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Abstract

Carbon emissions from civil buildings refer to the carbon emissions generated during the

operation of civil buildings. With the continuous development of the urban economy and the

improvement of people’s living standards, this part of carbon emission puts tremendous pres-

sure on China to achieve the goal of carbon peaking and carbon neutral. In the context of

rapid urbanization, studying the spatiotemporal characteristics and influencing factors of the

carbon emissions from civil buildings have strong practical significance for China to achieve

the "dual carbon" goal. Based on the emission data from 104 prefecture-level cities in China,

we examine the spatiotemporal characteristics of the civil building carbon emissions from the

perspectives of temporal evolution trend, spatial distribution and its dynamic evolution, spatial

difference and its decomposition, and spatial autocorrelation characteristics. Finally, we

reveal the influencing factors of the carbon emissions from civil buildings using static panel

data models and spatial dynamic panel data models. The results of the study show that: (1)

During the sample period, the carbon emissions from civil buildings have increased year by

year. The civil building carbon emissions have become an important source of China’s overall

carbon emissions. Realizing energy saving and emission reduction in the operational stage

of civil buildings is crucial to realizing China’s "dual carbon" goal. (2) According to the esti-

mated results, there is a significant inverted U-shaped non-linear relationship between urban-

ization and civil building carbon emissions. Most Chinese cities are located in the upward part

of the inverted U-shaped curve at present. Thus, the traditional economic growth model char-

acterized by high energy consumption and high emission during rapid urbanization should be

abandoned to reduce the carbon emissions from civil buildings. (3) Technological progress

and fixed asset investment can effectively reduce the carbon emissions from civil buildings.

At the same time, the level of marketization and social consumption expenditure positively

affect the carbon emissions from civil buildings. It is necessary to improve the relevant market

mechanisms, policy subsidies, and other means to encourage the application of green

energy-saving technologies in civil buildings. Also, it is needed to guide the urban residents’

consumption structure and lifestyle in a low-carbon direction, to reduce the energy consump-

tion and carbon emissions during the operation of civil buildings.
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1 Introduction

Since the reform and opening up, China has experienced the largest and fastest urbanization

in the history of the world. The proportion of urban population in China has increased from

20.6% (1982) to 63.89% (2020), while the rapid expansion of cities has brought about a rapid

increase in energy consumption and carbon dioxide emissions which causes a negative impact

on the climate system and ecological environment. China has become the world’s largest emit-

ter of carbon dioxide, and its total carbon emission in 2020 was about 10 billion tons, account-

ing for 29% of the global carbon emissions. China’s "dual carbon" goal aims to propel the

economy onto a high-quality development path through carbon emission commitments.

Against this background, a comprehensive understanding of the relationship between urbani-

zation and carbon emissions is crucial to formulating future carbon emission reduction poli-

cies and achieving carbon neutrality goals in China.

Regarding the primary sources of total carbon emissions during urbanization, many aca-

demic studies have been conducted on this issue [1–6]. Scholars have analyzed the impact of

urbanization on carbon emissions from different perspectives, such as industrial production

[7, 8], construction industry [9], transportation [10], and urban residential energy consump-

tion. Among them, carbon emissions from buildings are regarded as an important source of

overall carbon emissions, and building carbon emissions can reach 27.9% - 34.3% of China’s

total carbon emissions [11]. So exploring the impact of urbanization on building carbon emis-

sions not only helps to alleviate the pressure of carbon emission reduction caused by the rapid

growth of urban construction, but is also beneficial to achieving China’s "dual carbon" goal. In

the study on the relationship between urbanization and building carbon emissions, the existing

literature mainly analyzes the issue from the perspective of the construction industry. The

existing literature mainly focuses on the increase of carbon emissions caused by the construc-

tion process of buildings, while ignoring the carbon emissions generated by energy consump-

tion during the operation of buildings. Since buildings usually have a long life cycle, the

carbon emissions generated during the operation of buildings generally account for 75% of

their whole life cycle carbon emissions. If the energy consumption generated during the opera-

tion of buildings is ignored, the impact of the building sector on the total carbon emissions

will not be fully understood, thus reducing the effectiveness of relevant carbon reduction

policies.

In order to remedy the above deficiencies of existing studies, we take the carbon emissions

from civil buildings as the research object, and examine the carbon emissions generated by

energy consumption during the operation of buildings related to the tertiary industry and resi-

dential energy consumption. Firstly, based on the concepts of energy consumption and carbon

emissions from civil buildings, we account for the information related to carbon emissions

from civil buildings in 104 prefecture-level Chinese cities from 2010 to 2018. Secondly, we

examine the spatiotemporal characteristics of the civil building carbon emissions from the per-

spectives of temporal evolution trend, spatial distribution and its dynamic evolution, spatial

difference and its decomposition, and spatial autocorrelation characteristics. Finally, the theo-

retical analysis is constructed by combining the improved STIPRAT model with the EKC
hypothesis. Empirical methods such as static panel data models and spatial dynamic panel data

models are used to examine the influencing factors of carbon emissions from civil buildings.

This study helps to expand the understanding of the relationship between urban development

and carbon emissions from civil buildings, and thus provides a scientific basis and decision

support for formulating more reasonable carbon emission reduction policies under the back-

ground of China’s continuous urbanization process.
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2 Literature review

As ecological and environmental issues such as climate warming have increasingly become

considerable challenges in sustainable social and economic development, how to reduce car-

bon dioxide and other greenhouse gases has become the focus of attention in the academic

community. Carbon emissions are mainly generated in urban areas where population, build-

ings, and socio-economic activities are concentrated. With the rapid urbanization since the

reform and opening-up, China’s urban energy consumption and carbon emissions have

increased significantly, making China face severe pressure to reduce carbon emissions. Liddle

et al. [12] found that urbanization has a significant positive effect on energy consumption and

carbon emissions based on data from a sample of 17 developed countries. Lin & Liu [13] used

time-series data on carbon emissions and other socio-economic variables to examine the influ-

encing factors of carbon emissions in China. The study found that adding the urbanization

variable can more accurately identify the long-term equilibrium relationship between various

key variables and carbon emissions. In addition, scholars such as Zhang & Lin [14] and Liu &

Bae [5] have also conducted many studies on the relationship between urbanization and car-

bon emissions in China. Most existing studies show that urbanization has a significant impact

on carbon emissions. However, there are still different opinions on the direction of the rela-

tionship between urbanization and carbon emissions [15–17]. For example, Zhang & Lin [14]

proposed that there is a significant positive relationship between urbanization and carbon

emissions. The development of urbanization will bring more energy consumption while gener-

ating more carbon emissions. Fan et al. [18] and Wang et al. [19] investigated the negative

effect mechanism between urbanization and carbon emissions. They propose that carbon

emissions can be reduced due to the technological progress and infrastructure improvement

brought about by urbanization. Xu & Lin [20] examined the dynamic impact of China’s urban-

ization on carbon emissions based on time series data and provincial panel data. The study

shows that there is an inverted U-shaped Kuznets curve relationship between the process of

urbanization and carbon emissions. In addition, some scholars have pointed out that the rela-

tionship between urbanization and carbon emissions is uncertain, with its specific direction

and intensity being influenced by economic development and other regional characteristics

[21]. Huo et al. [22] showed that the impact of urbanization on carbon emissions varies with

different stages of income and energy structure according to the empirical results from panel

threshold regression models. They pointed out that the driving effect of urbanization on car-

bon emissions presents a "stepwise growth" when a certain threshold is exceeded.

During the rapid process of urbanization, the traditional socio-economic relations and

industrial structure will inevitably undergo profound changes, which will significantly impact

on the total carbon emissions. In this process, the carbon emissions of different industry sec-

tors will show different characteristics due to different resource endowment conditions, pro-

duction factor requirements, technological levels, and development stages. Many fruitful

studies have been conducted to analyze carbon emissions in different fields or sectors during

urbanization, such as industrial carbon emissions [23, 24], agricultural carbon emissions [25,

26], and carbon emissions from service industry [27, 28]. Along with the rise of urbanization,

the development of the construction industry will be accompanied by increasing energy con-

sumption and carbon emissions. Existing studies have investigated the spatial distribution and

influencing factors of carbon emissions in the building sector [29–31]. The carbon emissions

from the construction sector include carbon emissions generated during the construction of

buildings and the installation of related equipment. According to Hong et al. [32], this part of

carbon emissions already accounts for one-third of the total carbon emissions in China. Since

buildings usually have a long life cycle, the carbon emissions caused by buildings are not only
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generated during the construction process, but also during their whole life cycle due to the

energy consumption during operation, which is an important source of carbon emissions.

Some scholars have studied the relationship between urbanization and building carbon emis-

sions during the operation stage [33, 34]. Although these papers have provided rich informa-

tion on the relationship between urbanization and building carbon emissions, there are still

some limitations in the existing studies: (1) the existing literature mainly focuses on building

carbon emissions from secondary industry, while ignoring carbon emissions from civil build-

ings; (2) the existing studies have not reached a consensus on the relationship between urbani-

zation and building carbon emissions, and the conclusions are quite different; (3) the

heterogeneous characteristics of the evolution of building carbon emissions in the process of

urbanization are failed to reveal clearly.

The energy consumption of civil buildings accounts for 22%-25% of China’s total power

generation, which puts tremendous pressure on China’s energy industry and carbon emission

reduction. In the current literature, the carbon emissions of a single type of civil building or a

single building during its life cycle have been analyzed using life cycle assessment methods and

IPCC inventory methods. However, fewer studies have been conducted on civil building

energy consumption at the city level, especially in terms of revealing the characteristics of civil

building energy consumption. In addition, the impact of urbanization on civil building energy

consumption and carbon emissions has not been fully revealed. In response to the shortcom-

ings mentioned above, we will take 104 prefecture-level cities in China as the research sample

to calculate the carbon emissions generated by civil buildings from 2010 to 2018. Then we

examine the spatial pattern and evolution trend of China’s civil building carbon emissions.

The influencing factors of civil building carbon emissions are finally revealed to provide a ref-

erence for formulating more targeted carbon reduction policies.

3 Model and data

3.1 Model specification

We use the improved STIRPAT model and combine it with the EKC hypothesis to construct

the basic theoretical analysis framework. Ehrlich & Holdren [35] proposed the IPAT equation

to reflect the impact of population and resource consumption on ecosystems. The IPAT Equa-

tion is I = P×A×T, where I represents the impact on ecosystems, P represents the population

size, A represents the economic factor, and T represents the technology. The multiplication

sign in the above equation only indicates that there is a specific relationship between popula-

tion size, economic factors, and technology. The IPAT equation, although succinctly repre-

senting the relationship between the impact on ecosystems and their influencing factors, is not

flexible for economic analysis. York et al. [36] proposed the STIRPAT model to solve the above

problem. The equation of the STIRPAT model is shown in Eq (1), where a, b, c, and d are

parameters to be estimated. e is a random error term.

I ¼ aPb � Ac � Tde ð1Þ

Based on the above STIRPAT model, it is possible to estimate the impact of each factor on

the environment by regression models. However, Eq (1) expresses only the linear relationship

among variables. According to the EKC hypothesis, there is an inverted U-shaped non-linear

relationship rather than a simple linear relationship. Based on this view, the STIRPAT model

can be improved by including diversified variables (such as per capita income and urbaniza-

tion) and their squared terms, so that the influence factors of resource consumption or carbon

emissions can be examined more comprehensively. We constructed the following econometric
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model based on the improved STIRPAT model, as shown in Eq (2).

LnBCO2it ¼ ait þ b1LnCO2it� 1 þ b2LnPopit þ b3LnAit þ b4ðLnAitÞ
2
þ b5LnURBit

þb6ðLnURBitÞ
2
þ b7LnEffit þ

XK

k¼1

Xk
it þ eit

ð2Þ

Specifically, Eq (2) expresses the carbon emissions from civil buildings in terms of BCO2it,

where the subscripts i and t characterize the observation sample and time, respectively. The

explanatory variables include: (1) The core explanatory variables mainly include urbanization

(URBit) and the squared term of urbanization. In this way, we can study whether the impact of

urbanization on civil building carbon emissions shows a non-linear trend. (2) In addition,

considering the requirements of variable setting in the STIRPAT model, the population size of

each city is used to characterize the demographic factors (Pop). The per capita disposable

income of urban residents (Inc) and the total retail sales of consumer goods (Con) represent

economic factor A from social income and expenditure perspectives, respectively. The techni-

cal level T is characterized by energy efficiency (the ratio of the added value of the tertiary

industry to the total energy consumption of civil buildings, Eff) and the number of patents

granted per 10,000 people in each city (Tech). (3) Considering that the factors influencing civil

building carbon emissions are much more complicated than the general resource and environ-

ment system, there may be a problem with omitted variables if only the above variables are

included in the model. Therefore, we add a series of control variables (Xit) to the STIRPAT
model, including industrial structure (measured by the proportion of tertiary industry to

GDP, Str) and market development level (Mar).

3.2 Data

Broadly speaking, the scope of civil building energy consumption involves the secondary

industry and civil life, including the energy consumption generated during the construction of

the building and the entire life cycle of the building, that is, the energy consumption of the

building industry and the energy consumption of the building during operation. The energy

consumption of civil buildings in a narrow sense focuses on the building operation phase, and

concentrates on the energy consumption generated by providing services to users in residen-

tial and recreational industry buildings, mainly including energy consumption for the opera-

tion of residential buildings and energy consumption for the operation of tertiary industry

buildings. According to the above concepts, we select civil building energy consumption in the

narrow sense as the research object: first, civil building usually has a long life cycle, and the

energy consumption generated during its entire operation phase is large; second, civil building

energy consumption in the broad sense covers industrial production processes such as build-

ing material production and building construction. The expansion of cities during urbaniza-

tion will drive the development of the construction industry to a large extent. So this part of

energy consumption is bound to increase significantly during rapid urbanization. Therefore,

the exclusion of energy consumption in the construction sector can concentrate more on the

energy consumption generated during the operation of civil buildings.

The energy consumption during the operation of civil buildings does not only refer to the

energy consumption generated by civil buildings themselves, but also includes a wider range

of energy consumption during the operation of civil buildings, mainly related to heating, air

conditioning, office equipment, hot water supply, household appliances. However, there is a

lack of authoritative statistics on the energy consumption of civil buildings in comprehensive

spatial scope. In this paper, we will use the existing data in the statistical yearbooks to obtain
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the estimated civil building energy consumption data. The remaining part of the total energy

consumption of the tertiary industry minus the energy consumption of the transportation,

storage, and postal industries can be used as an indicator for energy consumption from the

operation of tertiary industry building. The residential energy consumption of urban and rural

residents can be used as an indicator for energy consumption during the operation of residen-

tial buildings. Then, by summing up the above two parts of energy consumption, the estimated

energy consumption of civil buildings can be obtained. Subject to the degree of data disclosure,

we identified 104 prefecture-level cities (including 49 eastern cities, 39 central cities, and 16

western cities) as the study sample, spanning the period from 2010 to 2018.

According to the functional classification of buildings, the energy consumption of civil build-

ings can be divided into energy consumption during the operation of tertiary industry buildings

and energy consumption during the operation of residential buildings. According to the

National Economic Classification of Industries formulated by the National Bureau of Statistics of

China, the energy consumption during the operation of tertiary industry buildings includes the

total energy consumption of "information transmission, computer services, and software indus-

try", "commerce, accommodation, and catering industry", "finance, real estate, business, and

residential services" and other industries. The energy consumption of "transportation, storage,

and postal industry" is mainly transportation energy consumption, which is not included in the

accounting of civil building energy consumption. The energy consumption during the opera-

tion of residential buildings is determined as " urban and rural residential energy consumption."

Given that the energy consumption of civil buildings is mainly used for building heating, cool-

ing, hot water supply, cooking, lighting, and household appliances, the energy consumption of

civil buildings is obtained by summing up the following five components: electricity consump-

tion in specific industries and residential sectors, total central heating for steam and hot water,

artificial gas, natural gas, and liquefied petroleum gas for residential households.

Based on the above data, we will further use the carbon emission estimation method pro-

vided by IPCC to account for the carbon emissions from civil buildings in 104 Chinese cities,

as shown in the following formula.

TBCO2 ¼
Xn

i

Ei � Pi � ei �
44

12
ð3Þ

In Eq (3): TBCO2 refers to the carbon emissions from civil buildings, Ei represents the con-

sumption of energy type i, Pi denotes the carbon emission factor of energy type I, while ei

denotes the standard coal conversion factor of energy type i. n is the number of energy types,

and 44/12 is the ratio of the molecular weight of carbon dioxide to carbon.

4 Results and analysis

4.1 Spatiotemporal characteristics of carbon emissions from civil buildings

(1) Temporal trend of carbon emissions from civil buildings. With the rapid develop-

ment of urbanization, China’s urban population continues to grow, and the carbon emissions

from urban civil buildings are also increasing year by year. Fig 1 shows the temporal trend of

carbon emissions from urban civil buildings in China. The total carbon emissions from civil

buildings in 104 sample cities increased from 0.48 Gt in 2010 to 0.79 Gt in 2018 (1 Gt = 109

tons), with an annual growth rate of 6.30%; while the per capita carbon emissions from civil

buildings grew from 2.15 tons/person to 3.07 tons/person, with an annual growth rate of

4.53%. Further analysis can find that the total carbon emissions of civil buildings increased rel-

atively flat during the sample period, and the per capita carbon emissions of civil buildings
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increased rapidly during 2010–2012 and 2017–2018 while insignificantly changing in other

periods. In addition, Fig 1 reports the temporal trend of total urban carbon emissions in China

during the sample period. In 2010, the carbon emissions from civil buildings accounted for

12.6% of the total urban carbon emissions, while the percentage increased to 20% in 2018. The

above results indicate that the carbon emissions from civil buildings have become an impor-

tant source of the overall urban carbon emissions.

We further examine the temporal trend of carbon emissions from civil buildings in four

major Chinese regions (Fig 2). As seen in Fig 2, the total carbon emissions from civil buildings

in the eastern region were significantly higher than in other regions. The total civil building

carbon emissions in the eastern region were 301.68 million tons in 2010 and roused to 456.18

million tons in 2018, with an annual growth rate of 5.30%. The total carbon emissions of civil

buildings in the central and western regions experience relatively rapid growth during the

sample period, with annual growth rates of 9.87% and 11.19%, respectively. The annual growth

rate of total carbon emissions from civil buildings in the Northeast is 4.80%. Regarding the per

capita civil building carbon emissions, there was a certain degree of divergence among the

four major regions. Among them, the northeast region was in the first tier, with per capita val-

ues rising from 2.15 tons per person in 2010 to 3.07 tons per person in 2018. The central and

western regions were located in the second tier. The eastern region was in the first tier at the

beginning of the sample period; however, the growth trend of per capita values slowed down

after 2014. The eastern region was in the second tier by the end of the sample period.

From the provincial perspective (Fig 3), the total carbon emissions from civil buildings in

Hainan, Inner Mongolia, Henan, Shaanxi, Chongqing, and Jiangxi increased significantly dur-

ing the sample period. Among them, the total carbon emissions of urban civil buildings in Hai-

nan Province increased the most, with an average annual growth rate exceeding 13.53%. In

contrast, the total values in Guangdong, Liaoning, Shanghai, Jilin, and Beijing increased

slightly (e.g., the growth rate in Beijing was -0.63%). In addition, the per capita carbon emis-

sions of civil buildings in Shaanxi, Hainan, and Inner Mongolia grew substantially (the

increase in Shaanxi Province is 13.03%). On the other hand, Guangdong, Jiangxi, and Beijing

had a slight increase in per capita values. The per capita civil building carbon emissions in Bei-

jing decreased from 6.08 tons/person in 2010 to 5.02 tons/person in 2018.

Fig 1. The temporal trend of carbon emissions from civil buildings in China.

https://doi.org/10.1371/journal.pone.0272295.g001
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(2) Spatial distribution of carbon emissions from civil buildings. Based on the kernel

density estimation method [37, 38], Fig 4 depicts the spatial distribution of the total carbon

emissions and per capita emissions from civil buildings in Chinese cities. As a non-parametric

method, kernel density estimation can describe the distribution pattern of random variables

through a continuous density curve to reflect the variable distribution’s location and shape.

According to Fig 4, the kernel density curve of the total carbon emissions from civil buildings

shows a significant multi-peak distribution. In addition to the main peak near the sample

mean, the kernel density curve has multiple high-level secondary peaks and a longer right tail.

The above results show that the distribution of total carbon emissions from urban civil build-

ings has a strong characteristic of spatial differences. The civil building carbon emissions in a

small group of cities are much higher than in other sample cities. During the sample period,

the main peak of the kernel density curve gradually shifts to the right, and the peak value grad-

ually decreases, indicating that the spatial difference in total carbon emissions from civil build-

ings gradually decreased over time. Compared with 2010, the right-tailing of the kernel density

Fig 2. The temporal trend of total carbon emissions from civil buildings (A) and per capita carbon emissions from civil buildings (B) in four major Chinese

regions.

https://doi.org/10.1371/journal.pone.0272295.g002
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curve did not change significantly in 2018, indicating that the total carbon emissions from civil

buildings in a small group of cities are higher than in other regions. From the kernel density

estimation results of per capita civil building carbon emissions, the kernel density curve pres-

ents the distribution pattern of multiple peaks. The peak value of the main peak is much higher

than the secondary peaks, and the positions of the secondary peaks are closer to the main peak.

Additionally, the kernel density curve does not form an obvious right tail. The spatial differ-

ence in per capita values is relatively small compared to the total values. Most cities are concen-

trated near the sample average, and cities with higher per capita values have not widened the

gap with other cities.

Traditional kernel density estimation can depict the static distribution of carbon emissions

from civil buildings. By comparing the kernel density curves in different years, we can roughly

see how the spatial distribution has changed during the sample period. However, the tradi-

tional kernel density estimation can only provide limited information on the dynamic evolu-

tion of spatial distribution. Stochastic kernel density estimation can reveal the spatial

Fig 3. The temporal trend of total carbon emissions from civil buildings (A) and per capita carbon emissions from civil buildings (B) in Chinese provinces.

https://doi.org/10.1371/journal.pone.0272295.g003
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distribution pattern and dynamic evolution trend of carbon emissions from civil buildings by

analyzing the probability density functions of state transitions under various conditions. Based

on the stochastic kernel density estimation method, we examine the transition probability of

carbon emissions from civil buildings under dynamic condition. Fig 5 shows the dynamic sto-

chastic kernel density curve of the total carbon emissions from civil buildings and the corre-

sponding density contours. Generally, the dynamic stochastic kernel density curve can be

divided into three ranges. When the carbon emissions of civil buildings are less than 6 million

tons, the kernel density curve is mainly distributed on both sides of the 45˚ diagonal; the car-

bon emissions from civil buildings in this interval remain roughly unchanged. When the emis-

sions are higher than 6 million tons, the kernel density curve gradually deviates from the

diagonal, indicating that the carbon emissions from civil buildings show a certain growth

trend. When the emissions are higher than 35 million tons, the kernel density curve is parallel

to the x-axis, which shows that the carbon emissions of civil buildings in this interval have a

Fig 4. Kernel density curve of total carbon emissions from urban civil buildings (A) and per capita carbon emissions from civil buildings (B).

https://doi.org/10.1371/journal.pone.0272295.g004

Fig 5. Dynamic stochastic kernel density curve (A) and density contour (B) of total carbon emissions from civil buildings.

https://doi.org/10.1371/journal.pone.0272295.g005
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convergence trend. In summary, the total carbon emissions from civil buildings in Chinese cit-

ies are showing a steady growth trend, and the relative gap between cities is gradually

decreasing.

Fig 6 shows the dynamic stochastic kernel density curve of per capita carbon emissions

from civil buildings and the corresponding density contour. It can be seen that the kernel den-

sity curve of the per capita values can be divided into two interval ranges. When the per capita

values are lower than 10 tons/person, the dynamic stochastic kernel density curve is mainly

concentrated near the 45˚ diagonal. When the per capita values are higher than 10 tons/per-

son, the kernel density curve is mainly parallel to the x-axis. The per capita civil building car-

bon emissions show a convergence trend. The above results show that compared to year t, the

spatial distribution of per capita civil building carbon emissions in year t+3 only has a minor

change, while the high emission cities show a convergence trend.

(3) Spatial differences in carbon emissions from civil buildings. To further characterize

the spatial differences in carbon emissions from civil buildings in China, we measure the spa-

tial differences in total carbon emissions from civil buildings and per capita carbon emissions

from civil buildings according to the Gini coefficient (Table 1). Moreover, the Gini coefficient

is decomposed according to China’s four major regions based on the decomposition method

proposed by Dagum [39].

Fig 6. Dynamic stochastic kernel density curve (A) and density contour (B) of per capita carbon emissions from civil buildings.

https://doi.org/10.1371/journal.pone.0272295.g006

Table 1. The result of the Gini coefficient and its decomposition.

Year Total. Per capita.

Gini Within Between Trans. Gini Within Between Trans.

2010 0.629 0.218 0.328 0.083 0.404 0.146 0.135 0.122

2011 0.626 0.217 0.317 0.092 0.407 0.150 0.127 0.130

2012 0.609 0.213 0.302 0.094 0.385 0.141 0.108 0.136

2013 0.601 0.210 0.288 0.103 0.385 0.140 0.099 0.146

2014 0.605 0.209 0.290 0.106 0.399 0.143 0.103 0.153

2015 0.608 0.211 0.278 0.118 0.408 0.145 0.128 0.136

2016 0.596 0.205 0.277 0.114 0.376 0.135 0.097 0.144

2017 0.585 0.198 0.272 0.115 0.366 0.130 0.092 0.145

2018 0.572 0.193 0.260 0.118 0.364 0.130 0.088 0.146

https://doi.org/10.1371/journal.pone.0272295.t001
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According to the Gini coefficients, the total carbon emissions from civil buildings in China

exhibit significant spatial non-equilibrium characteristics. From 2010 to 2013, the overall Gini

coefficients showed a gradual downward trend, with an average annual decrease of 1.51%.

Since then, the Gini coefficient has remained around 0.6. Furthermore, the downward trend of

the overall Gini coefficient has accelerated since 2016, with an average annual decrease of

about 2.02%. By decomposing the overall Gini coefficient, the spatial differences of total car-

bon emissions from urban civil buildings can be decomposed into spatial differences within

sub-regions, spatial differences between sub-regions, and the intensity of transvariation.

According to the decomposition of Gini coefficients in Fig 7, about 34.5% of the overall spa-

tial difference comes from the inequality within regions. In comparison, the average contribu-

tion of inequality between regions and the intensity of transvariation is 48.1% and 17.4%,

respectively. It can be seen that the differences between regions have become the main source

of spatial differences in the total carbon emissions from civil buildings in China. During the

sample period, the contribution of within-regional inequality remained roughly unchanged.

The contribution of between-regional inequality decreased from 52.1% in 2010 to 45.6% in

2018, while the contribution of intensity of transvariation increased from 13.2% in 2010 to

20.7% in 2018. This phenomenon indicates that the degree of crossover and overlap in the spa-

tial distribution of total carbon emissions from civil buildings has increased during the sample

period. The hierarchical spatial distribution characteristics are gradually weakened.

According to the Gini coefficients of per capita carbon emissions from civil buildings (Fig

8), the spatial differences of per capita carbon emissions from civil buildings show fluctuating

changes. From 2000 to 2015, the Gini coefficients showed a trend of decreasing first and then

increasing. The average value of Gini coefficients during this period was 0.40. After that, the

Gini coefficients showed a downward trend, and the Gini coefficients dropped to 0.36 in 2018,

with an average annual decrease of 3.75%. From the decomposition of the Gini coefficients,

within-regional inequality was the main source of overall spatial differences at the beginning

of the sample period, with a contribution rate of about 36.2%. Since then, within-regional

inequality has remained unchanged, and its share in the overall spatial differences has

remained at about 36%. Between-regional inequality decreases significantly during the sample

period, while the contribution of the intensity of transvariation gradually increases. In 2018,

Fig 7. The spatial difference in total carbon emissions from civil buildings.

https://doi.org/10.1371/journal.pone.0272295.g007
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the contribution of intensity of transvariation was 40.1%, which became the main source of

overall spatial differences. The above phenomenon indicates that the previous hierarchical spa-

tial distribution characteristics have also been broken at the per capita level, and the crossover

phenomenon between regions has been strengthened. Based on the emission data, it can be

found that the reason for the above phenomenon is that the per capita carbon emissions from

civil buildings in the eastern cities have dropped from the original first tier to the second tier,

while the per capita carbon emissions from civil buildings in the central and western regions

are gradually approaching each other.

(4) Spatial autocorrelation of carbon emissions from civil buildings. The Gini coeffi-

cients show that the carbon emissions from civil buildings in China have significant spatial

non-equilibrium characteristics. We will conduct spatial autocorrelation analysis on this non-

equilibrium characteristic to examine whether it shows a random distribution pattern. The

Moran index in spatial statistics is one of the standard indexes to measure spatial autocorrela-

tion [40], and the calculation formula is shown in Formula (4). N is the number of sample cit-

ies, Xi denotes the carbon emissions from civil buildings in city i, and �X is the sample mean. W
(i, j) denotes the spatial weight between city i and city j. If the Moran index, which takes the

value in [–1, 1], is greater than zero, it indicates that there is a positive spatial autocorrelation,

and the civil building carbon emissions present an agglomeration pattern of high—high values

and low—low values. If the Moran index is less than zero, it means that there exists negative

spatial autocorrelation; the civil building carbon emissions present a discrete distribution pat-

tern, that is, a cluster of high values and low values. A zero value indicates that the spatial dif-

ference is in a random distribution pattern.

I ¼
N
S0

XN

i¼1

XN

j¼1

Wði; jÞðXi �
�XÞðXj �

�XÞ

XN

i¼1

ðXi �
�XÞ2

; S0 ¼
XN

i¼1

XN

j¼1

Wði; jÞ ð4Þ

Based on the geographic distance spatial weights, we examine the spatial autocorrelation

characteristics of carbon emissions from civil buildings in Chinese cities. Table 2 reports the

Fig 8. The spatial difference in per capita carbon emissions from civil buildings.

https://doi.org/10.1371/journal.pone.0272295.g008
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results. From the results of the spatial autocorrelation test of total civil building carbon emis-

sions and per capita civil building carbon emissions from 2010 to 2018, the Moran index was

positive in all years, and all passed the significance test at the 1% level. This shows that the spa-

tial distribution of carbon emissions from civil buildings in Chinese cities is not completely

random, but has a significant positive spatial autocorrelation. That is, cities with higher carbon

emissions from civil buildings tend to be adjacent to cities with higher carbon emissions. As a

result, the phenomenon of spatial agglomeration between similar values appears. During the

sample period, this spatial agglomeration phenomenon has shown an increasing trend. The

Moran index based on the total carbon emissions from civil buildings has risen from 0.193

(2010) to 0.238 (2018), with an average annual increase of 2.66%. The Moran index based on

the per capita values has changed more volatility, showing a fluctuating upward trend during

the sample period, with an average annual growth rate of 3.49%. It can be seen that the trend

of cities with similar civil building carbon emissions to be concentrated in space is becoming

more and more obvious.

According to the Moran scatter plot of the total carbon emissions from civil buildings in

Chinese cities (Fig 9), the "high-high" (HH) and "low-low" (LL) quadrants aggregate over 70%

of the sample cities. "High-low" (HL) and "low-high" (LH) quadrants indicate a negative corre-

lation in spatial distribution, where HL means a type of local high-value outlier, that is, the

total carbon emission from civil buildings is relatively higher than that of the surrounding cit-

ies, and LH means a type of local low-value outlier, that is, the total carbon emission is

Table 2. Spatial autocorrelation test of carbon emissions from civil buildings.

Year Total. Per capita.

Moran index z value p value Moran index z value p value

2010 0.193 5.008 0.00 0.212 4.514 0.00

2011 0.202 5.111 0.00 0.249 5.192 0.00

2012 0.194 4.905 0.00 0.259 5.378 0.00

2013 0.206 5.049 0.00 0.315 6.561 0.00

2014 0.206 5.046 0.00 0.302 6.297 0.00

2015 0.207 5.003 0.00 0.279 5.919 0.00

2016 0.207 5.029 0.00 0.264 5.619 0.00

2017 0.233 5.265 0.00 0.321 6.668 0.00

2018 0.238 5.231 0.00 0.279 5.829 0.00

https://doi.org/10.1371/journal.pone.0272295.t002

Fig 9. Moran scatter plot of total carbon emissions from civil buildings in Chinese cities in 2000 (A) and 2018 (B).

https://doi.org/10.1371/journal.pone.0272295.g009
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relatively lower than those of surrounding cities. From the Moran scatter plot, the proportion

of cities in these two quadrants is less than 30%. In general, it shows a strong positive spatial

autocorrelation in the total carbon emissions from civil buildings in China. According to the

Moran scatter plot of per capita carbon emissions from civil buildings (Fig 10), the number of

cities in the HH and LL quadrants in 2010 accounted for 21.0% and 51.0% of the total number

of sample cities, respectively. In 2018, the proportions of samples in the HH and LL quadrants

were 23.1% and 59.6%, respectively. This indicates that the per capita carbon emissions from

civil buildings also show a strong spatial agglomeration phenomenon.

4.2 Influencing factors of carbon emissions from civil buildings

In order to reveal the influencing factors of civil building carbon emissions, we use the static

panel data model and the spatial dynamic panel data model, respectively. The latter model

adds the time lag and the spatial lag of carbon emissions from civil buildings, while the former

model does not. For the static panel data model, we choose the feasible generalized least

squares method (FGLS) to estimate the parameters, so as to avoid the possible estimation

errors caused by cross-sectional correlation, heteroscedasticity, and serial correlation. Regard-

ing the parameter estimation of the spatial dynamic panel data model, since the model addi-

tion of the time lag and the spatial lag of the explained variable may cause endogenous

problems, we choose to use the systematic GMM method to estimate the parameters. The sys-

tem GMM method can more effectively use the information in the difference equation and the

level equation, so the estimation results are more effective.

(1) Results of the static panel data model. In Table 3, models (1)—(3) report the FGLS

estimation results of static panel data models with the total carbon emissions from civil build-

ings as the explained variable, and models (4)—(6) report the estimation results with per capita

carbon emissions from civil buildings as the explained variable. For the estimation results with

the total values as the explained variable, the estimated coefficients and the significance level of

each variable are generally consistent across different models. The real GDP per capita, the

level of urbanization, the total retail sales of consumer goods, the technical level, the fixed

assets investment, marketization level, and regional dummy variables are significant at the 5%

level. The estimation results of population density and industrial structure failed to pass the

significance tests. For the estimation results with the per capita values as the explained variable,

all the explanatory variables except the technical level are significant at the 5% level. In models

(1) and (3), the linear terms of real GDP per capita and urbanization level are significantly

Fig 10. Moran scatter plot of per capita carbon emissions from civil buildings in Chinese cities in 2000 (A) and 2018 (B).

https://doi.org/10.1371/journal.pone.0272295.g010
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positive, and the quadratic terms are significantly negative. This indicates a significant inverted

U-shaped curve relationship between the total civil building carbon emissions and economic

development. There is also an inverted U-shaped curve relationship between urbanization and

carbon emissions from civil buildings.

According to the estimation results of models (4)—(6), when the per capita values are used

as the explained variable, the significant inverted U-shaped curve relationship still exists.

Along with the development of the economy and urbanization in China, carbon emissions

from civil buildings have gradually increased. After reaching the highest point, carbon emis-

sions from civil buildings will decrease as the economy and urbanization develop further.

Based on the emission data, the carbon emissions from civil buildings in most sample cities

are still growing. It shows that most Chinese cities are mainly located on the left side of the

inverted U-shaped curve. The carbon emissions from civil buildings will continue to be posi-

tively correlated with economic growth and urbanization in the future, demonstrating the

urgency and importance of achieving energy conservation and emission reduction in civil

buildings.

(2) Results of the spatial dynamic panel data model. Due to the temporal trend and spa-

tial effect of urban carbon emissions, the current value of carbon emissions is affected by the

historical values and the neighboring areas’ spatial effects. Therefore, we will use the spatial

dynamic panel data model for the empirical analysis. First, we use the robust LM tests to iden-

tify the spatial lag model or the spatial error model is more suitable for analyzing the influenc-

ing factors of carbon emissions from urban civil buildings. Table 4 reports the results of LM

tests.

Regardless of whether the total values or the per capita values are used as the explained vari-

able, the results of the robust LM tests for the spatial lag model are significantly higher than

those of the spatial error model. Therefore, we choose the spatial dynamic panel data lag

model. Due to the addition of time lag and spatial lag of the dependent variable, the results of

traditional estimation methods will be biased. We then use the systematic GMM estimation

method (Sys-GMM) for the coefficient estimation of the spatial dynamic panel model. The sys-

tem GMM estimation can automatically identify reasonable instrumental variables based on

Table 3. FGLS estimation results of the static panel data model.

Variables Total. Per capita.

(1) (2) (3) (4) (5) (6)

Constant -4.293��� -14.49��� -12.78��� -1.677��� -17.39��� -11.18���

Real GDP per capita 0.216��� 0.046�� 0.144��� 1.192��� 0.884��� 1.168���

Quadratic of Real GDP per capita -0.055��� - -0.031��� -0.100��� - -0.086���

Urbanization rate 0.386��� 5.524��� 4.651��� 0.198��� 8.106��� 4.942���

Quadratic of urbanization rate - -0.631��� -0.527��� - -0.963��� -0.582���

Population density -0.001 0.011 0.005 -0.058��� -0.039�� -0.052���

Industrial structure 0.039 0.020 0.030 0.165��� 0.131��� 0.165���

Social consumption expenditure 0.468��� 0.451��� 0.462��� -0.110��� -0.151��� -0.126���

Technical level -0.004 -0.009� -0.010�� -0.003 -0.007 -0.007

Fixed assets investment 0.062�� 0.061��� 0.061��� 0.021��� 0.018��� 0.017���

Marketization 0.014��� 0.016��� 0.016��� 0.013�� 0.015�� 0.012�

Area 1.837��� 1.919��� 1.908��� 1.023��� 1.151��� 1.111���

Wald 202018��� 196807��� 206887��� 58346��� 59165��� 61699���

Note

���, ��, � indicate the 1%, 5%, and 10% significance level respectively.

https://doi.org/10.1371/journal.pone.0272295.t003

PLOS ONE Spatiotemporal characteristics and influencing factors of carbon emissions from civil buildings

PLOS ONE | https://doi.org/10.1371/journal.pone.0272295 August 4, 2022 16 / 23

https://doi.org/10.1371/journal.pone.0272295.t003
https://doi.org/10.1371/journal.pone.0272295


the time trend of the variables, making the estimation results more effective than traditional

methods.

Table 5 reports the estimation results based on QMLE and Sys-GMM. Comparing the two

estimation results, we see that the significance level of the Sys-GMM estimation coefficients is

higher than the QMLE estimation result, indicating that the endogeneity problem has a rela-

tively strong influence on the estimation result of the spatial dynamic panel data model. The

Hansen-J statistics are not significant, reflecting that the choice of instrumental variables of the

Sys-GMM model is appropriate. The AR (1) and AR (2) tests show that although the second-

order difference of residuals is serially correlated, the first-order difference does not have serial

correlation problems. Thus the original residual sequence is also not correlated. The estima-

tion results of the above three types of statistics prove that the setting of the model is appropri-

ate, and there is no bias due to the choice of instrumental variables. Based on the above

discussion, we will focus on analyzing the Sys-GMM estimation results.

According to the estimation results of Sys-GMM in Table 5, the coefficient of the time lag

of the dependent variable is positive and significant at 1%, indicating that the evolution of car-

bon emissions from urban residential buildings in China has a significant path dependence.

The historical values will have a certain impact on the current carbon emissions from civil

buildings. If the total values of the time lag term rise by 1%, the current total emissions rise by

0.845%; if the per capita values of the time lag term rise by 1%, the current per capita emissions

Table 5. Estimation results of spatial dynamic panel data.

Variables Total. Per capita.

QMLE Sys-GMM QMLE Sys-GMM

Time lag of dependent variable 0.634��� 0.845��� 0.568��� 0.657���

Real GDP per capita 0.103 0.024 0.604��� 0.187���

Quadratic of Real GDP per capita -0.038� -0.020��� -0.070��� -0.011��

Urbanization rate -1.369 0.542��� -1.907 0.049

Quadratic of urbanization rate 0.179 -0.047�� 0.254 -0.055

Population density -0.007 -0.102��� -0.177��� -0.205���

Industrial structure 0.000 -0.257��� 0.279��� 0.204���

Social consumption expenditure 0.104�� 0.198��� -0.157��� -0.008

Technical level -0.017� -0.048��� -0.018� -0.010���

Fixed assets investment 0.022�� 0.004� -0.012 -0.013���

Marketization 0.003 0.041��� 0.019 0.034���

ρ 0.219��� 0.068��� 0.177��� 0.118���

Hanson J 92.75 100.43

A-B AR(1) -2.29�� -3.08��

A-B AR(2) 0.42 1.16

Note

���, ��, � indicate the 1%, 5%, and 10% significance level respectively.

https://doi.org/10.1371/journal.pone.0272295.t005

Table 4. Results of LM tests for the spatial panel data.

LM Tests Total. Per capita.

χ2 p value χ2 p value

no lag 142.116 0.000 128.573 0.000

no lag (robust) 101.377 0.000 111.351 0.000

no error 45.810 0.000 29.116 0.000

no error (robust) 5.071 0.024 11.894 0.001

https://doi.org/10.1371/journal.pone.0272295.t004
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rise by 0.657%. For the spatial effects, the estimation coefficient ρ of the spatial lag term is

highly significant at both the total and per capita levels, and the coefficient values are all posi-

tive. It shows that the carbon emissions from civil buildings have significant spatial agglomera-

tion characteristics. The increase in carbon emissions from neighboring areas will contribute

to the increase in carbon emissions from local civil buildings.

After adding time lag term and spatial lag term to the models, there is still a significant

inverted U-curve relationship between the total carbon emissions from civil buildings and eco-

nomic development. The above results illustrate the urgency and importance of reducing car-

bon emissions in urban civil buildings. Due to the status quo of urban development, ensuring

economic growth and urban development is still the main task of most Chinese local govern-

ments. As a result, most Chinese cities are still located in the rising part of the inverted U-

shaped curve, and the civil building carbon emissions are still not "decoupled" from economic

growth and urbanization. China’s urban development should accelerate its green and sustain-

able transformation by improving the efficiency of urban infrastructure and the green aware-

ness of urban residents, so as to reduce carbon emissions from civil buildings while

maintaining economic growth and urban development.

According to the estimation results of other explanatory variables, population density, tech-

nological progress, and fixed asset investment have significant negative effects on carbon emis-

sions from civil buildings. Technological progress can improve the efficiency of energy use

and thus reduce carbon emissions. The increase in urban population density will generate

agglomeration effects and scale effects, which improve technology level, urban infrastructure

use efficiency, energy use efficiency, and reduce the cost of carbon reduction facilities. Invest-

ment in fixed assets can replace outdated production technologies and increase the proportion

of green technologies, which can significantly contribute to reducing carbon emissions from

civil buildings. The above results show that structural reform on the production side, which

leads the investment and technology progress in the direction of green and low-carbon, can

significantly reduce carbon emissions. According to the estimation coefficients of industrial

structure, the current adjustment of industrial structure in Chinese cities has been able to pro-

duce a negative effect on the total carbon emissions from civil buildings. This indicates that an

effective carbon reduction mechanism for civil buildings is gradually being established on the

production side. However, due to the extensive economic development, the optimization of

industrial structure in China has not yet been able to effectively reduce carbon emissions from

civil buildings at the per capita level.

The coefficient of marketization is positive with a high significance level based on the Sys-

GMM estimation result. The coefficient of social consumption expenditure is significantly pos-

itive based on the estimation result of total values. This indicates that an effective carbon emis-

sion reduction mechanism for civil buildings has not yet been formed on the consumption

side. Chinese urban residents have not yet established sufficient green awareness in consump-

tion expenditure to promote the sustainable reduction of carbon emissions from civil build-

ings. The awareness of low-carbon consumption and environmental protection among urban

residents should be vigorously promoted and raised. Realizing the transformation of con-

sumption structure and lifestyle towards low carbon can effectively reduce energy consump-

tion and carbon emissions during the operation of civil buildings.

5 Conclusions and policy implications

5.1 Conclusions

Along with urbanization, the proportion of carbon emissions from civil buildings in the total

carbon emissions is gradually increasing. Reducing energy consumption and carbon emissions
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in the operational stage of civil buildings has become an effective means for China to achieve

the "dual carbon" goal. Based on the data about carbon emissions from civil buildings in

China, we examine the spatiotemporal characteristics of the civil building carbon emissions

from the perspectives of temporal evolution trend, spatial distribution and its dynamic evolu-

tion, spatial difference and its decomposition, and spatial autocorrelation characteristics.

Finally, we reveal the influencing factors of the carbon emissions from civil buildings using

static panel data models and spatial dynamic panel data models. The study provides the follow-

ing main conclusions: First, the carbon emissions from civil buildings in China have increased

year by year during the sample period and have become an important source of the total car-

bon emissions. Second, there is a significant non-linear inverted U-shaped relationship

between urban development and carbon emissions from civil buildings. The significant

inverted U-shaped relationship still exists after adding the one-period lagged term of carbon

emission indicators to the model. In other words, along with the development of cities in

China, carbon emissions from civil buildings gradually increase. After reaching the peak, car-

bon emissions from civil buildings turn to decrease. Third, the estimation results of other

explanatory variables show that population density, technological progress, and fixed asset

investment negatively affect carbon emissions from civil buildings. Social consumption expen-

diture and the level of marketization positively affect the carbon emissions from civil buildings

to some extent.

5.2 Policy implications

The critical policy implications for China’s reduction of carbon emissions from civil buildings

and the overall realization of carbon emission reduction targets are indicated below:

Firstly, carbon emissions from civil buildings have become an important source of the total

carbon emissions in China. Improving energy use efficiency in the operation of civil buildings

is crucial to the achievement of China’s "dual carbon" goal. Therefore, in the process of formu-

lating and implementing the policies for carbon emission reductions, it is necessary to

strengthen the reduction of carbon emissions from civil buildings. At the same time, the spatial

differences in carbon emissions should also be taken into consideration. A targeted total con-

trol system for the carbon emissions of civil buildings in various regions should be established

to achieve differentiated treatment of carbon emission reduction policies. Specifically, it is nec-

essary to reduce carbon emissions from civil buildings according to local conditions, and it

also needs strengthen synergies between cities. According to the study in the paper, there is a

certain amount of spatial difference in the distribution of China’s civil building carbon emis-

sions. So, the responsibility for carbon reduction should vary from region to region, and the

targets of reducing carbon emissions from civil buildings vary from city to city. Therefore, tar-

geted control measures should be formulated according to the actual situation of each city. On

the other hand, cities can learn from each other in civil building carbon reduction and actively

absorb advanced control measures. This will strengthen the synergy and communication

between cities and enable them to use various carbon reduction measures efficiently.

Secondly, the empirical results show that there is a significantly non-linear inverted U-

shaped relationship between urbanization and carbon emissions from civil buildings, and the

non-linear relationship is influenced by factors such as technology and industrial structure. At

present, the urbanization rate of developed coastal cities has stabilized. However, the urbaniza-

tion rate of small and medium-sized cities still has much room for improvement. Along with

the urbanization of these cities, carbon emissions from civil buildings will continue to increase.

During rapid urbanization, energy consumption and carbon emissions will increase signifi-

cantly, which will increase the pressure on the environment. Therefore, China should abandon
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the traditional urbanization development model and actively expand the sustainable develop-

ment approach of cities. The concept of low-carbon city development should be vigorously

promoted in the process of urbanization. The use of new energy and clean production technol-

ogies should be actively incentivized through fiscal policies to increase the use of energy-effi-

cient materials in civil buildings. Through the above methods, the marginal cost of

urbanization can be reduced. Then, China as a whole will eventually enter the declining part of

the inverted U-shaped curve, so as to realize the effective reduction of carbon emissions from

civil buildings.

Thirdly, the carbon emissions from civil buildings can be significantly reduced through

technological progress and industrial structure optimization on the production side. However,

an effective carbon emission reduction mechanism for civil buildings has not yet been formed

on the consumption side, which reduces the effectiveness of existing carbon emission reduc-

tion policies. Most urban residents in China have not yet established sufficient green awareness

to promote a sustainable reduction of carbon emissions from civil buildings. There is still a

need to improve the market-based mechanism to reduce carbon emissions from civil buildings

through the change in income and energy consumption expenditure. In the process of formu-

lating carbon emission reduction policies for civil buildings, the daily life of urban residents

should be the focus of attention, and the energy consumption structure should be actively

guided to change in the direction of low carbon, so as to realize the reduction of energy con-

sumption and carbon emission during the operation of civil buildings.

Finally, technological progress is the main driving factor in reducing carbon emissions. The

breadth and depth of application of green technology in the field of civil buildings should be

further strengthened to fully exploit the potential of technological progress in energy saving

and emission reduction. The key to achieving the "dual carbon" goal is replacing traditional

technologies with green technologies. Enhancing the application of green technologies to

achieve improved energy efficiency in the operation of civil buildings has become a necessary

means of addressing the prominent energy consumption and carbon emission problems

caused by rapid urbanization. From the perspective of policymakers, it is crucial to provide

sufficient directional guidance and policy support for applying green technologies and energy-

saving technologies to curb the growth of energy consumption and carbon emissions from

civil buildings. Specifically, research incentive policies for civil building energy efficiency tech-

nologies should be actively established to achieve technological innovation in civil building. In

addition, the transformation and promotion of energy-saving technologies in civil buildings

should be accelerated, and the application of energy-saving materials and products in civil

buildings should be promoted to enhance the effect of carbon emission reduction.
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