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Precision identification of high-risk phenotypes and
progression pathways in severe malaria without requiring
longitudinal data
Iain G. Johnston1,2,3, Till Hoffmann4, Sam F. Greenbury 2,4, Ornella Cominetti5, Muminatou Jallow6, Dominic Kwiatkowski7,
Mauricio Barahona 2,4, Nick S. Jones2,4 and Climent Casals-Pascual 7,8

More than 400,000 deaths from severe malaria (SM) are reported every year, mainly in African children. The diversity of clinical
presentations associated with SM indicates important differences in disease pathogenesis that require specific treatment, and this
clinical heterogeneity of SM remains poorly understood. Here, we apply tools from machine learning and model-based inference to
harness large-scale data and dissect the heterogeneity in patterns of clinical features associated with SM in 2904 Gambian children
admitted to hospital with malaria. This quantitative analysis reveals features predicting the severity of individual patient outcomes,
and the dynamic pathways of SM progression, notably inferred without requiring longitudinal observations. Bayesian inference of
these pathways allows us assign quantitative mortality risks to individual patients. By independently surveying expert practitioners,
we show that this data-driven approach agrees with and expands the current state of knowledge on malaria progression, while
simultaneously providing a data-supported framework for predicting clinical risk.
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INTRODUCTION
Severe malaria (SM) is a major public health problem and a
complex disease. Worldwide, 3.3 billion people live in areas where
malaria is transmitted by infected anopheline mosquitoes. Despite
recent improvements in the implementation of effective control
measures in some countries, an estimated 216 million clinical
malaria cases and 445,000 deaths were reported in 2016, with
deaths mainly occurring in sub-Saharan Africa.1

The definition of SM proposed by the World Health Organiza-
tion (WHO) was designed to capture the majority of children at
risk of dying, and thus it prioritises sensitivity over specificity. In
sub-Saharan Africa, children with coma (cerebral malaria) and/or
respiratory distress (RD) are at the highest risk of death. However,
these clinical syndromes encapsulate a heterogeneous population,
and possibly reflect diverse pathophysiological processes. Criti-
cally, the current WHO classification of SM fails to capture this
heterogeneity, and so treatment allocation based on this
definition may have undesired consequences. Indeed, most
adjuvant treatments proposed to date have consistently failed
to improve patient outcome, and some of these treatments have
been shown to increase mortality in children.2–4

The sequence of events leading to SM is poorly understood. A
major determinant of death is the time elapsed from the initial
symptoms to clinical presentation, with most deaths taking place
within 24 h of admission.5–7 Typically, clinical studies rarely
capture the temporal component of the infection; accordingly,
the natural history of the disease is inferred from experimental

models, even though findings from these models are not always
easily translated to human malaria.8

The explosion of data generation across the biomedical
sciences coupled with advances in mathematical and computa-
tional tools provide the unprecedented opportunity to learn about
these poorly understood dynamics.9 Quantitative approaches
leveraging these large datasets can be used to reveal progression
pathways and learn features correlated with patient outcomes.
Such approaches are central to the ongoing goal of “precision
medicine”, where clinical protocols are optimally tailored to the
individuals, or subgroups of individuals, under consideration.
However, the heterogeneity and the large scale of biomedical
data, including data on malaria progression, poses challenges to
quantitative approaches. Typically, the identification of prognostic
factors is based on generalised linear models that use a set of
features as independent variables. However, the complexity of
these models increases dramatically when interactions between
factors are important, and generalised linear models lack the
ability to naturally dissect dynamic data.
Here, we address these issues by undertaking two complemen-

tary analyses to exploit a large dataset on clinical malaria
presentation. The first uses mutual information (MI) to learn
clinical factors predictive of patient outcomes. The second uses
the recently developed HyperTraPS (hypercubic transition path
sampling) algorithm,10 to learn dynamic probabilistic pathways of
disease progression. This dual approach provides the advantages
of both data-driven analysis and model-based inference. MI

Received: 28 February 2019 Accepted: 6 June 2019

1Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway; 2EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London,
London, UK; 3Alan Turing Institute, London, UK; 4Department of Mathematics, Imperial College London, London, UK; 5Nestlé Institute of Health Sciences, Lausanne, Switzerland;
6Medical Research Council Unit, The Gambia, Fajara, P.O. Box 273, Banjul, The Gambia; 7Wellcome Trust Centre for Human Genetics, Oxford, UK and 8Hospital Clinic i Provincial de
Barcelona, CDB and ISGlobal, Barcelona, Spain
Correspondence: Nick S. Jones (nick.jones@imperial.ac.uk) or Climent Casals-Pascual (ccasals@well.ox.ac.uk)
These authors contributed equally: Iain G. Johnston, Till Hoffmann; Nick S. Jones, Climent Casals-Pascual

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

http://orcid.org/0000-0003-4452-2006
http://orcid.org/0000-0003-4452-2006
http://orcid.org/0000-0003-4452-2006
http://orcid.org/0000-0003-4452-2006
http://orcid.org/0000-0003-4452-2006
http://orcid.org/0000-0002-1089-5675
http://orcid.org/0000-0002-1089-5675
http://orcid.org/0000-0002-1089-5675
http://orcid.org/0000-0002-1089-5675
http://orcid.org/0000-0002-1089-5675
http://orcid.org/0000-0002-0867-8954
http://orcid.org/0000-0002-0867-8954
http://orcid.org/0000-0002-0867-8954
http://orcid.org/0000-0002-0867-8954
http://orcid.org/0000-0002-0867-8954
https://doi.org/10.1038/s41746-019-0140-y
mailto:nick.jones@imperial.ac.uk
mailto:ccasals@well.ox.ac.uk
www.nature.com/npjdigitalmed


approaches are more robust regarding nonlinearities in relation-
ships and do not suffer from the shortcomings of log odds ratios
(LORs) associated with linear regression. HyperTraPS allows the
Bayesian inference of dynamic pathways describing the successive
acquisition of features or symptoms directly from cross-sectional
(or longitudinal) observations. This method has been recently
applied to elucidate the dynamics and mechanisms underlying
the evolution of mtDNA genome structure10 and efficient
photosynthesis.11

We proceed by applying independent MI and HyperTraPS
approaches to identify prognostic factors and to infer the
sequence of events from cross-sectional data in patients with
SM. We underline that the approaches we describe are not specific
to SM and have general applicability to the study of disease
progression. We compare the results of both our data-driven
analysis and inference approaches and a survey of expert opinion
on malarial progression, and demonstrate how these quantitative
methods can be used to make predictions in precision medicine
approaches for patient stratification.

RESULTS
The original dataset includes 2915 patients with severe Plasmo-
dium falciparum malaria.12 Of these, we use the 2904 children with
available outcome data, of which 387 deaths were recorded (case-
fatality rate: 13.3%). Clinical features of disease severity were used
to classify patients into three overlapping clinical categories: 1166
children had respiratory distress (RD) (40.2%); 1060 (36.5%) had
cerebral malaria (CM); and 659 (22.7%) had severe anaemia.

Features informative of death beyond the WHO classification
We used mutual information (MI) to seek the features that most
strongly correlated with mortality in our datasets. We employed
the following iterative procedure (see Methods): we identified the
feature that best predicts mortality for a set of observations and
split the dataset according to that feature; we then sought the
next feature that best predicts mortality. The algorithm stops
when no further statistically robust connections with mortality can
be identified. In this way, the stratification afforded by this
iterative approach reveals the features most strongly linked to
mortality for any given combination of clinical presentations.
Using this approach we found that presence of CM was the

strongest initial predictor of mortality (CM in Fig. 1). This presence
is classified in the clinic via the Blantyre coma score (BCS), which
ranges from 5 (fully conscious) to 0 (not responsive); if BCS ≤ 2
with any parasitic presence, CM is diagnosed. Splitting the cohort
into cerebral versus non-CM cases, we found that the presence of
RD was the next most predictive feature of mortality in both cases.
Further iterations of the MI evaluation revealed that abnormal
posturing, absence of transfusion and lack of splenomegaly were
robust predictors of mortality.

Sequence of events leading to severe malaria
To elucidate the pathways by which malaria progresses, we next
used HyperTraPS (hypercubic transition path sampling), an
algorithm for inferring the dynamics by which traits are acquired
or lost over time.10 HyperTraPS uses a general model of all
possible transitions that can occur between states in a system, and
uses data to refine estimates of the probability of each transition.
This model-based inference method, identifying dynamic order-
ings and couplings, provides a natural complement to the above
data-driven MI-based analysis, which identifies how outcomes
depend on features. The clinical features in our dataset comprise a
collection of true/false and ordinal features (Supplementary
Table 1; Fig 2). In the case of true/false features, “true” reflects
feature presence and “false” feature absence (for example, “Is the
patient coughing?”). In some cases (see Methods) these

observations correspond to a quantitative threshold; for example,
hyperparasitaemia is defined as over 2.5 × 105 parasites/µL blood.
Regarding ordinal features, we consider a set of inequalities
reporting the severity of the condition. For the ‘dehydration’
feature, the score runs from 0 to 3: we assign separate features
describing when this score is ≥1, ≥2, and =3. For consciousness
we use the BCS score: we assign separate features describing
when this score is ≤4, ≤3, ≤2, ≤1, and =0. Importantly, we take
into account that these inequality features are not independent,
i.e., a BCS ≤ 2 is also ≤4. In consequence, we expect to see an
ordering in any posteriors on these features.
Two features in our dataset were treated differently: death and

transfusion. We used death to split the dataset into those patients
that survived and those that died: these different sets are kept
separate in the analyses to identify differences in the pathways
associated with these different outcomes. Since transfusion is an
extrinsic intervention rather than an intrinsic feature of disease
progression, we removed this feature from the dataset for the
HyperTraPS analysis of disease progression (if transfusion is
retained in the dataset, inferred disease progression pathways
are similar, and transfusion is identified as a significant
discriminant between survivor and death pathways, as seen in
Fig. S1). All other features in the original dataset were retained: the
HyperTraPS analysis was not linked to the MI analysis above and
constitutes an independent analysis approach treating all features
a priori on the same footing. We computed posterior distributions
over disease progression pathways separately for cases where the
patient survived and cases in which the patient died. These
posteriors are summarised in Fig. 2.
Intuitively, the inferred orderings for those features that are

themselves progressive (decreasing BCS and increasing dehydra-
tion indices) match the expected disease course for an initially
healthy patient whose condition worsens over time. Substantial
separation of features is observed, with refusal to feed and

Fig. 1 Mutual information approach to identify features predicting
mortality. At each level (horizontal axis), patient data are greedily
split into two subsets according to the remaining feature that most
strongly predicts mortality. The algorithm stops when no feature is
statistically significantly associated with death. The figure shows a
tree generated by this algorithm: cerebral malaria (CM), respiratory
distress (RD), splenomegaly (SP), abnormal posturing (PO) and
transfusion (TF) are selected as informative features. Nodes are
shown as pie charts representing the composition of WHO
classifications in each cluster. Solid (dashed) edges indicate that
the feature was present (absent) and their width is proportional to
the number of patients. The vertical axis corresponds to the
mortality log odds ratio compared with the average mortality.
Partition 8 has infinite log odds ratio (LOR) because all patients
survive
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tachypnoea among the earliest-onset features, and renal failure
and pulmonary oedema among the latest. The posteriors for some
features (dehydration, BCS, refusal to feed, jaundice and
hyperparasitaemia) are more tightly constrained around given
orderings than other features, suggesting varying flexibility

amongst clinical features in the ordering in which they are
manifested during disease progression.
Several clinical features notably discriminate the live and dead

outcome groups in Fig. 2a. The dead cohort exhibits substantially
earlier onset of low BCS, consistent with the predictive power of
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these features identified in the above MI analysis (where CM,
defined as BCS ≤ 2, was the strongest initial predictor of mortality).
The dead cohort also shows later inferred ordering for anaemia,
and earlier accessory muscle use and deep breathing. The
posteriors for all these features were notably different between
living and dead data classes, with greater Kolmogorov–Smirnov
distances between posteriors from survival and death pathways
than between either posterior and the uninformative prior
(Fig. 2b). The congruence between the features identified through
this pathway analysis and those identified through the above MI
approach suggest that this novel inference approach reveals
robust aspects of disease progression, which we test
further below.

Validation of data-driven inference with independent expert
survey
To validate our findings on disease progression, we surveyed 11
clinical practitioners in the field of malaria to build a consensus
picture of clinical perceptions of malaria progression. We asked
respondents to score each of the 25 features from our dataset as
1-2-3 (early; intermediate; late) according to their clinical
perception of when a particular symptom was most likely to
appear during disease progression. We then compared the mean
response computed from the survey data to the mean orderings
inferred through HyperTraPS. We found a statistically significant
correlation between the clinicians’ views and the orderings arising
from computational inference from the full dataset (Fig. 3, R=
0.518, p= 0.008), the strength of which was particularly notable
given the range of expert opinions for several features (error bars
in Fig. 3). The views from the survey correlated better with inferred
results from the subset of patients who lived (R= 0.521) than with
those from patients who died (R= 0.399). The largest discrepan-
cies between the inferred and survey orderings include fever,
tachycardia and coughing (which the survey ranks earlier than the
inference) and prostration, convulsions and coma (which the
survey ranks later than the inference). The raw data for these
features, in the form of frequency counts for each feature across
patients, tend to support the inference picture: for example,
prostration is seen to be an extremely common feature and
coughing often occurs only in patients with several other
symptoms (Fig. 3).

Using inferred pathway data to estimate hidden features
Our computed probabilistic description of the pathways under-
lying malaria progression allows us to predict unobserved features
in particular patients. More precisely, by learning the structure of,
and variability in, probabilistic pathways of disease progression,
we can, in effect, build a set of probabilistic statements reporting
the chance that an unobserved symptom is present or absent in a
given patient, contingent on the presentation of other symptoms
in light of the inferred ordering and relationship between
symptoms. For example, the symptom ‘fever’ is inferred to occur
consistently earlier than ‘hyperparasitaemia’; therefore, a patient
whose fever status has not been observed, but who has been
observed to present hyperparasitaemia, will be predicted to likely

(but not certainly) have already acquired a fever. The pathways
inferred by HyperTraPS generalise this simple two-feature picture
to allow predictions based on the presence or absence of all
features.
To demonstrate this predictive capability, we tested our

algorithm on a randomly sampled subset of half of the patients
from our dataset, learning the posterior distributions describing
ordering of disease progression as in Fig. 4. We then artificially
obscured 10% of the features in a random subset of 1000 patients
from the remaining (unseen) dataset and attempted to predict the
values of these obscured features in different patients (Fig. 4a). Of
3318 features artificially obscured in the test dataset, we obtained
predictions with 75% confidence for 1330 features (40%). Overall
83% of these predictions were correct, reflecting successes in
predicting both presence and absence of obscured features. By
comparison, a predictor only using the frequency counts of
feature incidence in the dataset resulted in a 68% success rate
using the same protocol.

Using inferred pathway data to predict future progression
Another, potentially more clinically valuable, mode of prediction
facilitated by our pathway analysis is the likely next step in a
disease progression pathway associated with an individual
patient. Given an inferred set of likely progression pathways and
a (possibly incomplete) observation of patient symptoms, we can
integrate over all the possible states that could give rise to that
observation and compute the probabilities with which each
unacquired symptom will be the next step in a progression
trajectory. Importantly, this approach may help target therapies to
address the next most important stage in progression of the
disease in individuals. To demonstrate this process, we used the
learned pathways of disease progression to predict the likely next
symptoms to become manifest as the disease progresses for a

Fig. 2 Inferring the pathways of malarial disease progression with HyperTraPS. a The HyperTraPS algorithm (see text) was used to infer the
ordering with which malarial symptoms are likely acquired across patients. Horizontal axis records symptoms; vertical axis records ordering
from low (early acquisition) to high (late acquisition). This ordering axis is grouped into seven longer “ordering windows” in the lower
subsection of the figure, to display broader trends in addition to specific features of the dynamics. The size of a semicircle denotes the
posterior probability that a given symptom is acquired at a given ordering in progression of malaria. Red semicircles are posteriors from the
dataset of patients who died; blue semicircles inferred from patients who lived. Highlighted symptoms display a greater Kolmogorov–Smirnov
distance between posteriors from survival and death pathways than between either posterior and the uninformative prior, forming potentially
diagnostic features. b Posterior distributions on ordering for three features that differentiate between patients that eventually die and those
that eventually survive, and for one that does not discriminate

Fig. 3 Comparison of inferred disease progression results with
expert survey. Horizontal axis gives the mean ordering of a
symptom’s acquisition from HyperTraPS inference results; vertical
axis gives the mean ordering of that symptom resulting from a
survey of expert opinions (see text). The size of each circle is
proportional to the frequency with which that feature is “present”
when observed in the dataset: small circles are rarely observed, large
circles commonly so. Vertical error bars correspond to the standard
deviation of expert responses for a given feature, illustrating the
substantial range of opinions across our surveyed experts

I.G. Johnston et al.

4

npj Digital Medicine (2019)    63 Scripps Research Translational Institute



Fig. 4 Prediction and validation of hidden patient symptoms using HyperTraPS. a Rows correspond to an illustrative subset of individual
patients; columns give different observed symptoms. Upwards triangles denote feature presence, downwards triangles denote absence. A
random subset of features was artificially hidden, and the prediction algorithm using HyperTraPS posteriors described in the text was then
applied to predict the presence or absence of these features given the remaining features (small grey triangles). Blue triangles denote correct
predictions; red denote incorrect predictions; large grey triangles give instance where no strong prediction was available. Overall 83% of
predictions (1104 of 1330) were accurate. b Illustration of prediction of likely next steps in disease progression for a given patient. Starting
from any given patient state, HyperTraPS posteriors give the probability that any symptom is the next to be acquired by that patient. Circles
represent the probability that each symptom will be acquired next, in two cases: a patient with no symptoms, illustrating the agreement with
Fig. 2, and a real patient taken from the dataset. In both cases the four most likely next symptoms are given on the right
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given sampled patient observation (Fig. 4b). Due to the single-
point nature of our dataset, we cannot use it to verify these
predictions but we include this approach here as a demonstration
for validation and a testable suite of hypotheses for future clinical
studies.

Using inferred pathway data to classify high-risk patients
HyperTraPS returns posterior distributions on the orderings of a
progressive process, distinguishing events likely to occur earlier
from those likely to occur later. The posteriors can be used to
compute the probability that a patient with a given set of
symptoms is on a high-risk disease progression pathway predicted
to end in mortality, or on a lower-risk pathway predicted to end in
survival.
To do so, we use Bayes’ theorem:

P survivor pathwayjpatient datað Þ ¼ P patient datajsurvivor pathwayð Þ
P survivor pathwayð Þ = P patient datað Þ

(1)

to compute the likelihood associated with observing a given
patient’s symptoms from the lower-risk (survivor) posterior
parameterisations. There is an equivalent computation for the
high-risk (dead) posterior (Fig. 5a).
We tested this approach by first assigning equal prior weight to

both pathways (P(survivor pathway)= P(dead pathway)= 0.5) and
then computing estimates of P(patient data|survivor pathway) and
P(patient data|dead pathway) for 50 randomly chosen patients
from each of the living and dead datasets (Fig. 5b). If one
predicted pathway was at least 1.5 times more likely than the
other, we recorded this prediction as the more likely pathway for
that patient. Of the 50 randomly chosen patients from the dead
dataset, 23 had associated predictions: 22 were correctly predicted
as high risk and 1 was incorrectly predicted as low risk. Of the 50
randomly chosen patients from the living dataset, 25 had
associated predictions: 15 were correctly classified as low risk
and 10 were misclassified as high risk. The risk of false negative
high-risk classification from this approach is thus low, although a
risk of false positive high-risk classification remains.

DISCUSSION
In this study, we have independently used mutual information (MI)
and Bayesian inference of dynamic disease pathways with
HyperTraPS to identify the most informative clinical features
associated with death in Gambian children with SM, and the
sequence of appearance of these features. This inference process
reflects a novel way of analysing disease datasets, using cross-
sectional data to learn the likely dynamics of disease progression.
This is possible because the underlying model represents
individual patient data as being sampled from that patient’s
disease progression trajectory from a healthy initial state through
the progressive acquisition of disease symptoms. By analysing
many patient samples together and placing them all in the same
probabilistic framework for disease progression, we can thus use
single-point observations to characterise the structure of, and
variability in, progression pathways across a population. The value
of this powerful approach is clear: we can simultaneously learn the
dynamic pathways of disease progression, identify key predictors
of clinical outcome, and use this unprecedented elucidation of
disease dynamics to facilitate novel and clinically informative
classification of the clinical risk associated with individual patients.
MI identified the Blantyre coma score (BCS) as the most

informative clinical feature associated with death (a coma score of
2 or less defines cerebral malaria [CM],1,5–7,13 as in Fig. 1). A major
prognostic feature of SM is impaired consciousness, a feature
which is adequately captured by the BCS. We and others have
previously reported the correlation of the coma score and the

odds of death. The absence of CM reduced the odds of death
significantly. The next feature identified, respiratory distress (RD),
increased the odds of death in patients with and without CM. In
this model, both CM alone and CM in combination with RD
accounted for the majority of cases with increased mortality. The
administration of a blood transfusion was identified as the next
informative prognostic feature in patients with CM and RD. Blood
transfusion appeared to reduce mortality in those patients
presenting with the three SM syndromes (severe malarial anaemia
[SMA], CM and RD). Interestingly, although the reduced odds of
death were observed in patients with SMA, the majority of this
group did not present with SMA. The potential benefit of
transfusing patients with haemoglobin concentrations greater
than 50 g/L is unclear and the WHO recommends blood
transfusion for patients with haemoglobin concentrations up to
60 g/L only in presence of RD or impaired consciousness.12 Our
data suggest that patients with higher haemoglobin concentra-
tions could benefit from blood transfusion and this seems
particularly beneficial for patients presenting with CM and RD.
Indeed, patients with CM and RD that received blood transfusions
presented lower mortality than those not transfused, although
their mean haemoglobin concentration (68.7 g/L) was above the
recommended threshold for transfusion. Abnormal posturing is
not frequently observed in non-comatose patients with SM.

Fig. 5 Bayesian classification of patient risk. a Pipeline for applying
Bayes’ theorem and simulation on the learned dynamics of surviving
and dead patients to classify risk of new patients. b A test dataset of
50 patients that died and 50 patients that survived was analysed
using posterior distributions for disease progression pathways
derived from a separate training dataset. Figures give the likelihood
ratio of a given patient being on a high-risk trajectory to that patient
being on a low-risk trajectory, used to classify patients into high and
low risk classes. Blue figures show where this classification aligns
with the true patient outcome; red figures show where this
classification does not align with patient outcome; dashes indicate
cases where a classification was not available. Bars show the
proportions of correct (blue) to incorrect (red) classifications. Overall
81% of classifications (57 of 70) were successful; false positive
identification rate of high-risk patients (i) is 20%, and false negative
identification of high-risk patients (ii) is 6%
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However, we identified abnormal posturing as an informative
feature in patients with SMA and RD. A plausible explanation is
that these patients presented with advanced RD and oxygen
deprivation, exhibiting thus symptoms associated with hypoxic
brain dysfunction.
We also observed that clinical features associated with a better

clinical outcome (below average mortality), showed a good
correlation with the WHO classification. In particular, we found
that presence of an enlarged spleen (splenomegaly) was
associated with a better outcome in patients with SMA. This is
likely related to the spleen’s attempt to clear P. falciparum infected
erythrocytes from blood, which probably reflects an adequate
immune response.
In addition to, and independently of, identifying the most

informative features that predict death, we used a Bayesian
approach to infer the sequence of appearance of events that lead
to death, providing the first posterior distributions on the
progression dynamics of clinical symptoms in SM. This data-
driven approach was validated by an independent survey of 11
experienced clinicians. Most clinicians who agreed to participate
noted that they were uncertain about disease progression, as they
commonly encountered only late-stage children in the clinical
setting. There was general agreement among clinicians to score
non-specific features such as fever, loss of appetite or prostration
as early stage, whereas features of extreme severity, like deep
coma, renal failure or jaundice were consistently placed as late
features. Of note, some of the discrepancies observed between
the clinical perception (survey) and the data-driven prediction can
be reconciled. For example, the presence of fever or “reported
fever” is scored as an early feature by clinicians since fever is the
most likely guiding feature to suspect malaria. However, the data-
driven algorithm may fail to capture this event since presence of
fever is based on actual temperature recorded. Indeed, prior self-
treatment with antipyretics (mostly paracetamol) can be as high as
50%.14 On the other hand, neurological features such as coma and
convulsions are commonly scored by clinicians as “late”, since
these life-threatening features usually appear when the infection
has not been identified and treated promptly.15 Conversely, data-
driven inference tends to score neurological features as “early”
since the algorithm is blind to the time elapsed between the onset
of symptoms and presentation to hospital. Also, this study was
biased towards recruitment of more severe cases of P. falciparum
malaria. An apparent limitation of the validation survey was that
clinicians were asked to score features as early, intermediate or
late. However, despite clinician uncertainty and the limited sample
size of the survey, the level of agreement between expert clinical
intuition and our prediction was remarkable.
Notably, we can use the differences in inferred dynamics of fatal

and non-fatal SM cases to classify new patients according to their
inferred risk. This novel approach captures not just a snapshot of
individual risk factors but the full probabilistic information about
the learned pathways of disease progression, allowing the
histories of previous patients to inform the clinical analysis of
new patients. This approach, validated with a test dataset, aligns
with the goals of precision medicine and makes full use of
available biomedical data; we anticipate that it may also find use
in numerous other diseases and clinical contexts.
The relevance of the analysis we present in this research is two-

fold. Firstly, the prediction of clinical features associated with poor
clinical outcome using MI validated prior findings and identified
novel features. One of these features has potential translational
impact and suggests the potential benefit of transfusing patients
with higher haemoglobin concentrations beyond what is currently
recommended by the WHO. These findings, however, must be
validated in larger datasets and longitudinal studies. Secondly, we
believe that the inferred sequence of events from a cross-sectional
analysis is a novel and important approach. For ethical reasons,
clinical studies are characteristically not suited to study or describe

the natural course of a disease, since treatment must be
administered as soon as the diagnosis has been made and a
treatment option is available. By inferring the sequence of events
from cross-sectional data, this approach provides new insights
into the natural history of disease in the absence of
longitudinal data.

METHODS
Study population
The study population consisted of 2915 children aged 4 months to 15
years diagnosed with SM according to the WHO definition. Children were
admitted to the Royal Victoria Teaching Hospital (RVTH), Banjul, The
Gambia from January 1997 to December 2009. The study was originally
designed to study genetic variants associated with SM.13 The initial set of
variables used for feature selection included those present in the case
report form. The list of the variables included is described in supplemen-
tary Table 1. A detailed description of the study population and clinical
features associated with death has been published elsewhere.12

Clinical definitions
Children aged 4 months to 15 years were eligible for enrolment if they had
a blood smear positive for asexual P. falciparum parasites and met one or
more WHO criteria for SM14): Coma (assessed by the BCS [BCS]6), severe
anaemia (haemoglobin [Hb] < 50 g/L or packed cell volume [PCV] < 15), RD
(costal indrawing, use of accessory muscles, nasal flaring, deep breathing),
hypoglycaemia (<2.2 mM), decompensated shock (systolic blood pressure
less than 70mmHg), repeated convulsions (>3 during a 24-h period),
acidosis (plasma bicarbonate <15mmol/L) and hyperlactatemia (plasma
lactate >5mmol/L). CM was defined as a BCS of 2 or less with any P.
falciparum parasite density. SMA was defined as haemoglobin under 50 g/
L. Hepatomegaly was defined as > 2 cm of palpable liver below the right
costal margin. Patients were enrolled in the study if written informed
consent was given by the parent or guardian. The study protocol was
approved by the Joint Gambia Government/MRC Ethical Committee
(protocol numbers 630 and 670).

Laboratory measurements
Haemoglobin was measured with a haematology analyser (Coulter®MD II,
Coulter Corporation, USA), and parasite density was counted on Giemsa-
stained thick and thin films.

Data management and statistical analyses
The data were collected on standardised forms, double entered into a
database and verified against the original.

Mutual information analysis
Data curation. We removed 11 patients from the dataset whose clinical
outcome (death) was not known and a further 21 patients for which more
than half the features were unobserved or missing. The missing features of
the remaining patients were imputed using the k nearest neighbour
algorithm. Firstly, we computed the Hamming distance between all pairs of
patients, i.e. the distance between patients i and j is

Yij ¼ 1
mij

Xp
l¼1

Xil � Xjl

�� ��; (2)

where Xil denotes feature l of patient i, p is the number of features, and mij

is the number of features that are not missing for both patients. The clinical
outcome was not included in the calculation of the distance matrix to
avoid inducing artificial correlations between death and clinical features.
Secondly, we set the missing features of patients equal to the median of
the corresponding feature amongst the k nearest neighbours, i.e.

Xil ¼ medj2Nil Xjl ; (3)

where Nil is the set of k nearest neighbours of i for which feature l is not
missing. We set k= 13, which is the square root of the number of complete
cases.15 Because k is odd, imputed values will also be binary.

Greedy, hierarchical partitioning of patients. We wanted to partition the
patients into meaningful subsets to be able to predict clinical outcomes
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and identify different presentations of SM. It was not feasible to consider a
cross-tabulation of all available features because the number of cells would
far exceed the number of patients. We thus considered a greedy algorithm
that partitioned the patients into two subsets by the feature that was most
predictive of death. The same step was recursively applied to the subsets
until there were no more features that were predictive of death at a
significance level α= 0.05 after multiple hypothesis correction using the
Holm–Bonferroni method.16

We used MI between death and one of the features as a measure of
predictive power because MI naturally quantifies the reduction in
uncertainty about death achieved by observing said feature. MI has distinct
advantages over the log-odds ratio (LOR), which selects features with high
sensitivity but low specificity: maximising the LOR is likely to identify rare
features that have a major impact on mortality, whereas maximizing MI will
minimise uncertainty about death. We used the plugin estimator

ÎðA; BÞ ¼
X1
a;b¼0

nab
n

log
nabn
nanb

� �
(4)

where n is the number of patients, nab is the number of patients in the cell
ab of the contingency table, and na, nb are the number of patients in the
ath row and bth column, respectively. This is a biased estimator;17

correction strategies exist but we ignored the bias of the plugin estimator
because we were more interested in which feature is most predictive than
in the exact value of the MI.
We assessed statistical significance using a bootstrap algorithm. Firstly,

we computed the unbiased estimates of the marginal distributions of the
feature under consideration and mortality. Under the null hypothesis that
the feature is not predictive of death, the joint distribution qab is the
product of the marginal distributions.
We drew 106 independent samples of the same size as the dataset from the

distribution under the null hypothesis and computed the MI for each synthetic
dataset. The probability that the MI was larger than the observed value was
equal to the proportion of simulated values that exceed the empirical one.

HyperTraPS analyses
The HyperTraPS algorithm estimates the probability of observing a
transition between two nodes a and b on a hypercubic transition graph,
where edges are parameterised according to transition probabilities. The
transitions we consider are between the state with no symptoms (assuming
patients start healthy) and an observed set of symptoms in the dataset,
corresponding to a particular time sample of a patient’s trajectory through
the space of possible symptom patterns. We use an L × L matrix to encode
the transition probabilities of the L2(L-1) edges on the hypercube, assuming
that each feature has a base rate of acquisition (L parameters) and may
influence the rate of acquisition of all other features (L(L-1) parameters). We
learned posterior distributions on these parameters by assigning them
uninformative uniform priors and embedding HyperTraPS in an MCMC
auxiliary pseudo-marginal (APM) algorithm.18 Simulation of trajectories
using parameterisations from these posteriors give then directly posterior
distributions on orderings of feature acquisitions. To make predictions of
unobserved features, we recorded points where these simulated trajec-
tories matched the known features of a given sample and recorded the
value(s) of the unobserved trait(s) at each of these points, building a tally of
presence vs absence. To make predictions of future behaviour, we simply
report the probabilities of subsequent steps from a given point on
transition networks parameterised by these posteriors.

Survey
The survey consisted of the question: “When do you expect to observe the
following symptoms in the disease progression of malaria?” and the
following features were listed: prostration; refusal to feed; convulsions;
tachypnoea; abnormal posturing (tonic seizures); fever; vomiting; unusual
sleepiness; lethargy; irritability; coma (BCS <= 2); tachycardia; hepatome-
galy (>2 cm palpable liver); coughing; diarrhoea; grunting; anaemia
(haemoglobin <50 g/L); splenomegaly (>2 cm palpable spleen); hypogly-
caemia; jaundice; hyperparasitaemia (>250,000/µL); dehydration; hypox-
aemia (oxygen saturation < 90%); respiratory distress (intercostal recession,
lower chest indrawing, use of accessory respiratory muscles, nasal flaring,
deep breathing); pulmonary oedema. Responses were returned between
16/01/2016 and 21/01/2016.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
This study did not generate any new data; the source data used is referenced in
the text.

CODE AVAILABILITY
HyperTraPS code is freely available on GitHub at https://github.com/sgreenbury/
HyperTraPS/.
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