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Abstract: Capacitive proximity sensing is widespread in our everyday life, but no sensor for biomed-
ical optics takes advantage of this technology to monitor the probe attachment to the subject’s skin.
In particular, when using optical monitoring devices, the capability to quantitatively measure the
probe contact can significantly improve data quality and ensure the subject’s safety. We present a
custom novel optical probe based on a flexible printed circuit board which integrates a capacitive
contact sensor, 3D-printed optic fiber holders and an accelerometer sensor. The device can be effec-
tively adopted during continuous monitoring optical measurements to detect contact quality, motion
artifacts, probe detachment and ensure optimal signal quality.

Keywords: contact; capacitive; proximity sensing; probe; NIRS; DCS; biomedical; optics; continuous
monitoring; laser safety

1. Introduction

The interest towards non-invasive optical probing of human tissues in depth has
constantly increased in recent years, with near-infrared optical spectroscopy techniques
finally reaching both the clinical and commercial fields [1,2]. Diffuse optics systems for
human measurements rely on bright light sources and extremely sensitive photodetectors
to characterize the tissue under test. Proper sensor attachment to the skin is pivotal for most
biomedical devices, and becomes critical for near infrared spectroscopy (NIRS) systems.
Poor coupling between the optical probe and the subject’s skin may lead to direct light
leakages and motion artifacts [3], thus corrupting the acquired data [4] and potentially
posing a risk to the subject’s eye safety in the case of a complete probe detachment. This
is particularly relevant for diffuse correlation spectroscopy (DCS), a NIRS method which
employs long coherence-length lasers at a power above the ANSI eye safety limits [5,6].

Optical probes for fiber-based NIRS systems are typically made of flexible 3D-printed
materials that incorporate the injection and detection fibers and accommodate for curved
surfaces [7–9]. Systems with a limited number of channels tend to rely on external sup-
ports to guarantee proper probe attachment, such as bandages or elastic/adhesive straps
tightened around the probe. Alternatively, systems targeting full-head coverage tend to
rely on custom caps or helmets to secure the optodes [10–12], occasionally making use of
spring-loaded optical systems to maximize the light collection through different types of
hair [12]. Despite extensive efforts to improve the optical coupling, none of the custom
probes and optodes presented in the literature provide a direct measurement of the sensor
attachment to the skin. Thus, the quality of the acquired optical data cannot be ensured eas-
ily and can be verified only during signal post-processing. Additionally, some applications
may prevent the use of external supports to secure the optical probe to the subject, and the
use of bright light sources can pose serious eye safety issues when the subject’s blinking
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reflex is impaired or the wavelength used is in the infrared range, hence not visible. These
limitations are common when performing optical measurements on infants during the first
days of life or on unconscious patients, and may hinder the usability of NIRS devices in
clinical continuous monitoring applications.

Capacitive sensing is a well-known proximity measurement technique that is
widespread in our everyday life and that relies on measuring the capacitance variation
induced by capacitive coupling between electrically conductive electrodes and an object in
their proximity [13,14]. The object introduces a variation in the dielectric constant near the
sensing electrode, causing a variation in the electrode capacitance that can be measured by
a dedicated network [15]. In addition to smart environments [16] and human–computer
interface [17], capacitive proximity sensing has been effectively adopted in a variety of
applications such as non-destructive evaluation of low-conductivity materials [18], 3D-
imaging [19], and interface for interaction with plants [20]. The sensing electrode is usually
made by a patch of conductive material on a non-conductive substrate. Thus, capacitive
proximity sensors are often manufactured into printed circuit boards (PCBs), which in-
tegrate the readout circuit and tailor the sensor to specific applications, such as: human
touch interface, water content measurement in paper pulp [21], air bubble detection in
fluidic flow [22], or aerodynamic pressure measurements [23]. Several devices are based on
flexible PCBs, as is the case of human touch [24,25] and grip sensors [26], and tactile sensing
arrays for robots [27]. This allows for the minimization of bulk and the customization of
the sensor shape for applications where adapting to the sensing surface is crucial. Flexible
PCBs are a low-cost commercially available manufacturing technology which show ideal
features for the design of an optical probe, as they integrate capacitive electrodes and
additional sensors while offering a sturdy support for the optical fiber housings, with the
PCB being the body of the probe itself. The substrate flexibility and the customizable shape
and thickness allow the probe to be tailored to the specific application and maximize the
fitting to various body shapes. The main drawbacks of PCB-based capacitive sensing are
its high sensitivity to noise, stray capacitance, and the environmental conditions such as
temperature and humidity.

Here, we present a novel sensor based on capacitive proximity sensing, which can
be integrated into optical probes to continuously monitor the contact with the subject
and promptly alert users/operators in case of an unanticipated detachment, ensuring
patient safety and data quality, especially in continuous monitoring applications. The
contact sensor is based on a capacitive sensitive electrode integrated in a flexible PCB, and
commercially available driving and readout integrated circuit (IC). Human contact with
the probe adds a macroscopic amount of additional capacitance to the sensing network,
and variation in the overall sensing network capacitance can be detected by the readout
electronics. By periodically measuring the probe capacitance, it is possible to constantly
monitor the probe attachment to the skin and output a contact quality signal in real time.
An additional accelerometer sensor integrated on the probe PCB allows for the detection
of motion artifacts in the acquired optical data [28]. The presented instrument has been
extensively validated and successfully adopted during continuous NIRS-DCS monitoring
on premature-born infants in a clinical setting.

2. Materials and Methods

The fully custom instrument is based on: (i) a flexible probe-shaped PCB which hosts
a contact-sensing electrode, an accelerometer sensor, and the 3D-printed fiber holders
for diffuse optics measurements; (ii) a control board PCB with the acquisition electronics.
The control board is manufactured on standard FR4 substrate and is battery-operated to
minimize the hazard-risk in clinical environments.

2.1. Sensing Electrode Shape

Several electrode shapes for capacitive sensing are present in the literature, consisting
of different sizes, performance capabilities, and operating principles [14], with the most
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common designs for human interface being: (i) round or rectangular solid areas, imple-
menting a self-capacitance sensor; (ii) interdigitated comb or key electrodes, implementing
mutual capacitance configurations [29]. In this design, we evaluated two different elec-
trode shapes: the mutual-capacitance interdigitated comb electrode (V1, Figure 1a) and the
self-capacitance single electrode (V2, Figure 1b).

Figure 1. (a) Drawing of an interdigitated comb electrode (V1). Two comb-shaped electrically
conductive electrodes are placed in an interdigitated fashion and each comb finger acts as a plate of a
mutual planar capacitor with the adjacent fingers. (b) Drawing of a self-capacitance single electrode
(V2), where an isolated copper plate acts as a plate of a planar capacitor. (c) Pictures of the probe
flexible printed circuit board (PCB) equipped with the single-electrode contact sensor. Top—Probe
top view: the accelerometer Integrated Circuit (IC) and the 3D-printed fiber holders, not in contact
with the subject’s skin. Bottom—Probe bottom view: a copper plane covering the whole bottom layer
of the PCB acts as single sensing electrode for the contact measurement.

In the interdigitated comb electrode, the contact measurement takes advantage of
the fringing electric field between two adjacent copper strips, which act as the two plates
of a planar capacitor [30]. Any material put in contact/proximity with the electrodes
changes the dielectric constant of the media between the two capacitor plates, resulting in a
capacitance variation in the electrode. Since the sensitive area is at a maximum between
the two adjacent strips, contact applications usually adopt an interdigitated comb-shape
to maximize the sensitivity of the sensing surface [14,29]. The width of each strip and the
separation between adjacent strips can be adjusted to tailor the sensor performance to the
specific application [14].

The single-electrode sensor relies on the same fringing capacitance effect of the parallel
strips but makes use of a single plate of a planar capacitor and the object in its proximity
acts as grounded secondary plate [15].

The mutual-capacitance sensor is made of two interdigitated comb electrodes, each
one made of 300 µm copper strips with 1.4 mm pitch, leading to a 400 µm spacing between
two adjacent strips. The electrode of the self-capacitance sensor covers all the available
surface of the PCB.

2.2. Probe Design

The presented flexible probe PCB (pictures in Figure 1c) is based on a flexible poly-
imide substrate (0.1 mm thickness) which allows the probe to perfectly adhere to the
skin. The sensor probe allows for three simultaneous measurements: (i) contact-sensing;
(ii) 3-axis acceleration sensing for motion detection; (iii) light injection and detection for
DCS acquisition at multiple source-detector separations. The contact sensor is a copper
pattern on the bottom layer of the PCB (35 µm copper thickness), and a copper plane (35 µm
thickness) on the top layer of the PCB is connected to ground, acting as passive shield for
the sensing electrode [30] to minimize the sensitivity to unwanted contacts from the top
side of the probe.

Mounted on the top layer of the sensor probe PCB, a compact and low-power 3-axis
MEMS accelerometer IC (ADXL327 from Analog Devices Inc., Norwood, MA, USA) allows
the probe movement to be detected and motion artifacts in the acquired data to be identified.
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The sensor measures the acceleration along three axes with a full-scale range of ±2 g and a
sensitivity of 355 mV/g (g = 9.8 m/s2) when powered at 2.5 V, with 1.6 kHz bandwidth,
and provides three independent analog outputs. To further reduce risks of hazard related
to electronic equipment, the maximum current that can be drawn from the accelerometer
dedicated 2.5 V power supply is limited to 30 mA.

Finally, two 3D-printed fiber holders are mounted into two apertures of the PCB for
light injection and detection at two source detector separations: 5 and 20 mm. A circular
(3.5 mm diameter) holographic diffuser with 40◦ diffusing angle is integrated with the
injection fiber holder to increase the surface area illuminated by the injection fiber.

The sensing area for the comb-electrode probe is equal to 44× 1 m2 and 36.5 × 15.2 mm2

for the single-electrode sensor, and a narrow 3.5 × 200 mm2 PCB strip distances the probe
sensing area from the cable connection. A 1.5 m extremely flexible flat cable connects
the probe to the control board, minimizing the bulk on the subject side and guaranteeing
optimal flexibility in probe positioning. It is important to note that the dimensions of the
sensing electrodes presented in this work are determined by the probe optical geometry,
and sensors with a smaller sensitive surface can still guarantee sufficient performance if
probe miniaturization is needed.

2.3. Contact-Sensing Circuit and Control Board Design

A simplified block diagram of the instrument is shown in Figure 2. The capacitive sen-
sor readout is based on a commercially available IC (FDC2212 from Texas Instruments [31])
and a LC resonant network made of a fixed LC resonant oscillator on the control board
and the variable capacitor on the sensor probe. The contact-sensing IC excites the resonant
network, measures the frequency of the oscillation (FSENS) as a ratio with respect to an
external reference clock source (see FREF in Figure 2) and converts it into a 28-bit value, with
the digital output equal to (FSENS/FREF) × 228. FREF in the presented design is 40 MHz,
as this value allows for a wide capacitance measurement range and the finest resolution
allowed by the sensing IC, i.e., 40 MHz / 228 = 0.149 Hz. From the measured oscillation
frequency of the resonant network, it is possible to retrieve the total capacitance C by
reversing the formula FSENS = 1/2π(LC)1/2 [30,31], where L is the inductance value of
the tank inductor (15 µH in this design). The resonant network was designed in order to
support the two different electrode shapes presented in this work, the interdigitated comb
electrodes (V1) and single electrode (V2), according to the manufacturer datasheet [31].

The three accelerometer signals are independently buffered, low-pass filtered, and
then sampled through a 3-channel Analog-to-Digital Converter (see ADC in Figure 2).

A microcontroller manages the communication bus, acquiring the accelerometer and
contact signals and running the measurement routine. A button interfaces the device with
the user and triggers the acquisition of a baseline value for the movement and contact
measurements, storing: (i) the output of the contact-sensing IC proportional to the measured
oscillation frequency of the resonant network; (ii) the 3 accelerometer signals, proportional
to the acceleration measured on the 3-reference axis of the device. The modulus of the
variations in the three accelerations are calculated with respect to baseline values and
are summed into a single value, the motion signal. The variation with respect to the
baseline value is also calculated for the frequency (thus the capacitance) measured by the
contact sensor to obtain the contact signal. These two digital values are converted into
analog signals by a two-channel 12-bit Digital-to-Analog Converter, buffered through a
dual-channel high-current OP-AMP with 0–2.5 V output range and provided at instrument
output through two standard BNC connectors. This easily integrates the instrument as
a stand-alone device in existing measurement setups. Once the button is pressed, the
contact analog output is initialized to 1.25 V (VDD/2) and is then driven with a signal
directly proportional to the variation in the sensor oscillation frequency from the baseline:
a reduction in the overall capacitance on the network (from contact to no contact) results in
higher oscillation frequency, and subsequently results in a positive variation in the output.
Inversely, when contact is applied on the sensing electrode, it will cause a reduction in the
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oscillation frequency and a lower output value. The motion analog signal is initialized at
0 V and any positive variation in the signal from the baseline implies a movement detected
by the device, whereas a steady difference from the baseline implies a different probe angle.

Figure 2. Simplified block diagram of the presented instrument. The optical probe is based on
a flexible PCB which incorporates, as well as 3D-printed fiber holders for optical spectroscopy
measurements, a 3-axis MEMS accelerometer and an integrated planar capacitive sensor for contact
detection. An extremely flexible flat cable connects the probe to the control board where the contact
and accelerometer signals are acquired through dedicated front-end circuitry. A microcontroller runs
the measurement routine and provides the acquired signal either as digital output through a USB 2.0
link to the external computer or as an analog output through two dedicated signal chains and BNC
connectors, allowing for the integration of the device in different measurement setups. A battery
management integrated circuit allows for battery operation, reducing the bulk and the hazard risk at
the same time, and fostering the adoption of the instrument in clinical environments.

The microcontroller also communicates with an external PC through a USB 2.0 link,
used for instrument debugging, testing and signal acquisition during experimental charac-
terization. A specific LabVIEW (National Instruments) software interface was designed for
data acquisition and to adjust the measurement parameters of the contact-sensing network
(not shown). The overall data sampling and output rate is 54 Hz during normal operation
with analog output.

Finally, a battery management IC operates the instrument from a standard 3.7 V
Lithium-Polymer (LiPo) rechargeable battery, and the USB 5 V DC power supply input can
be used to recharge it, even during device operation. The adopted LiPo battery features an
integrated short-circuit protection and provides up to 600 mAh charge, which leads to a
continuous acquisition longer than 24 h. The control board and battery are enclosed into a
compact plastic box (dimensions: 9 × 7 × 5 cm3) and a panel LED is used to inform the
user about the battery level and the baseline acquisition through the button interface.

3. Experimental Validation

We performed an experimental validation of the contact-sensing circuit and the two de-
signed sensor shapes. We first tested the contact sensor with and without a hydrogel layer
(25 mil thickness, AG6525, MBK Tape Solutions, Chatsworth, CA, USA) on the sensing
surface to validate its performance and applicability in a clinical environment. After an
extensive validation of the device in time-varying ambient conditions, we adopted the pre-
sented flexible probe with integrated motion and contact sensing in a clinical measurement
campaign with diffuse optics on extremely low gestational age (ELGA, <29 weeks GA)
babies in a neonatal intensive care unit (NICU).

3.1. Contact Sensor Validation

We validated the performance of the capacitive sensing network by initially testing
the capability of the system in measuring the value of a known capacitance added to the
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resonant network. For this test, an oscilloscope passive probe (Tektronix P6501R) with
12 pF nominal capacitance was placed in contact with the two resonant network sensing
nodes (CSENSE 1 and CSENSE 2) on two test points on the control PCB, for the two probes V1
and V2. The ground of the oscilloscope probe was shorted to the control PCB ground.

After a preliminary validation, we evaluated the measured capacitance by the probes
V1 and V2 when put in direct contact with the skin on the forearm of a healthy volun-
teer. To minimize the error due to probe positioning, the probe was secured to a vertical
translational stage and moved vertically from non-contact to contact. The travel dis-
tance of the translational stage and the forearm position were kept constant throughout
the measurements.

In all the measurements presented hereafter, a cable length equal to 1.5 m was used to
connect the contact probe to the control PCB.

3.2. Measurement Stability vs. Ambient Temperature

We experimentally characterized the measurement stability of the device against
an 8 ◦C ambient temperature variation. The probe PCB was enclosed in a box with a
heating system with no contact, while the control board was kept at a constant ambient
temperature. The temperature was gradually increased in 30 s and was then allowed to
return to the baseline.

3.3. Measurement Stability vs. Ambient Humidity

We evaluated the device stability and contact-sensing capabilities against ambient
relative humidity variations. The probe PCB was enclosed in a box with a humidifier,
and no contact was applied on the sensing electrode. The ambient relative humidity was
increased from 0 to 100% in about 160 s and monitored with a reference device. Once 100%
relative humidity was reached, the back of the hand of a healthy volunteer was applied to
verify the device capability to detect contact variations. The water used for the humidifier
was at ambient temperature to avoid any contribution due to temperature variations within
the box.

3.4. Clinical Application

Diffuse correlation spectroscopy is a non-invasive neuro-imaging NIRS technique
which utilizes long coherence-length laser sources and single photon detectors to mea-
sure the micro-vascular cerebral blood flow [5,6]. It takes advantage of multiple photon
scattering events in diffusive human tissues to measure a relative blood flow index and is
effectively adopted in neuro-monitoring applications on infants [32].

After demonstrating the full functionality of the contact-sensing electrode, we adopted
the presented system to monitor the attachment of the optical probe on the forehead of
ELGA infants during DCS measurements in two different NICU locations at Brigham
and Women’s Hospital and Massachusetts General Hospital. The presented device and
the proposed measurement protocol were reviewed and approved by the Mass General
Brigham institutional review board (IRB) for non-invasive and continuous monitoring
of cerebral hemodynamics in extremely low gestational age infants to find association
between dysregulation of cerebral blood flow and intraventricular hemorrhage. For these
measurements, only the probe V2 with a hydrogel layer was used. The hydrogel layer
ensures that the probe is never in direct contact with the delicate infant’s skin to avoid
any damage or irritation, while guaranteeing a secure probe positioning. The motion and
contact analog output signals were acquired simultaneously with the optical acquisition
through the auxiliary inputs of the DCS system used for the measurement [9]. Analog
signals were used instead of the USB link due to the limited number of USB serial ports
in the computer used in the measurement setup. The contact signal is used to monitor
the probe attachment to the subject’s skin and quickly triggers the laser shutdown in case
of a detachment, i.e., when the contact signal crosses a user-defined voltage threshold.
The motion signal is used to detect motion artifacts in the acquired DCS signals during
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data analysis. Figure 3 shows a picture of a 26-week gestational age infant inside a Giraffe
incubator with the presented flexible probe V2 placed on the forehead during a continuous
monitoring multi-distance DCS measurement.

Figure 3. Picture of an extremely preterm infant during a continuous-monitoring diffuse correlation
spectroscopy measurement with the presented contact-sensitive optical probe. The measurement was
performed in the Giraffe incubator in a neonatal intensive care unit.

4. Results

The steady-state overall capacitance measured by the sensing network with the
two probes with/without a hydrogel layer is 279.6/184.1 pF for probe V1 and 161.2/160.7 pF
for probe V2. The values of the measured capacitance were calculated in post-processing,
starting from the digitized value of the resonant network frequency measured by the contact-
sensing IC, assuming all the parameters are constant except for the network capacitance.

Figure 4 shows the results of the oscilloscope probe capacitance measured by the
probes V1 and V2 on the control PCB sensing nodes CSENSE 1 (Figure 4a) and CSENSE 2
(Figure 4b), with and without a hydrogel layer on the electrode-sensing surface. For
the interdigitated comb electrode (probe V1), when no hydrogel is used, the measured
capacitance on the node CSENSE 1 is slightly higher than 4 pF, whereas the measured
capacitance is equal to 8 pF when the oscilloscope probe is applied on the node CSENSE 2.
Conversely, when a hydrogel layer is used, the measured capacitance on the two electrodes
is almost the same, i.e., 6.6 pF on CSENSE 1 and 6.8 pF on CSENSE 2. Differing from probe V1,
for the single electrode probe, the hydrogel layer has a negligible effect on the measured
capacitance, whereas there is a strong difference between the values measured on the
two sensing nodes, with a measured capacitance of about 5 pF on CSENSE 1 and 10 pF
on CSENSE 2.

Figure 4. Results of the measurement of the known capacitance of a passive oscilloscope probe
(12 pF) on the two sensing nodes ((a)—CSENSE 1, (b)—CSENSE 2) of the resonant network on the probe
V1 (blue histograms) and V2 (orange histograms). Full/hollow bars report results without/with a
hydrogel layer on the capacitive sensor surface. The two graphs share the y-axis label and the legend.
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Figure 5 shows the results of the contact measurement on the forearm of a healthy
volunteer with the two designed probes with and without a hydrogel layer. We report
the measured capacitance variation from steady-state (no contact) to contact. When no
hydrogel layer is applied, probe V1 shows better sensitivity, with a measured capacitance
of about 37 pF, compared to the 23 pF measured by probe V2. The addition of a hydrogel
layer strongly affects the sensitivity of the interdigitated comb electrode on human skin,
reducing the measured capacitance to less than 20 pF. Conversely, the hydrogel layer
shows a beneficial impact on the sensitivity of the self-capacitance single electrode, with a
measured capacitance equal to 28 pF.

Figure 5. Changes in measured capacitance induced by contact between the sensing electrode and
the forearm of a healthy volunteer with the probe V1 (blue histograms) and V2 (orange histograms).
Full/hollow bars report results without/with a hydrogel layer on the capacitive sensor surface.

Figure 6 shows the capacitance measurement stability against ambient temperature
variations for the probe V2 with a hydrogel layer applied on the sensing electrode. In this
measurement, we report the overall capacitance measured by the contact-sensing circuit.
The ambient temperature (blue line, left y-axis) varied from 18.6 to 26.6 ◦C (orange-shaded
area), which led to a variation in the overall measured capacitance of 2 pF (red line, right
y-axis), leading to a thermal drift equal to 0.25 pF/◦C. The probe V1 demonstrated a
worse performance against ambient temperature variations, with a coefficient of variation
equal to 0.55 pF/◦C (data not shown). No effect of the hydrogel layer was found during
the experiments.

Figure 6. Results of the capacitance stability measurement (red line—right y-axis) over 8 ◦C ambient
temperature (blue line—left y-axis) variation for the probe V2 with a hydrogel layer and no contact
applied to the sensor surface. Ambient temperature is increased from 18.6 to 26.6 ◦C in 30 s (orange-
shaded area) and then let return to baseline.

Figure 7 shows the capacitance measurement stability against ambient humidity
variations for the probe V2 with a hydrogel layer applied on the sensing electrode. We
report the overall capacitance measured by the contact-sensing circuit. During the increase
in the ambient relative humidity from 0 to 100% (0 to 160 s), the measured capacitance
increases from 181.2 pF to 184.0 pF. Once the relative humidity reached 100%, the backhand
of a healthy volunteer was put in contact with the sensing electrode (orange-shaded area) to
verify the device functionality in this extreme condition: the induced capacitance variation
due to the added contact was equal to 24 pF. No effect of the hydrogel layer was found
during the experiments.
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Figure 7. The result of the capacitance stability measurement over ambient relative humidity variation
for the probe V2 with a hydrogel layer applied to the sensor surface. During the first 160 s, the
ambient relative humidity is increased from <10% to 100% with no contact applied to the sensor
surface, resulting in only 2.8 pF variation. After reaching 100% ambient relative humidity, contact
with the backhand of a healthy volunteer is applied to the capacitive sensing sensor (orange-shaded
area) to demonstrate the device functionality in extreme measurement conditions. The x-axis is
interrupted between 35 s and 135 s for visualization purposes.

Clinical Validation

Figure 8 reports an extract of data acquired during continuous monitoring DCS ac-
quisition on an ELGA baby with the presented contact-sensitive optical probe. The graphs
show 40 s of data acquired when the baby was crying and moving (orange-shaded areas),
resulting in motion (b) of the optical probe, while the contact (a) of the sensing probe
had been maintained, and eventually leading to probe detachment (red-shaded area), as
indicated by large signal changes in the contact (a). When the optical probe detaches from
the baby’s skin, the contact signal experiences an abrupt macroscopic positive variation,
signaling a probe-detachment event, which can be effectively used to immediately trigger
the laser shutdown, whereas the variation in the motion signal in correspondence of the
probe detachments is undistinguishable from baby movements.

Figure 8. Contact (a) and motion (b) analog signals acquired with the probe V2 during a diffuse
correlation spectroscopy measurement performed on an ELGA baby. It shows a 40 s extract of data
acquired while the baby was moving and crying (orange-shaded areas) leading to probe detachment
(red-shaded area). Motion artifacts may severely impact the optical data quality, and the capability to
identify them during post-processing can be effectively used to mitigate their detrimental effect [4].
The capacitance variation in the sensing electrode induced by baby movements is negligible, whereas
a probe detachment results in a macroscopic variation in the contact output analog signal, which can
be easily detected by the acquisition instrumentation and used to trigger the laser shutdown and
guarantee patient safety.

5. Discussion

The contact and accelerometer sensor probe for biomedical optics devices presented
here allows the user to constantly monitor the probe attachment to the subject’s skin during
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optical measurements. Proper probe attachment is fundamental to ensure subject eye safety
and to acquire quality data. The ability to promptly detect a probe-detachment event and
immediately shutdown the light emission can dramatically change the outcome of these
events, especially in high-risk applications, such as optical measurements on premature
babies or unconscious subjects. While an accelerometer signal can effectively detect motion
artifacts in the acquired optical data during post-processing, the contact signal provides
additional user safety and data quality metrics in real time.

The two designed electrodes—the interdigitated comb electrode (V1) and the single
electrode (V2)—demonstrated strong performance in detecting contact variations on the
probe sensitive surface. The single electrode probe proved better operation in terms
of skin-contact sensing when a hydrogel layer is applied on the sensor surface, and in
terms of thermal stability. Other commercially available adhesive materials (e.g., Mepitel
One, Mölnlycke Health Care AB, Gothenburg, Sweden) were tested, with no losses in
performance. An overall variation of only 2 pF over 8 ◦C ambient temperature variation
can be negligible compared to the >20 pF capacitance variation experienced when skin
is put in contact with the device. Furthermore, the capability to detect contact variations
in a 100% relative humidity environment enables the use of the device in high-humidity
environments such as Giraffe incubators in NICUs.

The interdigitated comb electrode measured a higher capacitance variation when put
in direct contact with the skin, but the addition of a hydrogel layer resulted in a dramatic
worsening of the contact-sensing performance. This may be due to limited depth resolution
of the interdigitated comb electrode, with the hydrogel layer adhering to the sensor surface
resulting in it becoming the main source for the dielectric variation. This is confirmed by
the strong difference in steady-state capacitance measured by the sensing IC for the probe
V1 with and without hydrogel layer, i.e., 279.6 and 184.1 pF, while the variation experienced
by V2 with the addition of the hydrogel layer is negligible. A redesign of the interdigitated
comb electrode with increased spacing between adjacent copper strips may help to reduce
the crosstalk between the electrodes, and subsequently, the stray capacitance induced by
the hydrogel layer.

The capacitance measurement over relative ambient humidity variations for probe
V1 demonstrated a performance comparable to that of probe V2, and the measurement
over ambient temperature exhibited a similar temporal profile as well, despite a higher
sensitivity to temperature variations. Humidity and temperature dependence for the probe
V1 are not presented at this time, since this probe was not selected for the clinical application
due to worse contact measurement performance in presence of additional adhesive layers.
Thus, the probe V1 measurement stability results add limited additional information to the
scope of this work.

Finally, it must be noted that the capacitance measurements presented in Figures 4–7
include a systemic uncertainty due to the value of the tank inductor (i.e., nominally 15 µH)
used to estimate the overall network capacitance. Tolerances for surface-mount multilayer
film inductors in small packages (0603 SMD in the presented design) are up to ±20%, and
actual values are subject to temperature variations and aging. Finally, in our estimation,
we neglected the stray inductance added to the resonant network by the 1.5 m-long wires
connecting the probe to the control board. The same sensing network was used to perform
all the measurements in Figures 4–7 in order to keep the results consistent. This uncertainty
is not present in the contact measurement performed in the clinical setting where the analog
output is used, since the analog output is proportional to the measured oscillation frequency
and does not rely on any assumption from the resonant network. The noise contribution to
the measured oscillation frequency is negligible to the macroscopic capacitance variations
induced by the contact with the human skin.

6. Conclusions

We presented a novel optical probe for diffuse optics measurements based on flexible
PCBs, which integrates an accelerometer and a contact sensor based on capacitive proximity
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sensing. The unique features of flexible PCBs allow for the possibility of building complex
optical probes, which provide a direct signal of the quality of the sensor attachment to
the skin and its motion, while offering support for the fiber-holders. Constant monitoring
of the probe attachment using the proposed design can be effectively used to guarantee
subject safety in high-risk applications, such as optical measurements on infants and can
finally foster continuous-monitoring acquisition with NIRS devices without the need of
a dedicated operator. The presented design can be customized in terms of probe shape,
dimensions and equipped sensors based on the specific application, due to the use of a
low-cost, commercially accessible technology, flexible PCBs, and can be easily integrated
into preexisting measurement setups thanks to analog outputs, USB communication, and
battery-powered operation.

7. Patents

A patent on the presented contact sensor has been filed by the authors.
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