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ABSTRACT: The expending of elderly population worldwide has resulted in a dramatic rise in the incidence of 

chronic diseases such as Alzheimer’s disease (AD). Inadequate understanding of the mechanisms underlying AD 

has hampered the development of efficient tools for definitive diagnosis and curative interventions. Previous 

studies have attempted to discover reliable biomarkers of AD, but these biomarkers can only be measured 

through invasive (neuropathological markers in cerebrospinal fluid) or expensive (positron emission tomography 

scanning or magnetic resonance imaging) techniques. Metabolomics is a high-throughput technology that can 

detect and catalog large numbers of small metabolites and may be a useful tool for characterization of AD and 

identification of biomarkers. In this study, we used ultra-performance liquid chromatography-mass spectrometry 

based untargeted metabolomics to measure the concentrations of plasma metabolites in a cohort of subjects with 

AD (n=44) and cognitively normal controls (Ctrl, n=94). The AD group showed marked reductions in levels of 

polyunsaturated fatty acids, acyl-carnitines, degradation products of tryptophan, and elevated levels of bile acids 

compared to the Ctrl group. We then validated the results using an independent cohort that included subjects 

with AD (n=30), mild cognitive impairment (MCI, n=13), healthy controls (n=43), and non-AD neurological 

disease controls (NDC, n=31). We identified five metabolites comprising cholic acid, chenodeoxycholic acid, 

allocholic acid, indolelactic acid, and tryptophan that were able to distinguish patients with AD from both Ctrl 

and NDC with satisfactory sensitivity and specificity. The concentrations of these metabolites were significantly 

correlated with disease severity. Our results also suggested that altered bile acid profiles in AD and MCI might 

indicate early risk for the development of AD. These findings may allow for development of new approaches for 

diagnosis of AD and may provide novel insights into AD pathogenesis. 
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Alzheimer’s disease (AD) is a progressive neuro-

degenerative disorder that accounts for 60-80% of all 

dementia cases. Inadequate understanding of the etiology 

of AD and confounding factors that contribute to its 

genotypic and phenotypic heterogeneities may explain the 

lack of development of curative therapies [1, 2]. Genetic 

causes account for only 1-5% of all AD cases, and >95% 

of cases are sporadic [3]. Clinical diagnosis of AD is 

primarily reached based on medical history, patient 

symptoms, neuroimaging, and neuropsychological 
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evaluation, and typically occurs too late for effective 

disease modification [4]. Although several methods have 

been developed for diagnosis of AD, including 

quantification of amyloid-β (Aβ) and tau protein levels in 

cerebrospinal fluid, measurement of Aβ using positron-

emission tomography imaging, and analysis of atrophy 

using magnetic resonance imaging, these procedures are 

either invasive (lumbar puncture) or expensive (imaging) 

[5-7]. Therefore, identification of peripheral blood-

derived biomarkers capable of identifying AD during 

early stages is an urgent priority.  

Numerous studies have identified blood biomarkers 

of AD, the majority of which were derived from known 

disease markers such as Aβ and tau, which represents 

narrow hypothesis-driven biomarker discovery [8, 9]. 

Although many studies have proposed several biomarker 

candidates such as inflammation or oxidative stress-

related proteins, cytokines, chemokines, growth factors, 

and lipids, there is still a clear need for a broader study of 

biomarker that could facilitate better understanding of the 

disease mechanisms [6, 10, 11]. Identification of novel 

biological characteristics of AD could contribute to the 

discovery of novel circulating biomarkers associated with 

risk for development of AD, and identification of 

therapeutic targets. 

Metabolomics is a rapidly expanding field in systems 

biology used to explore the molecular basis of biological 

aspects of diseases [12]. Increasing numbers of studies 

have shown that dysregulation of various metabolic 

pathways, such as cholesterol metabolism and energy 

metabolism, may contribute to onset of AD pathology and 

AD-associated cognitive impairment [13]. 

Characterization of the role of metabolism in AD etiology 

using large-scale metabolomics could contribute to 

comprehensive understanding of AD pathology and 

discovery of mechanisms triggering symptom occurrence 

[13]. A previous study showed that altered plasma 

arginine metabolism preceded behavioral and brain 

metabolic profile changes in APP/PS1 transgenic mice 

[14]. Several studies have reported alterations in 

phospholipids, amine metabolites, and amino acids in the 

blood of AD patients [7, 12, 15, 16]. However, most of 

these studies were based on relatively small sample size, 

and the results were not validated, which makes 

comparative assessments of these studies difficult [17]. 

Moreover, traditional metabolomics-based studies of AD 

have mainly relied on comparisons between patients with 

AD/mild cognitive impairment (MCI) and healthy 

controls, and ignored potential interference from other 

neurological diseases, which has resulted in difficulty in 

determination of specificity of potential biomarkers. 

In this study, we used a robust ultra-performance 

liquid chromatography-mass spectrometry (UPLC-MS)-

based untargeted metabolomics approach to profile the 

plasma metabolome in AD. By comparing the metabolic 

differences between patients with AD and cognitively 

normal controls (Ctrl) using biostatistical and 

bioinformatics approaches, we highlighted specific 

biochemical pathways that were perturbed in AD. To 

further validate our findings and identify promising 

biomarker candidates, we repeated our analysis in an 

independent cohort that included patients with AD, MCI, 

Ctrl, and non-AD neurological disease controls (NDC). 

We developed a predictive model capable of 

distinguishing AD from Ctrl and NDC subjects and 

provided a novel perspective for early risk assessment of 

AD (Fig. 1). 

 
Figure 1. Experimental design. An overview workflow of the metabolomics analysis in Alzheimer's disease. A total of 255 plasma 

samples were collected and subjected to untargeted metabolomics analysis. Amony them, 138 and 117 plasma samples were included 

in discovery phase and validation phase, respectively. 

MATERIALS AND METHODS 

 

Study cohorts and patients 

Fasting plasma samples were collected at the First 

Affiliated Hospital of Dalian Medical University. Two 

hundred fifty-five plasma samples were collected, and all 
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subjects or their legally authorized caregivers provided 

written informed consent. In the discovery phase, we 

collected 138 plasma samples, of which 44 were from 

patients with AD and 94 were from Ctrl subjects. These 

samples were selected solely based on sample availability. 

In the validation phase, 117 plasma samples were 

collected from patients with AD (n = 30), Ctrl subjects (n 

= 43), NDC subjects (n = 31; 10 seizure, 10 migraine, 9 

peripheral neuropathy, and 2 essential tremor), and 

patients with MCI (n = 13). Patients with AD and patients 

with MCI were subjected to standard cognitive screening 

including medical history assessment, physical, cognitive 

(Mini-mental State Examination (MMSE) scale and 

Montreal Cognitive Assessment (MoCA) scale) and 

neurologic examinations, routine blood and urine tests, 

and magnetic resonance imaging. AD diagnoses were 

made based on the National Institute of Neurological and 

Communicative Disorders and Stroke-Alzheimer’s 

Disease and Related Disorders Association criteria [18], 

and MCI was diagnosed using the criteria of Petersen [19, 

20]. Patients with non-AD neurological diseases were 

diagnosed by experienced physicians from the 

Department of Neurology. This study was approved by 

the Ethics Committee of the First Affiliated Hospital of 

Dalian Medical University. Patient characteristics are 

presented in Table 1. 

 
Table 1. Clinical information of the subjects in the study. 

 
 AD 

(n=74) 

Ctrl 

(n=137) 

NDC 

(n=31) 

MCI 

(n=13) 

p 

Cohort 1      

Number of individuals 44 94 - - - 

Age, mean ± SE 72.0 ± 1.3 68.6 ± 0.8 - - 0.0156 a 

Gender (m/f) 20/24 51/43 - - 0.3350 b 

Duration of disease (year) c, mean ± SE 4.0 ± 0.5 - - - - 

Disease progression d  

early/middle/late stage 

17/10/3 - - - - 

MMSE, mean ± SE e 15.2 ± 1.0 - - - - 

MoCA, mean ± SE f 10.9 ± 0.8 - - - - 

Cohort 2      

Number of individuals 30 43 31 13 - 

Age, mean ± SE 71.6 ± 1.6 65.5 ± 1.2 62.2 ± 1.8 67.9 ± 2.0 0.0011 

Gender (m/f) 10/20 25/18 17/14 8/5 0.1459 

Duration of disease (year), mean ± SE 4.5 ± 0.5 - - 3.9 ± 0.8 0.5852 g 

Disease progression  

early/middle/late stage 

14/9/4 - - - - 

MMSE, mean ± SE 15.4 ± 1.5 - - 25.1 ± 1.0 <0.0001 

MoCA, mean ± SE 10.8 ± 1.5   20.0 ± 1.5 0.0003 
 

a: Student t-test and one-way ANOVA were applied to calculate the statistical significance of age between AD and Ctrl in cohort 1 as well as AD, 

Ctrl, NDC and MCI in cohort 2, respectively. Notably, there is no significant difference among Ctrl, NDC and MCI with a p value of 0.1134 

calculated by one-way ANOVA. b: Chi-square test was used to calculate the significant difference of gender composition between groups. c: Three 

AD patients in cohort 1 and one AD patient, one MCI patient in cohort 2 were lack of information of disease duration. d: Information of disease 

progression were not available for fourteen AD patients in cohort 1 and three AD patients in cohort 2. e, f: Twelve AD patients in cohort 1 and ten 

AD patients, four MCI patients in cohort 2 were lack of MMSE and MoCA data. g: Student t-test was applied to calculate the statistical significance 

of duration of disease, MMSE and MoCA between AD and MCI. AD, Alzheimer's disease; Ctrl, cognitively normal controls; MCI, mild cognitive 

impairment; NDC, non-AD neurological diseases controls; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment. 

Preparation of plasma samples 

 

Blood samples were collected in ethylene-

diaminetetraacetic acid-containing vacutainer tubes by 

direct venipuncture, then immediately centrifugated at 

3,000 rpm for 5 min. Plasma was transferred to sterile 

tubes, stored at -80°C, and thawed on ice prior to analysis. 

Plasma metabolites were extracted as previously 

described [21, 22]. One hundred-thirty microliters of 

plasma was deproteinated using 520 μL of methanol that 

contained 14 internal standards (carnitine C2:0-d3, 

carnitine C10:0-d3, carnitine C16:0-d3, lysophosphatidyl-

choline (LPC) 12:0, leucine-d3, phenylalanine-d5, 

tryptophan-d5, cholic acid-d4, chenodeoxycholic acid-d4, 

choine-d4, palmitic acid-d3, stearic acid-d3, succinic 

acid-d4, and tridecanoic acid), then vortexed for 1 min. 

After centrifugation for 15 min (14,000 g, 4℃), the 

supernatant was divided into two aliquots, transferred to 

fresh tubes, then dried in a vacuum centrifuge. Prior to 

LC-MS analysis, the dried powder was reconstituted in 65 

μL of 25% (v/v) aqueous methanol. 

A biological quality control (QC) sample was made 

by pooling 10-20 μL of each plasma sample. QC samples 

were prepared in parallel with study samples and analyzed 

after 10 sample injections to monitor the robustness of the 

large-scale analysis. 
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Figure 2. Quality control of the analytical method and multivariate statistical analysis. (A) RSD distribution of all the detected 

features in the QC samples. (B) RSD distribution of the identified metabolites in the QC samples. (C) PCA score plot. QC samples 

clustered tightly on the plot, indicating good quality control of the analytical method. (D) Standard deviation of the samples. Most of 

the samples were located within ±2SD. (E) Score plot of the PLS-DA model. Model parameters: R2Y=0.575, Q2=0.427. (F) 

Permutation test of the PLS-DA model. 999 permutations resulted in intercepts of R2 = 0.266, Q2 = -0.175, indicating an acceptable 

model without overfitting. (G) Metabolites with VIP [1] score > 1 in PLS-DA model. (H) Metabolites with VIP [2] score > 1 in PLS-

DA model. 

Metabolomic profiling 

 

Untargeted metabolomic profiling was performed using 

UPLC (Waters Corporation, Manchester, UK) coupled to 

a tripleTOFTM 5600 plus (Applied Biosystems, Foster 

City, CA) mass spectrometry system. For electrospray 

ionization positive (ESI+) mode detection, an ACQUITY 

UPLC BEH C8 1.7 μm column was used. The mobile 
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phases were 0.1% formic acid in water and acetonitrile. 

For ESI negative (ESI-) mode detection, an ACQUITY 

UPLC HSS T3 1.8 μm column was used. The mobile 

phases were 6.5 mM NH4HCO3 in water and 95% 

methanol (v/v) with 6.5 mM NH4HCO3. The gradient 

elution profile and mass spectrometry parameters were 

published in our previous studies [21, 23]. 

 

Metabolite recognition and data preprocessing 

 

Metabolite identification was performed using an in-

house database that includes about 2,000 metabolites [24]. 

QC samples were used to generate qualitative information 

including retention time, accurate mass (m/z) and MS2 

spectrum by performing automatic MS2 scans in 

information-dependent acquisition mode. Retention time 

calibration, precursor ion and auto-MS2 information 

matching were performed using OSI/SMMS software. 

Peak detection and alignment were conducted using 

Marker View software (version 1.2.1.1, Applied 

Biosystems). After refining peaks using the 80% rule [25], 

the original peak area of each retained peak was calibrated 

by internal standards prior to statistical analysis. For each 

peak, the internal standard was selected to obtain the 

minimum relative standard deviation (RSD) for the peak 

in the QC samples. For metabolites detected and identified 

in the discovery and validation phases, the original peak 

area was calibrated using the same internal standards. 

 

Statistical analysis 

 

Multivariate analyses were performed using SIMCA 13.0 

(Umetrics AB, Umea, Sweden). An unsupervised model 

of principal component analysis (PCA) was used to assess 

the stability of the analytical process and to visualize 

global metabolome differences among the groups. To 

maximize class discrimination necessary for discovery of 

potential metabolic biomarkers between the AD and Ctrl 

groups, a supervised model of partial least squares 

discriminant analysis (PLS-DA) was applied. The 

variable importance in the projection (VIP) value was 

used to estimate the discriminatory power of each variable 

for separation of groups in the PLS-DA model, and 

variables with VIP values > 1 were considered important. 

Furthermore, we performed a permutation test to ensure 

that the PLS-DA model was not overfitting.  

Univariate analyses utilized Student’s t-test (p < 

0.05). A heat map was constructed using Multi 

Experiment Viewer (Version 4.7.4) software to visualize 

the concentrations of metabolites in different groups. To 

determine the metabolic pathway changes relevant to the 

AD disease process, we performed pathway enrichment 

analysis using the online software MetaboAnalyst 

(www.metaboanalyst.ca). Binary logistic regression 

analysis was applied to establish a potential metabolite 

panel, and a summary receiver operating characteristic 

(ROC) curve was generated to evaluate the predictive 

performance of the model. Spearman correlation was used 

to determine associations between categorical variables 

(disease severity/gender) and levels of metabolites. 

Pearson correlation was used to determine associations 

among continuous variables (age/clinical characteristics) 

using SPSS 18.0 software (SPSS, Inc., USA). 

 

RESULTS 

 

To define differential metabolites and perturbed 

metabolic pathways that differentiated AD from 

neurologically normal controls, we performed an 

untargeted metabolomics approach using plasma samples 

from 44 AD patients and 94 Ctrl individuals. Totally, 

2,412 ion signatures in ESI+ mode and 2,672 ion 

signatures in ESI- mode were detected in both AD and 

Ctrl groups. Using our in-house database, 208 metabolites 

were identified. The RSD of QC samples was used as an 

indicator of analytical reproducibility. The results showed 

that 93.8% of all detected peaks had RSD values < 30% 

(Fig. 2A), and 98.1% of the identified peaks had RSD 

values < 30% (Fig. 2B), which indicated that the analysis 

was repeatable and robust. The 208 identified ion 

signatures were further analyzed using an unsupervised, 

multivariate classification technique. QC samples 

clustered tightly on the PCA score plot (Fig. 2C), and 

most samples (98.2%, 161/164) were within the 95% 

confidence interval (CI) in the direction of the first 

principal component (Fig. 2D), which further confirmed 

the reliability of this study. 

 

Discovery of differential metabolites and dysregulation 

of metabolic pathways in AD 

 

To visualize differences within and between groups, and 

to determine important metabolites that could be used to 

distinguish AD and Ctrl, a PLS-DA model with unit 

variance scaling was established. The plasma 

metabolomes of AD and Ctrl were significantly different 

(Fig. 2E). The model was confirmed to not be overfitted 

following 999 permutation tests (Fig. 2F). Among the 208 

identified metabolites, 56 metabolites were found to be 

important to the separation of AD and Ctrl with both VIP 

[1] and VIP [2] values > 1 (Fig. 2G-2H). These 56 

metabolites were subjected to univariate analysis 

(Student’s t-test), and 52 of them were found to be 

statistically significant (p < 0.05). The levels of these 52 

metabolites were visualized in a heat map (Fig. 3A). 

Because of the age imbalance between the Ctrl and AD 

group, we further investigated correlations between levels 

of metabolites and age. Of the 52 differential metabolites, 

http://www.metaboanalyst.ca/
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only phosphatidylcholine (PC) O-34:1 showed a 

significant correlation with age in the Ctrl group (p = 

0.0013, r = 0.327). Therefore, the differences in metabolic 

levels between AD and Ctrl were not owing to age 

difference between the two groups. Most of the 

differential metabolites, including acylcarnitines, fatty 

acids (FAs), several LPCs (12:0, 18:0, 20:0, 22:0) and PCs 

(C34:4 and C36:5), amino acids (valine, tryptophan), 

serotonin, and several organic acids, were reduced in AD. 

In contrast, bile acids including allocholic acid, cholic 

acid (CA), chenodeoxycholic acid (CDCA), glycol-

chenodeoxycholic acid (GDCA), ursodeoxycholic acid 

(UDCA), glycochenodeoxycholic acid (GCDCA), and 

glycoursodeoxycholic acid (GUDCA), and lactic acid, 

leucine, and tyrosine were elevated in AD. Furthermore, 

pathway enrichment analysis showed that alpha linolenic 

acid and linoleic acid metabolism, bile acid biosynthesis, 

caffeine metabolism, thyroid hormone synthesis, and 

catecholamine biosynthesis were the most significantly 

perturbed pathways in AD (Fig. 3B). 

 

 
 
Figure 3. Differential metabolites and perturbed metabolic pathways in AD. (A) Heat map of the significantly changed metabolites 

in AD compared with Ctrl. (B) Pathway enrichment analysis based on differential metabolites. 

Differential metabolites validation and metabolite panel 

establishment 

 

To further validate the specificity of these differential 

metabolites in AD, we collected and analyzed an 

independent cohort of plasma samples from 30 AD, 43 

Ctrl, 31 NDC, and 13 MCI cases. In the validation phase, 

we observed markedly lower levels of FAs and acyl-

carnitines in AD compared to those in the Ctrl group, 

which was consistent with previous results. However, we 

found that patients in the NDC group showed a greater 

decrease in the levels of FAs and acyl-carnitines, which 

indicated that changes in these metabolites were not 

specific (Fig. 4A). Following comparisons between AD 

and Ctrl, as well as AD and NDC, levels of five 

metabolites were found to be specifically altered in AD. 

The levels of CA, CDCA, and allocholic acid were 

increased, while the levels of indolelactic acid and 

tryptophan were decreased in AD compared with those in 

the Ctrl and NDC groups (Fig. 4B-4F). 

ROC curves of classification models based on the 5 

specific metabolites were plotted to distinguish AD from 

control groups. The area-under-the-curve (AUC) values 

for each metabolite were 0.721, 0.700, 0.691, 0.643, and 

0.632, respectively. The discriminating power was 

improved by combining these 5 metabolites into a 

metabolite panel using binary logistic regression analysis, 

as evidenced by an AUC value of 0.822. Because of the 

imbalance in age distribution between AD and the other 

three groups (Ctrl, MCI and NDC), we further analyzed 

the correlations between the selected metabolites and age 

in each group. We found that none of the five metabolites 

showed significant correlations with age in NDC or MCI, 

whereas the levels of CA, CDCA, allocholic acid, and 

tryptophan were significantly associated with age in AD 

(Fig. 4G-4V). Therefore, we also included age as a 

covariate for development of a binary logistic regression 

model. The corresponding ROC curve showed an AUC 

value of 0.840 with 76.7% sensitivity and 83.3% 

specificity (Fig. 4W). Moreover, this metabolite panel 

also showed satisfactory diagnostic performance for 

distinguishing AD from both Ctrl and NDC with AUC, 

sensitivity, and specificity of 0.831, 86.5%, and 70.0%, 

respectively (Fig. 4X). Notably, we found that changes in 

bile acids were more significant in patients MCI (Fig. 4B-

4D). Using CDCA alone to differentiate MCI from Ctrl 
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resulted in an AUC value of 0.850 with a 95% CI of 0.721-

0.979 (Fig. 4Y). Furthermore, CDCA alone produced a 

satisfactory AUC value of 0.839 for differentiating MCI 

from both Ctrl and NDC groups with a 95% CI of 0.705-

0.973 (Fig. 4Z). The discriminating power of each bile 

acid metabolite was presented in Table 2. 

 

 
 
Figure 4. Metabolite panel and ROC analysis. (A) Heat map of FAs and acyl-carnitines in Ctrl, NDC and AD. (B) ~ 

(F) Bar graphs of the 5 metabolites in different groups. The p values were adjusted for multiple testing using Benjamini-

Hochberg method. (G) ~ (V) Correlation analysis of the five metabolites with age in AD, Ctrl, NDC and MCI. (W) ~ 

(X) ROC analysis of the metabolite panels to discriminate AD from Ctrl/ (Ctrl +NDC). (Y) ~ (Z) ROC analysis of bile 

acids to discriminate MCI from Ctrl/ (Ctrl +NDC).  
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Table 2. Results for assessment of plasma metabolite panel in the discrimination of AD/MCI. 

 
Metabolite panel AUC 95% CI Sensitivity Specificity SE Significance 

Meta+age 
AD vs. Ctrl 0.840 0.740 ~ 0.941 76.7% 83.3% 0.0512 8.57E-07 

AD vs. (Ctrl+NDC) 0.831 0.733 ~ 0.928 86.5% 70.0% 0.0496 1.39E-07 

Allocholic 

acid 

MCI vs. Ctrl 0.766 0.604 ~ 0.928 69.2% 83.7% 0.0827 3.95E-03 

MCI vs. (Ctrl+NDC) 0.745 0.591 ~ 0.900 69.2% 77.0% 0.0787 4.96E-03 

CA 
MCI vs. Ctrl 0.758 0.585 ~ 0.932 61.5% 88.4% 0.0887 5.04E-03 

MCI vs. (Ctrl+NDC) 0.770 0.612 ~ 0.928 61.5% 87.8% 0.0807 1.96E-03 

CDCA 
MCI vs. Ctrl 0.850 0.721 ~ 0.979 76.9% 90.7% 0.0659 1.48E-04 

MCI vs. (Ctrl+NDC) 0.839 0.705 ~ 0.973 76.9% 89.2% 0.0684 1.04E-04 
 

CI, confidence interval; SE, standard error. 

Associations of metabolites with gender, disease severity, 

and clinical characteristics 

 

No significant correlations were found between the five 

selected metabolites and gender (Fig. 5A-5E). 

Interestingly, the levels of CDCA and allocholic acid were 

positively correlated with disease severity of AD, and the 

levels of indolelactic acid and tryptophan were negatively 

correlated with disease severity (Fig. 5F-5K). 

Furthermore, correlation analyses of the levels of 

metabolites with clinical characteristics were performed 

to characterize the relationship between plasma metabolic 

profiles and the clinical phenotype of AD. We found that 

the levels of CA and CDCA were positively correlated 

with total bile acids (TBA), and the levels of allocholic 

acid were positively correlated with γ-glutamyltransferase 

(γ-GT). Furthermore, indolelactic acid was positively 

correlated with uric acid (UA), while tryptophan levels 

were positively correlated with γ-GT and alanine 

aminotransferase (ALT), and negatively correlated with 

free thyroxine 4 (FT4) (Fig. 5L). Associations between 

the selected metabolites and MMSE and MoCA scores 

were also investigated in AD patients. However, no 

significant correlations were observed (Supplementary 

Table 1).  

 

DISCUSSION 

 

In this study, we employed untargeted metabolomics and 

biostatistical approaches to gain further insight into 

metabolic network failures and to identify potential 

metabolic biomarkers in AD. A total of 255 plasma 

samples (AD, n = 74; MCI, n = 13; Ctrl, n = 137; NDC, n 

= 31) were collected and analyzed. First, we compared the 

plasma metabolomes of AD patients with matched 

cognitively normal individuals. Our results suggested that 

the overall metabolic expression profile differed between 

the two groups. Following VIP value filtering and 

multivariate and univariate analyses, 52 metabolites were 

found to be differentially altered in AD. Pathway 

enrichment analysis showed that alpha linolenic acid, 

linoleic acid, and arachidonic acid metabolism, 

mitochondrial beta-oxidation of saturated FAs, bile acid 

biosynthesis, and amino acid metabolism were the most 

relevant pathways associated with AD. 

 

Metabolic pathway dysregulations in AD 

 

We observed marked reductions in the levels of FAs 

(except for C22:1). In particular, polyunsaturated fatty 

acids (PUFAs) levels were reduced in AD compared with 

those in Ctrl, which agreed with previous studies [26]. 

PUFAs are neuroprotective, and decreased levels of 

PUFAs may contribute to the cognitive decline associated 

with AD [27]. A recent study showed that unsaturated FA 

(UFA) metabolism was perturbed in the brains of AD 

patients. This study showed significant associations 

between UFA levels and neuritic plaques, neurofibrillary 

tangle burden, and cognitive performance [13]. 

Docosahexaenoic acid (DHA, C22:6) is the PUFA most 

associated with AD. Our results showed a reduction in 

DHA biosynthesis in AD, which corroborated the results 

from previous studies that reduced levels of DHA may be 

resulted from defective FA metabolism in the liver [27, 

28]. Dietary supplementation with DHA has been shown 

to improve cognitive performance in several animal 

models of AD and in AD patients [29, 30]. PUFAs also 

play important roles in AD pathology. In vivo studies 

suggested that linoleic acid (C18:2), arachidonic acid 

(C20:4), and oleic acid (C18:1) induced polymerization of 

tau and Aβ and contributed to AD pathological progress 

[13, 31]. 

Additionally, we also noted that levels of nearly all 

acyl-carnitines were lower in AD than those in the Ctrl 

group, but only medium- and long-chain acyl-carnitines 

were significantly different between the two groups. A 

previous study indicated that serum acetyl-carnitine and 

other acyl-carnitine levels declined across the continuum 

from healthy individuals to subjects with subjective 

memory impairment and MCI, and patients with AD, 

which agreed with our findings [2]. Deficits in medium- 

and long-chain acyl-carnitines indicated disruption of FA 

transport into the mitochondria for beta-oxidation, and 

impaired energy metabolism [2]. These results also can be 
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evidenced by the findings from proteomic and 

transcriptomic studies, which showed decreased carnitine 

shuttle activity and FA beta-oxidation in AD patients [32, 

33]. Significant reductions in the levels of acyl carnitines 

were observed in the hippocampus and cerebral cortex of 

APP/PS1 transgenic mice [34]. Deficits in carnitine 

shuttling and beta-oxidation might be associated with 

mitochondrial dysfunction that contributed to the 

pathogenesis of AD.  

 

 
 

Figure 5. Correlation analysis of the metabolites panel with gender, disease severity and clinical characteristics. (A) ~ (E) 

Distribution of the levels of metabolite in different genders in Ctrl, NDC, MCI and AD. (F) ~ (K) Correlation analysis of the metabolite 

levels to disease progress. Correlation coefficients were based on Spearman correlation analysis. #, 0.01 < p < 0.05, ##, 0.001 < p <0.01, 

###, 0.0001 < p < 0.001. (L) Correlations analysis of metabolite levels with clinical parameters, which was based on Pearson correlation 

analysis. Yellow square indicated the correlations between two variables were statistically significant. 

In contrast to the decreased levels of FAs and acyl-

carnitines, we observed increased levels of bile acids in 

AD, with the exception of lithocholic acid (LCA). The 

levels of CA, CDCA, and allocholic acid were increased 

with disease severity. Elevated levels of bile acids in the 

circulation usually result from increased bile acid 

synthesis and liver dysfunction [35], which was consistent 

with our findings of significant correlations between CA, 

CDCA and TBA and between allocholic acid and γ-GT. 

Recently, a larger multi-center study from the 

Alzheimer’s Disease Neuroimaging Initiative cohort used 

targeted metabolomic profiling, and reported strong 

associations between bile acid profiles and Aβ, tau, and 

neurodegeneration biomarkers, which suggested that the 

gut-liver-brain axis may play a role in AD pathogenesis 

[1, 36]. Primary bile acids are initially synthesized from 

cholesterol in the liver, and are converted to secondary 

bile acids by intestinal anaerobic bacteria [1]. In addition 

to potential effects from diet and cholesterol metabolism, 

conditions such as dysbiosis and antibiotic treatment 

might cause variations in bile acids levels [37]. Our study 

further supported a strong association between AD and 

abnormal bile acid metabolism. Further investigation of 

the underlying contributions of bile acids to the onset and 

progression of AD may result in a novel hypothesis of AD 

pathogenesis. 

Perturbations in amino acid metabolism were also 

observed in our study. Reduced levels of tryptophan, 

serotonin, and indolelactic acid suggested that tryptophan 

degradation was enhanced through the kynurenine 
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pathway in AD. Tryptophan is a precursor of several 

bioactive compounds including neurotransmitters (e.g., 

serotonin), and its metabolism plays an important role in 

regulating neuronal activity and the inflammatory 

response [38]. Furthermore, lower plasma tryptophan 

levels were associated with decreased olfactory function 

in elderly populations [38]. We observed a continuous 

decrease in levels of tryptophan and indolelactic acid with 

the progression of AD. In addition, tryptophan showed an 

age-related decrease in both AD and Ctrl groups, and 

significant correlations with γ-GT, ALT, and FT4 in our 

study, which suggested that tryptophan may be a clinical 

marker of disease risk in the elderly. Recently, an in vitro 

study showed that tryptophan, serotonin, melatonin, and 

other indole compounds, protected against Aβ peptide 

aggregation and cytotoxicity [39]. Investigation of the 

possible mechanism underlying the neuroprotective 

effects of indole compounds may result in identification 

of novel potential therapeutic targets for AD. 

 

Metabolite panels for AD discrimination 

 

To screen stable and specific biomarkers for AD 

discrimination, we repeated our analysis in an 

independent cohort that included AD, Ctrl, MCI, and 

NDC groups to further validate previous findings. 

Inclusion of the NDC group as a disease control was 

intended to provide an additional control for evaluation of 

biomarker specificity. According to our results, reduced 

levels of FAs and acyl-carnitines in the AD and NDC 

groups limited their use as diagnostic biomarkers for AD. 

We identified a metabolite panel comprised of five 

metabolites including CA, CDCA, allocholic acid, 

indolelactic acid, and tryptophan that may allow for 

discrimination of subjects with AD from cognitively 

normal and non-AD neurological disease controls.  

In addition to serving as potential diagnostic 

biomarkers, the five AD-specific markers identified in 

this study showed significant correlations with disease 

progression, which suggested that these markers or the 

pathways from which they derive may be potential targets 

for treatment of AD. In addition, significant differences in 

levels of bile acids, particularly CDCA, in MCI suggested 

that disruption of bile acid profiles may serve as a 

potential indicator of AD risk. These results agreed with 

those of previous studies that demonstrated strong 

associations between bile acid profiles and cognitive 

impairment in AD [36, 40]. 

In summary, combination of metabolomics with 

statistical and bioinformatic analyses resulted in 

identification of overall metabolic network failures in AD. 

Our results indicated that dysregulation of PUFA 

metabolism, mitochondrial β-oxidation, bile acid 

synthesis, and tryptophan metabolism were pivotal events 

in AD progression. Further investigation of the specific 

roles of these metabolic changes in the pathogenesis of 

AD might result in development of novel therapeutic 

strategies. However, further studies are needed to validate 

our findings. Although a validation phase was included in 

our study, the samples size is still insufficient, and future 

validation studies should include multi-center clinical 

trials with larger sample sizes. Furthermore, 

metabolomics-based longitudinal studies of patients with 

AD in the pre-symptomatic phase will be crucial to the 

identification of novel biomarkers for early diagnosis and 

early intervention. 
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