strongly enhanced the expression of anti-inflammatory 
and tissue repair genes, including RELMα, CHI3L3, FN1, and 
EAR2 in response M2 (IL-4) stimuli (60) in vitro. Such signaling 
was essential to dampen inflammation and allow tissue repair 
in thioglycollate and helminth infection models. Their results 
implicate that apoptotic cell sensing by AXL and MERTK in the 
presence of IL-4 responses drives anti-inflammatory and tissue 
repair programs in macrophages. It is interesting to speculate 
whether the failure of most interventions to enhance M2 phe-
notype during injury (236, 237) may stem from deficiencies 
in these pathways. If so, small molecule-mediated stimulation 
of these pathways during chronic CNS inflammation may be 
a promising therapeutic strategy to promote proregenerative 
macrophages/microglia.

In summary, RTK activity is largely stimulated by resolution 
mediators, such as MSP and apoptotic neutrophil PtdlSer in late 
stages of acute inflammation. These signals effectively suppress 
inflammatory responses and promote and amplify a resolution 
macrophage phenotype switch. These findings highlight a phy-
siologically relevant pathway for inflammation resolution that 
may be therapeutically harnessed in neuroinflammatory disease.

THeRAPeUTiC STRATeGieS FOR 
MACROPHAGe/MiCROGLiA PHeNOTYPe 
RePROGRAMMiNG

Increased understanding of the molecular pathways that pro-
mote inflammatory and resolution phenotypes in macrophages 
and microglia provides therapeutic targets for inflammatory 
diseases, including the autoimmune disease MS. Due to the 
increasing importance of metabolic reprogramming in mac-
rophage phenotype, we will focus our discussion on the current 
understanding of how available metabolic reprogramming drugs 
may impact macrophage phenotype and MS.

Dichloroacetate (DCA) is an inhibitor of PDK1, a kinase that 
in turn suppresses PDH. DCA treatment therefore increased 
PDH activity, shifting cellular metabolism toward the TCA cycle/

oxidative phosphorylation and promoting a proregenerative M2 
resolution phenotype (238). Consistent with a shift from M1 to 
M2 phenotype in macrophages and microglia, treatment with 
DCA suppressed clinical disease scores and T cell infiltration in 
the EAE model of MS (239).

Dimethylfumarate (DMF) is an approved oral drug for MS 
treatment that has been shown to efficiently reduce relapse 
rate and disease progression (240). DMF is thought to exert 
its therapeutic effects via activation of the Nrf2 pathway and 
induction of the antioxidant response. Could DMF’s metabolite 
monomethyl fumarate enter the TCA cycle at the fumarate step, 
thereby modulating oxidative phosphorylation? Consistent 
with this scenario, increased TCA cycle intermediates malate, 
fumarate and succinate are observed in DMF-treated oligoden-
drocytes (241). However, it is unknown whether similar effects 
occur in macrophages and microglia. Microglia and myeloid cell 
pretreatment with DMF does however reduce NO and inflam-
matory cytokine production (242, 243), although these effects 
have not been recapitulated in DMF-treated EAE mice (244). 
Similarly, increased superoxide generation has been observed in 
fumarate-treated monocytes (245), indicating that DMF’s effects 
may depend on timing and context.

Many of the current drugs targeting metabolic pathways are 
currently approved for type II diabetes and metabolic syndrome 
therapy. One of the first drugs for type II diabetes, the biguanide 
family metformin, inhibits AMPK and complex I of the electron 
transport chain (ETC) (246). Treatment of LPS-activated mac-
rophages with metformin suppresses NO and IL-1β production 
while increasing IL-10 (247). This effect was due to inhibition 
of complex I, which is necessary for respiratory electron chain 
in M1 macrophages (247). In vivo metformin treatment reduced 
inflammatory cytokine production, reduced Th17 responses and 
enhanced Tregs, overall ameliorating EAE disease (248, 249). The 
common use of metformin for metabolic syndrome has allowed 
to test whether it is beneficial in MS. In an open-label study of 
50 obese MS patients, the 20 patients who received metformin 
had decreased new or enlarging T2 and gadolinium-enhancing 
lesions (250, 251). These clinical effects were accompanied by 
significant decreases in inflammatory Th1 and Th17  cells but 
significant increases in Tregs in metformin-treated patients (250).

Pioglitazone and rosiglitazone are antidiabetic drugs from 
the thiazolidinedione family that act as full agonists of PPARγ, 
modulating multiple metabolic processes, particularly lipid and 
glucose metabolism (130, 252). A smaller number of patients in 
the metformin study above were treated with pioglitazone and 
similarly benefited from reduced lesions and shifts from inflam-
matory to regulatory T cell responses (250). These clinical effects 
are consistent with previously reported suppression of microglial 
activation and clinical disease in the EAE model (253, 254).

CONCLUDiNG ReMARKS

Recent studies have provided us with a more thorough and 
insightful understanding about how steady-state and acute 
environmental signals are integrated by macrophages and their 
microglial counterparts to maintain optimal neurologic func-
tion, eliminate infection and resolve injury or inflammation. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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Besides PRR-induced Jak2/NF-κB signaling, Notch receptor 
signaling and PI3K/AKT2/miR-155 signaling contributes to M1 
phenotype. In contrast, PI3K/AKT1/miR-146 and apoptotic cell-
induced RTK signaling promotes M2 phenotype. These effects 
are achieved through IRF-mediated control of gene expres-
sion, leading to changes in how cellular nutrients are used via 
metabolic pathways. M1 macrophages turn to aerobic glycolysis/
Warburg metabolism and high PPP activity for energy produc-
tion and simultaneously promote NO, ROS, and IL-1β expres-
sion. Interestingly, NO inhibits oxidative phosphorylation, which 
may explain the need for TCA-independent sources of energy in 
M1 macrophages. In contrast, M2 macrophage polarization and 
function is entirely dependent on TCA/oxidative phosphoryla-
tion, although glucose is also essential for M2 phenotype. Links 
between classic pathways known to affect macrophage phenotype 
and metabolism are starting to emerge. The PI3K/AKT pathway 
activates mTOR signaling, a major regulator of glucose metabolic 
pathways in the cell. Similarly, PPARγ is another major regulator 
of macrophage phenotype and lipid/glucose metabolism. Finally, 
c-MYC is an important mediator of M2 phenotype in murine 
and human macrophages that modulates glucose fuel utiliza-
tion. The requirement of active metabolic pathways for specific 
macrophage phenotypes constitutes a paradigm shift in the field, 
away from a mere supporting role. Perhaps more importantly, it 

provides an opportunity for therapeutic modulation at the step 
where signaling pathways converge to determine phenotype. 
Novel and repurposed metabolic reprogramming drugs may pro-
vide promising alternative therapeutic strategies in MS and other 
neuroinflammatory disorders. So far, a study has shown excellent 
clinical MS responsiveness using metformin and pioglitazone in 
obese MS patients. Further studies are required to evaluate the 
efficacy of these treatments in the general MS population and 
understand how they impact macrophages and microglia pheno-
type. The field is ripe to address these questions and exciting basic 
knowledge and therapeutic opportunities lie ahead.
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