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Abstract: Protein binding (PB) is indicated as the factor most severely limiting distribution in the
organism, reducing the bioavailability of the drug, but also minimizing the penetration of xenobiotics
into the fetus or the body of a breastfed child. Therefore, PB is an important aspect to be analyzed
and monitored in the design of new drug substances. In this paper, several statistical analyses have
been introduced to find the relationship between protein binding and the amount of drug in breast
milk and to select molecular descriptors responsible for both pharmacokinetic phenomena. Along
with descriptors related to the physicochemical properties of drugs, chromatographic descriptors
from TLC and HPLC experiments were also used. Both methods used modification of the stationary
phase, using bovine serum albumin (BSA) in TLC and human serum albumin (HSA) in HPLC. The
use of the chromatographic data in the protein binding study was found to be positive —the most
effective application of normal-phase TLC and HPLCHSA data was found. Statistical analyses also
confirmed the prognostic value of affinity chromatography data and protein binding itself as the
most important parameters in predicting drug excretion into breast milk.

Keywords: protein binding; breast milk; M/P ratio; statistical modeling; molecular descriptors;
chromatographic descriptors; affinity chromatography

1. Introduction

Excretion of drugs into breast milk is an important aspect to be considered in the
pharmacotherapy of breastfeeding women. Due to ethical considerations, in vivo studies
are very rare and it is difficult to obtain the milk-to-plasma (M/P) ratio of many active
pharmaceutical compounds (APIs). A mathematical model capable of calculating M/P
values using the available data will greatly facilitate the study of the bioavailability of
new APIs.

In the previous articles [1,2], we presented a comparison of statistical methods in the
study of drug excretion into breast milk with the use of the M/P descriptor. It was shown
that the multiple linear regression (MLR) and random forest (RF) analyses were most
effective in describing this pharmacokinetic phenomenon, with the use of chromatographic
data and physicochemical properties of the tested compounds. These analyses did not
deviate from the known principles of bioavailability to breast milk and showed a close
relationship between M/P and the level of drug–protein binding (PB) as well as the state of
ionization of the API in the bloodstream.

The papers also describe the most effective conditions for thin layer chromatography
(TLC) as an analytical model for predicting the penetration of drugs into breast milk.
According to these results, it can be assumed that the use of drug–protein binding indices,
together with chromatographic data, will make it possible to predict the level of drug
distribution into breast milk.

The main aim of this study is to provide supplementary analyses, which include:
determination of physicochemical parameters related to drug protein binding; searching for
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a mathematical model of PB and/or M/P prediction; and the use of affinity chromatography
data as an index of pharmacokinetic properties.

The goal of developing such a model is its further utility in predicting the PB of newly
developed active pharmaceutical ingredients. Only easily available API properties are
needed to use the model. It can facilitate the process of introducing a new drug to use and
reduce expensive in vivo testing.

In this study the following statistical methods were used: cluster analysis (CA),
discriminant function analysis (DFA) and principal component analysis (PCA) random
forest regression (RF). All molecular descriptors used in this study are listed and described
in Table 1.

Table 1. List of molecular and chromatographic descriptors used in statistical analyses.

Descriptor Description Reference/Database/Software

a/b/n code acidic, basic or neutral character of the compound; describes the
division into groups: a, b and n CHEMBL database [3]

B1
calculation parameter B2, describes the bioavailability in the CNS

and determines penetration through the blood-brain barrier:
log bb = 0.139 + 0.152 log P

reference [4]

B2
calculation parameter B2, describes the bioavailability in the CNS

and determines penetration through the blood-brain barrier:
log bb = 0.547 − 0.016 PSA

reference [5]

B3 calculation parameter related to protein binding: log (bound
fraction/unbound fraction) = 0.5 log P–0.665 reference [6]

CNS+/− ability to penetrate into the central nervous system (+ or −) DrugBank database [7]

DM dipole moment HyperChem, Hypercube, Inc.

eH energy of the highest occupied molecular orbital (HOMO) HyperChem, Hypercube, Inc.

eH-eL ionization capacity HyperChem, Hypercube, Inc.

eL energy of the lowest unoccupied molecular orbital (LUMO) HyperChem, Hypercube, Inc.

HA number of hydrogen bond acceptors ACD/Labs

HD number of hydrogen bond donors ACD/Labs

log D distribution coefficient ACD/Labs

log M/P logarithm of M/P

log MW logarithm of MW

log P partition coefficient HyperChem, Hypercube, Inc.

log U/D the ratio of neutral to ionized form;
determines the degree of ionization

Calculated using:
pKa-pH for acids; pH-pKa for bases

M/P milk/plasma drug concentration ratio references [8–13]

MW molecular weight HyperChem, Hypercube, Inc.

PB percentage of plasma protein binding DrugBank

PhCharge the charge of the API under physiological conditions DrugBank

pKa negative logarithm of the acid dissociation constant (Ka) ACD/Labs

PSA polar surface area ACD/Labs

Sa the surface area of the molecule HyperChem, Hypercube, Inc.

V the volume of the molecule HyperChem, Hypercube, Inc.

NP; RP Rf (retention factor) obtained from TLC using impregnated with
bovine serum albumin (BSA) plates in normal and reversed phase TLC experiment

NP/C; RP/C Rf from impregnated NP or RP plate/control Rf TLC experiment

kHSA
retention factor from HPLC using column with immobilized

human serum albumin (HSA) HPLC experiment

log kHSA logarithm of the retention coefficient obtained from HPLCHSA HPLC experiment

log kIAM
logarithm of the retention coefficient obtained from HPLCIAM

(column with immobilized artificial membrane) HPLC experiment
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2. Results
2.1. Correlation Analyses

The experiment investigated the results of using data from several chromatographic
analysis experiments (HPLCHSA, NP TLC, RP TLC and, additionally, HPLCIAM) in predict-
ing drug binding to protein, and thus bioavailability to breast milk. A group of 165 APIs
was analyzed, in which acidic, basic and neutral drugs were observed. The best correlation
with PB values was shown in the results of the HPLCHSA and NP TLC experiments, in the
form of log k and Rf values, (HPLCHSA: n = 165, R = 0.39); (NP TLC: n = 162, R = 0.31).
The relationship is directly proportional. This is the result for all kinds of relationships.
Much better results were obtained for acidic drugs (R = 0.50), even considering the smaller
number of cases (n = 34) (Table A1, Appendix A).

Then the effect of the most frequently mentioned molecular descriptors, related to
drug distribution into breast milk and protein binding, was investigated. In all groups of
APIs, molecular descriptors related to the hydro-lipophilic nature of drugs play a dominant
role. The most important parameters are the partition coefficient and the distribution
coefficient (log P and log D). The ability to form hydrogen bonds (HD, HA) is visible here
and the correlation with PB is significant. The ratio of neutral to dissociated form (log U/D),
dissociation constant (pKa), ionization capacity of compounds (eH-eL) and other electron
descriptors: eL and eH, show no significance. The influence of hydrophobic parameters
(Sa, V, MW) is visible only in the form of the surface area to volume ratio (Sa/V). As can be
seen above, this factor correlates inversely with all types of cases (Table A2, Appendix A).

2.2. Discriminant Function Analysis

All of the descriptors most strongly related to the variability of the PB, which at the
same time did not limit the number of cases studied, were introduced into the discriminant
function analysis (DFA). All cases were tested using the a/b/n code.

In the stepwise DFA, the discriminant variables included 9 out of 16 entered variables:
PhCharge, B2, pKa, M/P, log kHSA, log kIAM, NP, eL and log U/D (Table 2).

Table 2. Classification matrix for the model using discriminant variables: PhCharge, B2, pKa, M/P,
log kHSA, log kIAM, NP, eL, log U/D.

API
Group

Correctly Classified
Cases (%)

a
p = 0.17895

n
p = 0.52632

b
p = 0.29474

a 100,00 17 0 0
n 96,00 0 48 2
b 92,86 0 2 26

all 95,80 17 50 28

The PC1 factor discriminates the groups of APIs the most (PC 1 eigenvalue = 3.61).
The variables PhCharge and pKa have the most important share in its value. The PC2 factor
(PC2 eigenvalue = 0.81) was shaped by the chromatographic descriptors and the ability
to ionize (log U/D). The means of the canonical variables (PC1) for group a = −3.52, for
group n = 0.03 and for group b = 2.08, therefore PC1 most strongly discriminates between
groups a and b. The means of the canonical variables (PC2) for group a = −0.93, for group
n = 0.86 and for group b = −0.97. In this case, the centroids of groups a and b are almost
equal, and the group of neutral compounds (n) is the most discriminated against (Figure 1).

2.3. Principal Component Analysis

PCA was performed to determine the effect of the primary descriptors on the char-
acteristics of the drug’s ability to pass into breast milk. In order to better visualize the
obtained results from the analysis, the M/P values were converted into the scale of the
drug penetration into milk—M/Pcode. The values of this indicator are in the range 1–4.
Code 1 corresponds to drugs with an M/P value <0.40—completely safe; 2 corresponds to
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the range of 0.40–0.80—at the safety limit; 3 range 0.81–1.20—possibly over the safety limit;
and 4 is M/P >1.20—dangerous.

Figure 1. Discrimination against acidic (a), basic (b) and neutral drugs (n). The scatter plot of
canonical values for root 1 relative to root 2. Discriminating variables: PhCharge, B2, pKa, M/P,
log kHSA, log kIAM, NP, eL, log U/D.

In the course of the analysis, the smallest number of principal components explaining
the maximum range of the total variance in the group was initially established. Five factors
explain 100% of the variability in the levels of drug excretion into breast milk. The first
two factors, PC1 and PC2 (principal components), are described by all used descriptors.
As a result, two main components explaining a total of 72% of the variability were obtained.
The HPLCHSA, HPLCIAM, NP TLC and RP TLC chromatographic data is responsible for
the first component, PC1 (43.26%), the second component, PC2 (28.66%), is determined by
the PB value.

The projection of cases on the PC1 × PC2 plane is presented below (Figure 2):

Figure 2. Projection of cases onto the PC1 × PC2 plane.
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In the graph of the projection of cases onto the PC plane, where the grouping variable
is the scale of drug penetration into breast milk (M/Pcode), it can be seen that the tested
APIs can be divided into two groups (surrounded by a box in the graph). One group
included drugs with a lower level of M/P (1–2) penetration—safe, and the other group,
M/P 3–4—dangerous. This division is not entirely obvious. It was created on the basis of
factors explaining 75% of the variability. Few examples of misclassification are visible. The
distinction between these groups is related to PC1. Derivatives with a low M/P are located
on the right side of the plot and are clearly related to the positive values of PC1. APIs easily
excreted into milk are on the left side of the chart and have negative PC1 values. The share
of variables in this component, determined by the PC1-variable correlation (factor loadings),
reveals the parameters of the greatest importance for the investigated pharmacokinetic
feature of drugs. They are: log kHSA, log kIAM, NP and RP. Thus, affinity chromatography,
based on protein binding, can predict the bioavailability of an API into breast milk.

The graph of the projection of variables onto the PC plane shows graphically the
relationship between the component and the variable. The graph shows the so-called
unit circle, i.e., the maximum correlation of 1 between the variable and the factor. The
closer a given variable is to the unit circle line, the greater its correlation with the observed
phenomenon (Figure 3).

Figure 3. Projection of variables on the plane of factors PC1 × PC2.

2.4. Cluster Analysis

In order to emphasize the diagnostic value of the experiment and to determine the
difference in the values of the parameters determining the ability of drugs to penetrate
into breast milk, cluster analysis (CA) was also performed. CA was conducted in the
proposed M/Pcode scale, using the k-means method. The means of the most important
biological descriptors (CNS +/−, B1, PhCharge, acid/base, NP, RP, log kHSA, log kIAM
and PBcode) were compared for groups M/Pcode 1–4. As shown, all drug biological
parameters showed a group variability (see Figure 4). The M/P code values range from 1
to 4 with a clear distinction between relatively safe and unsafe groups. Physicochemical
parameters: PB, acid/base, HD, log P, eL, log D also show differentiation, but not in all
cases. Unfortunately, M/Pcode is too clustered here, which indicates a smaller influence
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of the tested properties on the observed feature (Figure 5). The descriptors: log D and eL
show the highest differentiation.

Figure 4. Mean descriptor values in M/Pcode cluster analysis (k-means method) using biological and
chromatographic descriptors.

Figure 5. Mean descriptor values in M/Pcode cluster analysis (k-means method) using physicochemi-
cal descriptors.

The above analyses confirmed the values of the parameters HA, log P, log D and
eL. The parameters of log D, HA and eL show the greatest differentiation. Unfortunately,
the M/Pcode values are poorly differentiated and their values do not correspond to the
variability of other descriptors.
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2.5. Regression Methods

MLR failed to create a reliable PB prediction model, therefore an attempt was made to
analyze protein binding by other regression methods. A total of 165 test compounds and
22–23 independent variables were used to perform partial least squares (PLS) and random
forest regression (RF). The variables used are listed for each model (Tables 3 and 4). During
the analyses, 165 compounds were randomly divided into a training set, 70% of the total
(TRAIN, n = 115 compounds,) and a test set for external validation, 30% of the total (TEST,
n = 50).

Table 3. Twenty-three independent variables with NP TLC data used to create the RF and PLS model
for PB.

No. Independent Variable No. Independent Variable No. Independent Variable

1. B3 9. NP/B2 17. eH

2. PhCharge 10. NP/log P 18. eL

3. acid/base 11. MW 19. eH-eL

4. pKa 12. log MW 20. logD

5. log U/D 13. PSA 21. Sa

6. C 14. HD 22. V

7. NP 15. HA 23. logP

8. NP/C 16. DM

Table 4. Twenty-two independent variables with HPLCHSA data used to create the RF and PLS model
for PB.

No. Independent Variable No. Independent Variable No. Independent Variable

1. B3 9. log kHSA/log P 17. eL

2. PhCharge 10. MW 18. eH-eL

3. acid/base 11. log MW 19. log D

4. pKa 12. PSA 20. Sa

5. log U/D 13. HD 21. V

6. kHSA 14. HA 22. log P

7. log kHSA 15. DM

8. log kHSA/B2 16. eH

2.5.1. Partial Least Squares Regression

The PLS model using 23 independent variables, including NP TLC data (Table 3)
showed low values of R2 and Q2, approximately 0.40, and even lower results of external
validation, approximately 0.22–0.24 (Figure A1, Appendix A). Even lower values are
achieved with the HPLCHSA chromatographic data. This indicates that, as in the case of
breast milk prediction models, the PLS method is again not widely applicable here and is
not an appropriate method to analyze this type of data.

2.5.2. Random Forest Regression

RF regression was performed with the use of 150 generated random trees. NP TLC
data was used first. The independent variables used for the analysis of all 165 cases
(independent variable, PBabn) are listed in Table 3.

The obtained model (Figure 6) showed satisfactory results, especially for the training
set (n = 115): R2

train = 0.81; Q2
train = 0.73. The results of external validation using the test kit

(nabn = 50) were lower: R2
test = 0.65; Q2

test = 0.56. The Monte Carlo permutation test (MCPT)
showed the average value of the Q2

test parameter was equal to 0.56 (Appendix A, Figure A2),
which is similar to that in the presented model. The influence of individual independent



Molecules 2022, 27, 3441 8 of 19

variables on the model is presented in the chart below (Appendix A, Figure A3). The order
of the descriptors presented there is as shown in Table 3. The log D parameter shows the
strongest influence on the model using NP TLC data.

Figure 6. Actual versus predicted PBabn values using RF regression modelling of molecular descriptor
set containing 23 variables. RMSECV = root-mean-square error of cross-validation, RMSEP = root-
mean-square error of prediction, R2 train/test = coefficient of determination for train/test set models,
Q2 train/test = coefficient of determination for the cross-validated models.

The data from the HPLCHSA experiment were then used for the RF regression (Table 4).
The obtained model (Appendix A, Figure A4) again shows good results of the training
set (n = 115): R2

train = 0.81; Q2
train = 0.78 but much lower parameters were obtained with

external validation (nabn = 50): R2
test = 0.57; Q2

test = 0.53. In the MCPT, the Q2
test value was

already at a low level and amounted to 0.35 (Appendix A, Figure A5).
Then, individual groups of compounds were dealt with, either separately, (a), (b) and

(n), or combined, (an), (bn) and (ab). The results are shown in Table 5. Only the NP TLC
data (Table 3) were used to construct the models, which gave the best results when tested
for the complete set of compounds (nabn = 165).

Table 5. Random forest regression results on individual drug combinations.

API Group Train Set Test Set

PBa n = 24 R2 = 0.78; Q2 = 0.62 n = 11 R2 = 0.29; Q2 = 0.11

PBb n = 35 R2 = 0.88; Q2 = 0.80 n = 15 R2 = 0.33; Q2 = 0.29

PBn n = 57 R2 = 0.85; Q2 = 0.81 n = 25 R2 = 0.62; Q2 = 0.59

PBan n = 82 R2 = 0.82; Q2 = 0.74 n = 35 R2 = 0.60; Q2 = 0.55

PBbn n = 92 R2 = 0.85; Q2 = 0.80 n = 40 R2 = 0.44; Q2 = 0.44

PBab n = 59 R2 = 0.80; Q2 = 0.72 n = 26 R2 = 0.38; Q2 = 0.33

RF models for PBa (na = 35) and PBb (nb = 50) gave poor results, especially in the
external validation, similarly to their combined group (nab = 85), where the external
validation results were in the range of Q2 = 0.4–0.3.
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The best results were obtained for the PBn (nn = 82) and PBan (nan = 117) groups. The R2

and Q2 values of the test kits ranged between 0.55 and 0.62 (Appendix A: Figures A6 and A7).
In both models, the log D values are the most important in their creation (Appendix A:
Figures A8 and A9).

3. Discussion

On the basis of the DFA analysis, it was possible to determine the influence of the
acidic, basic and neutral properties of APIs on their protein binding capacity and to decide
whether the analysis of the pharmacotherapy of nursing mothers (M/P predictions) should
be divided into groups: a, n and b. The division into acidic, basic and neutral drugs is
strongly related to the PB-related descriptors, so the use of groups a, b and n seems to bring
value for further analysis. The low values of Wilks lambda for both roots, PC1 and PC2,
confirm the value of the obtained results (0.11 and 0.54, respectively).

As the DFA analysis revealed a group of physicochemical and chromatographic
parameters important for the bioavailability of drugs to milk, the use of CA emphasized the
differentiation of their mean values in the M/P 1–4 groups. The above analyses confirmed
the values of the parameters HA, log P, log D and eL. The parameters of log D, HA
and eL show the greatest differentiation. Unfortunately, the M/Pcode values are poorly
differentiated and their values do not correspond to the variability of other descriptors.
Based on the PCA, it can be concluded that the data of the drug–protein binding affinity
chromatography, in the form of the proposed analytical models and the protein binding
itself as the basis for the experimental design, are the most important parameters in
predicting drug excretion into breast milk.

The final step in this study was to construct a model capable of predicting PB value, used
as a trait strongly correlated with the bioavailability of breast milk. Unfortunately, it was not
possible to obtain an MLR or PLS algorithm for protein binding prediction, that was repro-
ducible for different groups. Models created by regression using the random forest method
show a significant relationship, visible in the scatter plots (Figures 6, A4, A6 and A7). The
influence of the determination coefficient (log D) and chromatographic parameters from
the NP TLC and HPLCHSA experiments in each model are also noticeable. Unfortunately,
they do not show the best predictive ability (external validation at the level of Q2

test = 0.56
and 0.35 in MCPT tests).

The best results using random forest regression were obtained for the entire set of
compounds, PBabn, and for the PBn and PBan groups. It is the acidic and neutral compounds
that bind primarily to albumin, which constitutes the majority of plasma proteins, so the
literature values of protein binding (PB) refer mainly to the binding of drugs to HSA.

4. Materials and Methods
4.1. Molecular Descriptors

All tested drugs are listed in Supplementary Materials, along with molecular descrip-
tors. Active pharmaceutical ingredients were extracted from pharmaceutical formulations,
purchased in a generally accessible pharmacy. The main criterion used in composing the
drug set was the availability of protein binding values (PB) along with milk-to-plasma
ratios for each API, as these were the main pharmacokinetic phenomena studied.

The molecular descriptors selected for statistical analyses, which should have a signif-
icant effect on the penetration into breast milk and protein binding, are listed in Table 1.
Some were taken from the literature, including M/P ratio obtained in vivo [8–13] or from
online databases DrugBank [7] and CHEMBL [3]. Most of the physicochemical data were
calculated in the following programs: HyperChem (HyperChem for Windows version 7.02,
HyperCube Inc, Gainesville, FL, USA, 2002) and ACD/Labs (ACD/LabsTM Log D Suite
8.0, pKa dB 7.0, Advanced Chemistry Development Inc., Toronto, Canada, 2004).

Chromatographic descriptors were obtained in experiments, thin layer chromatogra-
phy in normal (NP TLC) and reversed mode (RP TLC). The stationary phase was modified
with bovine serum albumin (BSA). TLC was the source of retention factor (Rf) values,
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denoted in statistical models as NP and RP. High performance liquid chromatography was
performed using immobilized human serum albumin column (HPLCHSA) and immobilized
artificial membrane (HPLCIAM). HPLC was the source of the log k values (logarithm of
retention factor), log kHSA and log kIAM. The TLC and HPLC experiments are detailed in
Appendix B.

4.2. Statistical Analyses

DFA, PCA and CA were performed in STATISTICA 13.1 (TIBCO Software Inc., Palo
Alto, CA, USA). DFA is a classification analysis determining which descriptors best define
the assignment of individual cases to each of the predetermined groups. Wilks’ lambda
is a parameter used to evaluate the discriminant power of the entire model, i.e., all the
independent variables used, and takes values from 0 to 1; the closer these values are to
zero, the more discriminatory the model becomes.

PCA is used to combine highly correlated variables with one another into one new
variable called the principal component (PC). The calculation of new factors consists in
diagonalizing the correlation or covariance matrix. The choice of matrix depends on
whether the original variables require standardization or centering to mean values. In this
way, a reduced number of new variables is generated, but explaining the original variance
as much as possible.

The purpose of cluster analysis (CA) is to combine cases into groups so that the
association within the same group is as large as possible, and with cases from other groups
as small as possible. The method of grouping the data used in the presented studies was the
k-means method, in which the means for each cluster and in each dimension are examined,
which allows assessment of to what extent the created clusters are different from each other.
In the analysis of variance, the size of the F statistic performed in each of them shows how
well a given dimension separates individual clusters. In the best situation, very different
means are obtained for most of the dimensions analyzed.

PLS and RF regression were performed with MATLAB ver. 2019a (The MathWorks,
Natick, MA, USA). The performance of the models was assessed by a double cross-
validation. The statistical significance was then evaluated using permutation testing.

In the PLS method, the matrix of independent variables is analyzed for latent variables
(LVs) that best describe the covariance between X and Y. Then these transformed indepen-
dent variables are used in regression to predict the Y response. The RF method uses many
decision trees which, based on the entered X variables, repeatedly “make a decision” about
the predicted value of Y for each case, from which the mean value is then taken.

In regression analyses, it is good practice to divide the set of cases into two sets:
training and testing, in order to perform external validation, which will demonstrate the
predictive capacity of the model. The training set accounts for approximately 70% of all
collected cases and is used to build a regression equation (training model). The rest, i.e.,
about 30% of cases, are included in the test set on which the equation is validated. The
training and test sets are distributed randomly. In order to check the stability of the model
and exclude random effects, it is worth carrying out such a division into two subsets and
the construction of the equation several times. The Monte Carlo permutation test (MCPT) is
used for this. For the training and test sets, RF regression was performed and RMSECV, Q2

and R2 were calculated. Then this procedure was repeated 100 times, each time the training
and test sets were drawn anew. Furthermore, the distribution of Q2 in the original and
permuted models was compared and a one-way ANOVA was performed. In the next step,
100 training (70%) and test sets (30%) were prepared by randomly splitting the original
data matrix. A similar MCPT (100 perm.) was then performed on the training and test sets
that were derived from the permuted data matrix. The results of the original and permuted
models were obtained and their Q2 values were compared.
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5. Conclusions

Positive results were obtained on the expediency of using chromatographic data in
the study of protein binding and the penetration of drugs into breast milk. The presented
statistical analyses showed a close relationship between HPLC and TLC analytical data
(under set conditions) with the bioavailability of the drug into breast milk. The correlation
of the PB and M/P ratios with these chromatographic data is high, also in the group of
all cases (acidic, basic and neutral drugs) together. The most effective application of NP
TLC and HPLCHSA data was found. There is also a greater correlation between PB and the
chromatographic data in the group of acidic drugs (a), i.e., for specific binding to albumin.

The PCA and DFA analyses identified a group of physicochemical and chromato-
graphic parameters important for the bioavailability of drugs in breast milk. The use of CA
emphasized the differentiation of their mean values in groups M/Pcode 1–4.

NP TLC was proved to be the most useful chromatographic method in statistical
analyses. In the case of HPLCHSA data, the relatively large share of the results from the
column in the creation of the RF model turned out to be interesting. The second factor
that emerges in almost all analyses is the high proportion of the log D parameter, i.e.,
lipophilicity associated with ionization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113441/s1, Tables S1–S9 contain all data used in
statistical analyses.
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Appendix A

Table A1. Chromatographic data from TLC and HPLC experiments and their derivatives used in the
analysis of analytical models.

Descriptor nabn nb nn na PBabn * PBb * PBn * PBa *

NP 162 49 79 34 0.31 0.31 0.15 0.50

NP/C 162 49 79 34 0.00 −0.11 −0.02 0.50

NP/PSA 162 49 79 34 0.19 0.28 0.17 0.37

NP/B2 162 49 79 34 −0.10 0.02 0.18 −0.69

NP/log P 162 49 79 34 0.12 0.02 −0.20 −0.44

RP 162 49 79 34 0.01 −0.05 −0.20 0.17

RP/C 162 49 79 34 0.12 0.17 0.19 −0.10

RP/PSA 162 49 79 34 0.11 0.21 0.11 −0.03

RP/B2 162 49 79 34 −0.08 0.02 0.07 −0.44

RP/log P 162 49 79 34 0.12 0.09 0.18 0.16

log kHSA 165 49 80 34 0.39 0.28 0.45 0.55

log kHSA/B2 165 49 80 36 0.01 0.05 −0.04 0.08

https://www.mdpi.com/article/10.3390/molecules27113441/s1
https://www.mdpi.com/article/10.3390/molecules27113441/s1
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Table A1. Cont.

Descriptor nabn nb nn na PBabn * PBb * PBn * PBa *

log kHSA/log P 165 49 80 36 −0.11 −0.04 −0.16 0.09

log kHSA/PSA 165 49 80 36 0.16 0.11 0.25 0.51

log kIAM 159 49 74 36 0.20 0.17 0.41 0.28

log kIAM/PSA 159 49 74 36 −0.05 −0.04 0.07 −0.07

log kIAM/log P 159 49 74 36 0.04 0.11 −0.05 −0.04

log kIAM/B2 159 49 74 36 −0.03 −0.06 −0.04 −0.06

* correlation with chromatographic data.

Table A2. Physicochemical parameters of APIs and their correlation with data on PB.

Descriptor nabn nb nn na PBabn * PBb * PBn * PBa *

acid/base 166 −0.15
B1 129 34 66 29 0.28 0.36 0.48 0.13
B2 166 50 81 35 0.12 0.13 0.27 0.05
B3 166 50 81 35 0.13 0.11 0.21 0.05

log U/D 160 50 75 35 0.05 0.16 0.02 0.22
DM 160 47 79 34 −0.02 0.04 −0.04 −0.16
Sa/V 160 47 79 34 −0.29 −0.34 −0.32 −0.04
eH 160 47 79 34 0.05 0.13 −0.02 0.17

MW 162 48 79 35 −0.17 0.14 0.24 0.00
HD 166 50 81 35 −0.23 −0.07 −0.39 −0.23
HA 166 50 81 35 −0.14 −0.16 −0.23 −0.13
eL 160 47 79 35 0.03 0.14 0.00 −0.015

eH-eL 160 50 79 35 0.01 −0.08 −0.01 0.12
log P 160 49 79 35 0.31 0.10 0.34 0.41
log D 160 50 81 35 0.28 0.19 0.38 0.30

MW/V 160 47 79 35 0.03 0.18 0.09 0.03
PhCharge 165 50 80 35 −0.13 −0.05 0.06 −0.20

pKa 160 50 75 35 −0.05 −0.15 0.08 0.22
M/P 104 30 55 19 −0.29 −0.20 −0.35 0.11

CNS+/− 154 49 72 33 −0.18 −0.05 0.16 0.33

* correlation with physicochemical data.

Figure A1. Actual versus predicted PBabn values using PLS modelling and 23 molecular descriptors
including NP TLC data. LVs = latent variables, RMSECV = root-mean-square error of cross-validation,
RMSEP = root-mean-square error of prediction, R2 train/test = coefficient of determination for
train/test set models, Q2 train/test = coefficient of determination for the cross-validated models.
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Figure A2. Monte Carlo permutation test (MCPT) showing Q2 obtained from RF regression models
developed on the test set, the number of repetitions was n = 100. The mean value of Q2 was 0.5598 at
the significance level p = 2.8196 × 10−12.

Figure A3. Contribution of individual descriptors to the generation of the RF regression model for
PBabn. The greatest influence is shown by the descriptor no. 20, i.e., log D.
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Figure A4. Actual versus predicted PBabn values, using RF regression modelling of molecular
descriptor set containing 22 variables along with HPLCHSA data. RMSECV = root-mean-square error
of cross-validation, RMSEP = root-mean-square error of prediction, R2 train/test = coefficient of
determination for train/test set models, Q2 train/test = coefficient of determination for the cross-
validated models.

Figure A5. Monte Carlo permutation test (MCPT) showing Q2 obtained from RF regression models
developed on the test set, the number of repetitions was n = 100. The mean value of Q2 was 0.3456 at
the significance level p = 0.4583.
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Figure A6. Actual versus predicted PBn values using RF regression modelling of molecular descriptor
set containing 23 variables along with NP TLC data. RMSECV = root-mean-square error of cross-
validation, RMSEP = root-mean-square error of prediction, R2 train/test = coefficient of determination
for train/test set models, Q2 train/test = coefficient of determination for the cross-validated models.

Figure A7. Actual versus predicted PBan values, using RF regression modelling of molecular descrip-
tor set containing 23 variables along with NP TLC data.
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Figure A8. Contribution of individual descriptors to the development of the RF regression model
for PBn. The greatest influence is shown by the descriptor no. 19, i.e., log D, besides this, the molar
weight (MW) and molar volume (V) are important.

Figure A9. Contribution of individual descriptors to the development of the RF regression model for
PBan. The greatest influence is shown by the descriptor no. 19, i.e., log D, in this case a greater share
of chromatographic parameters can be seen (descriptors nos. 6–9).
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Appendix B Chromatographic Experiments

Appendix B.1 Materials and Reagents

For TLC chromatography, glass plates 20 × 20 cm from Merck, covered with silica
gel with the addition of a fluorescent indicator, were used. Normal phase (NP) plates
were used with standard Merck TLC Silica gel 60 F254 plates, while in reverse phase (RP)
silanized plates RP-2: Merck TLC Silica gel 60 RP-2 F254 were used.

Solvents from J.T. Baker-Water, Methanol and Acetonitrile, with an HPLC gradient
grade. Ammonium acetate p.a. was used to prepare an acetate buffer at pH 7.4.

The stationary phase of the plates, both NP and RP, was modified with an aqueous
solution of bovine serum albumin purchased from Sigma Aldrich (bovine serum albumin,
lyophilized powder).

Human serum albumin immobilized chromatography column was from Daicel:
CHIRALPAK®HSA, 5 µm; 4 × 10 mm while column with IAM artificial membrane from
Regis Technologies Inc.: IAM.PC.DD.2, 10 µm; 4.6 × 10 mm.

In HPLC chromatography, the organic solvents used (acetonitrile and methanol) and
water were also obtained from J.T. Baker (HPLC gradient). LACH-NER ammonium acetate,
ammonium acetate p.a. were used to prepare the acetate buffer (HPLCHSA), while to
prepare the phosphate buffer (HPLCIAM) a ready-made reagent in the form of tablets
(Sigma, Phosphate buffered saline, tablets)was used to be dissolved in a strictly defined
amount of water for HPLC.

Appendix B.2 Isolation of Active Pharmaceutical Ingredients (APIs)

A total of 167 active pharmaceutical ingredients (APIs), isolated from pharmaceutical
preparations, usually tablets or hard capsules, were used in the chromatographic exper-
iments. Tablets (without coatings) or the contents of capsules crushed in a mortar were
placed in 100 mL of 99.8% methanol, mixed with a magnetic stirrer for approximately
30 min and then passed to crystallization tanks through a funnel with a filter. The vessel
with the filtrate was allowed to evaporate the solvent and the crystallized active substance
was transferred to sealed vials, kept under refrigerated conditions.

The purity of the isolated substances was checked by TLC chromatography and
densitometric scanning. All substances isolated gave single densitometric peaks and were
used without further purification. The obtained API was dissolved in 99.8% methanol to
give 1 mg/mL solutions which were then used in TLC and HPLC.

Appendix B.3 Impregnation of TLC Plates

The surface-modifying protein of the stationary phase of thin-layer chromatography
plates was bovine serum albumin (BSA), which is a cheaper substitute for human albumin,
with 76% homology and similar drug binding properties [14–18].

The impregnation of the plates was carried out with a 2 mg/mL solution applied to
the surface using a Desaga SG 1 hand sprayer; the plates were then air dried. The best
concentration was selected earlier—on NP plates impregnated with 1, 2 and 4 mg/mL BSA
solutions, active substances were applied at a concentration of 1 mg/mL (solutions in 99.8%
methanol), characterized by a different degree of protein binding described in the literature.
Retention values differed significantly between plates coated with 1 and 2 mg/mL BSA,
but no difference was found between 2 and 4 mg/mL. Therefore, it was decided to use a
ratio of 1:2, drug concentration to BSA concentration on the plate.

Appendix B.4 TLC Chromatography

Normal and reversed phase thin layer chromatography (NP TLC and RP TLC respec-
tively) was performed using silica-gel-coated glass plates. Half of them were covered with
2 mg/mL bovine serum albumin solution and half remained pure.

Solutions of the isolated APIs in 99.8% methanol (1 mg/mL) were applied to the
plates using a Desaga HPTLC-Applicator AS 30 automatic applicator. The mobility of the
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compounds was also determined on the plates with no protein as a modifier. They have
been marked as controls (C) and will allow evaluation of the influence of the modifier on
API mobility. The plates were then developed in a mobile phase consisting of acetonitrile,
acetate buffer pH 7.4 and methanol in the ratio 60:20:20 (v/v/v). The acetate buffer (20 mM)
was prepared by dissolving 1.54 g of ammonium acetate in 1 L of distilled water. The pH
was then adjusted with a concentrated ammonia solution using a pH meter. The plates
were developed in standard, vertical chromatographic chambers, each time using 100 mL
of the mobile phase, after the chamber was previously saturated with solvent vapors for
approximately 1 h.

The unfolded-protein-impregnated plates and the control plates were scanned with a
Desaga CD 60 densitometer. The values of the delay factor (Rf) were collected, i.e., the ratio
of the distance traveled by the substance to be analyzed to the distance traveled through
the front of the mobile phase. The analytical wavelengths were selected individually for
each API using the multi-wavelength scanning option (values ranged from 200 to 300 nm).
The experiment was repeated (for both BSA-coated and control plates) and the Rf values
pooled are the mean of both series of experiments.

Appendix B.5 HPLCHSA Chromatography

High performance liquid chromatography was performed using a chromatography
column with immobilized human serum albumin. The assay was performed on a Perkin
Elmer Series 200 instrument connected to a UV-VIS spectrometer as detector. The analytical
wavelength was the same for all compounds at 210 nm. The experiment was carried out
with the 1 mg/mL methanolic solutions of active substances previously described. The
mobile phase was a mixture of 10 mM acetate buffer pH 7.4, acetonitrile and methanol in
the ratio 85:10:5 (v/v/v). The acetate buffer was prepared by dissolving 0.77 g of ammonium
acetate in 1 L of distilled water. The pH was then adjusted with a concentrated ammonia
solution using a pH meter.

The phase flow through the system was set to 0.9 mL/min as recommended by the
column manufacturer. The solutions were delivered to the column using an autosampler
syringe, the injection size was 10 µL. Since the column could not be thermostated, the room
was kept at a constant temperature of 25 degrees Celsius.

Chromatographic data (retention coefficient, k, and derivative, log k) were obtained
with TotalChrom software connected to an HPLC instrument. The k coefficient, which
is the ratio between the amount of analyte in the stationary phase and its amount in the
mobile phase, was obtained from the equation k = (tR - tM)/tM, where tR is the retention
time of the analyzed substance and tM is the dead time (the dead time marker was 99.8%
methanol). The experiment was then repeated and the collected retention rates were the
mean values of both series.

Appendix B.6 HPLCIAM Chromatography

The second experiment was performed using an immobilized artificial membrane
(IAM) column. The assay was also performed on a Perkin Elmer Series 200 instrument
connected to a UV-VIS spectrometer as the detector. The analytical wavelength was the
same for all compounds, at 210 nm. The experiment was carried out with the 1 mg/mL
methanolic solutions of active substances previously described. The mobile phase was a
mixture of 10 mM phosphate buffer pH 7.4 and acetonitrile in the ratio 80:20 (v/v). The
phosphate buffer was obtained by dissolving the finished tablet in the appropriate amount
of distilled water (1 tablet per 200 mL). In this case, it was not necessary to adjust the pH of
the buffer using a pH meter.

The phase flow through the system was set to 0.5 mL/min as recommended by the
column manufacturer. The solutions were delivered to the column using an autosampler
syringe, the injection size was 10 µL.

The collected chromatographic data, similar to the HSA column experiment, was
the retention coefficient, k, and derivative, log k, which were obtained using TotalChrom
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software connected to the HPLC instrument. The experiment was then repeated and the
collected retention rates were the mean values of both series.
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