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Abstract

We describe a model-based method, PING, for predicting nucleosome positions in MNase-Seq and MNase- or sonicated-
ChIP-Seq data. PING compares favorably to NPS and TemplateFilter in scalability, accuracy and robustness to low read
density. To demonstrate that PING predictions from widely available sonicated data can have sufficient spatial resolution to
be to be useful for biological inference, we use Illumina H3K4me1 ChIP-seq data to detect changes in nucleosome
positioning around transcription factor binding sites due to tamoxifen stimulation, to discriminate functional and non-
functional transcription factor binding sites more effectively than with enrichment profiles, and to confirm that the pioneer
transcription factor Foxa2 associates with the accessible major groove of nucleosomal DNA.
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Introduction

The structural unit for chromatin packaging is the nucleosome,

which is composed of approximately 147 bps of DNA wrapped

around a core histone octamer. Nucleosome-associated DNA is

less accessible to regulatory proteins like transcription factors, and

nucleosome positioning, as well as histone modifications and

histone variants (e.g. H2A.Z, H3.3), are therefore influential in

cellular processes that depend on chromatin accessibility [1–6].

Because nucleosome positions depend on cellular processes as well

as intrinsic factors (e.g. DNA sequence), understanding how these

positions influence cell states can require determining nucleosome

locations within individual genomic regions [7].

Currently, genome-wide nucleosome-based data are typically

generated by high-throughput short-read sequencing of DNA

obtained by either MNase digestion (MNase-seq), or chromatin

immunoprecipitation (ChIP-seq) of MNase-digested or sonicated

DNA. MNase digests linker DNA with relatively high specificity

[8], and this specificity is reflected in the narrow spatial

distribution of aligned reads. However, sonication protocols are

widely used; for example, in work to identify classes of functional

genomic regions by integrated analysis of diverse sets of short-read

sequence data [9–11].

Some methods proposed for inferring nucleosome positions

from short-read data are heuristic and are based on simple pile-up

profiles [12,13]. While more elaborate approaches are available or

have been described, such as NPS [14] and TemplateFilter (TpF)

[15], or based on Hidden Markov Models (HMM) [16], these

methods have been applied to data generated with protocols that

use MNase-Seq, or MNase with ChIP-Seq (e.g. [17]), and their

effectiveness with sonicated ChIP-seq data has not been

demonstrated.

Recently we described PICS, a probabilistic peak-caller for

identifying transcription factor binding sites in ChIP-Seq data [18].

PICS models bi-directional read densities, uses mixture models to

resolve adjacent binding events, and imputes reads that are not

mapped due to repetitive genome sequences. We anticipated that its

model-based framework should be extensible to address both

MNase-digested and sonicated nucleosome-based short-read data.

We were interested in assessing how effectively the model could be

adapted to the two data types, how robust the new algorithm would

be to lower read densities, and the types of biological inferences that

it would support from sonicated data. To address these issues, we

developed PING, a method for probabilistic inference of nucleo-

some positioning from nucleosome-based sequence data. Like

PICS, PING models bi-directional read densities, uses mixture

models, and imputes missing reads. However, it uses a new prior

specification for the spatial positioning of nucleosomes, has different

model selection criteria, model parameters, and post-processing for

estimated parameters. In addition, PING includes novel statistical

methods to identify nucleosomes whose read densities are lower

than those of neighboring nucleosomes.

In the work described here, we apply the new algorithm to three

published short-read nucleosome-based data sets. We focus on

regions around transcriptional start sites and in vivo transcription

factor binding sites, which have well-defined nucleosome distri-

butions [6,19]. We demonstrate that PING performed well in

identifying nucleosome positions in both MNase-Seq data in yeast

and sonicated H3K4me1 ChIP-Seq data in mouse, and that it

compares favorably to NPS and TpF in robustness to lower read
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densities. Then, using published data from a mouse cell line [20],

we consider global changes in nucleosome positioning relative to in

vivo binding sites for SPI1 (also known as PU.1) and CEBPB, and

show that PING predictions from sonicated H3K4me1 ChIP-Seq

data are consistent with published results from MNase-Seq data.

Next, we apply PING to sonicated ChIP-Seq H3K4me1 data from

mouse pancreas islet tissue [19]. We distinguish in vivo Foxa2 and

Pdx1 binding sites that are between flanking H3K4me1-marked

nucleosomes from sites that are within nucleosomal DNA. We

show that genes associated with flanked TF-bound loci are more

abundantly expressed than those associated with nucleosomal loci,

consistent with flanked sites being active enhancer elements.

Finally, we compare spatial distributions of binding sites on

nucleosomal DNA for Pdx1 and for the pioneer transcription

factor Foxa2.

Results

In this section, we first describe PING’s probabilistic model for

inferring nucleosome positions from short-read sequencing data.

Then, we compare the performance of PING, NPS and TpF,

using three published datasets that have different experimental

protocols and genome sizes: MNase-Seq data from budding yeast

[21], sonicated ChIP-Seq data from a mouse cell line [20], and

sonicated ChIP-Seq data from mouse pancreatic islets and liver

tissue [19]. Finally, focusing on the data from mouse islet tissue, we

demonstrate and assess several types of inferences from sonicated

ChIP-Seq data.

PING model
As in our previous work with transcription factor data [18], we

first pre-process the read data by segmenting the genome into

candidate regions, each of which has a minimum number of reads

that aligned to forward and reverse strands. As in PICS, in each

candidate region, conditional on the number of nucleosomes (K )

in the region, we model all the aligned read positions as

independent and identically distributed (iid), as follows

fi*
X

k

wk t4 mk{dk=2,s2
fk

� �
, rj*

X
k

wk t4 mkzdk=2,s2
rk

� �
, ð1Þ

where fi and rj are the i-th forward and j-th reverse read positions

in the region, with i~1, . . . ,nf and j~1, . . . ,nr, and k~1, . . . ,K

refers to the k-th nucleosome in the candidate region. The

function t4 is the probability density function of a Student’s t-

distribution with four degrees of freedom. For the k-th

nucleosome, mk represents the position of its center, while dk is

the distance between the maxima of the forward and reverse read

position densities, which corresponds to the average DNA

fragment length in this bidirectional read cluster. Note that this

length can differ from 147 bp, as we discuss below for prior

distributions. Because a DNA fragment should contribute a

forward read or a reverse read with equal probability, we use a

common mixture weight wk for both forward and reverse

distributions. The parameters sfk and srk measure the corre-

sponding variability in DNA fragment end positions. To

accommodate possible biases related to sequencing and read

mappability [18,22] that result in asymmetric forward and reverse

peaks, we do not assume or require that the forward and reverse

variances of reads associated with a nucleosome are equal.

Since it models aligned reads as PICS does (1), PING inherits

PICS’ advantages, including robustness to outlier reads and

imputation of missing reads (Methods). PING’s main novelty is in

the modelling of nucleosome positions and their downstream

inference, as explained below.

In PING, the nucleosome positions (the mk’s) are assumed, a

priori, to be drawn from a one dimensional Gaussian Markov

random field (GMRF) distribution [23]. GMRF distributions are

well suited to modelling the linear arrays that are typical of

nucleosomes. The prior distribution of mk’s is defined conditionally

on neighboring nucleosomes as

mkz1jmk!exp {l(mkz1{mk{200)2
� �

ð2Þ

where lw0 is a fixed parameter. This prior states that consecutive

nucleosome centers should be separated by approximately 200 bp.

A larger l value will constrain distances to be closer to 200 bp,

while a smaller value will allow a wider range of values. After

characterizing the effect of l on the prior, we chose a relatively

weak prior by setting l~6|10{4, which corresponds to a

distance between adjacent nucleosomes of between 25 and 375 bp.

The lower bound permits detecting nucleosome positions that are

closely spaced due to positioning varying between sub-populations

of cells [8], while the upper bound accommodates short

nucleosome-free regions. Note that segmentation into candidate

regions excludes genomic regions with low read densities that are

longer than 375 bp from candidate regions. Figure 1 in ‘figure S1’

shows an example of random samples from this prior.

The remaining parameters sfk, srk and dk summarize our prior

knowledge about the DNA fragment size distribution. For

computational convenience we use a Normal-Gamma conjugate

prior defined by

s{2
fk ,s{2

rk *Ga(a,b) ð3Þ

(dkjs2
fk,s2

rk)*N j,r{1=(s{2
fk zs{2

rk )
� �

ð4Þ

where a, b, r, and j are fixed hyper-parameters. Such conjuate

priors are commonly used in hierarchical Baeysian modeling for

genomic data because they lead to closed form iterative algorithms

for posterior exploration [24,25]. In our context, j represents our

best prior guess about the mean fragment length distribution

across nucleosomes, while r,a and b control the spread around

this guess. For data generated by an MNase protocol, we set

a~20, b~20000, r~3, and j~150, which result in d values

between 100 and 200 bp (figure 2 in ‘figure S1’). For data

generated by a sonication protocol, where we expect DNA

fragment lengths to be more variable, we used a~10 and r~1:2,

which result in d values between 50 and 250 bp. The parameters

were chosen empirically from exploratory analyses on several

ChIP-seq and MNase-seq samples, and from our knowledge of the

library construction for the experiments. Parameter values can be

adjusted by a user, given, for example, different fragment lengths

from library construction (see ‘text s1’).

Methods comparison
Because the cost of sequencing experiments can constrain work

involving large genomes and experimental designs, we evaluated the

performance of PING, NPS [14] and TpF [15] over a range of

sequencing depths, using the three data sets noted above. Two

considerations led us to generate test datasets by subsampling rather

than simulation. First, it was not clear how to simulate data in which

both the position and number of reads for a nucleosome may

depend on neighboring nucleosomes. Second, the MNase-Seq yeast

Probabilistic Inference for Nucleosome Positioning
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data were deeply sequenced, given the compact genome. For these

data, many nucleosomes had strong, well-defined read signals, and

many appeared to be both well positioned and accurately predicted

by all three methods (see ‘examples S1’). This suggested that at least

this dataset would give good ‘reference’ nucleosome positions for the

subsampling comparisons.

For Kaplan’s MNase-Seq yeast data we used the most deeply

sequenced sample, NOCL4. For the two mammalian datasets, we

considered a subset of regions that were associated with

transcription factor binding sites, and so should have relatively

well-positioned nucleosomes [17,19,26]. For the mouse PUER cell

line data [20] we selected the 62:6 thousand MNase-Seq reads that

were within 1 kb of centers of the top-ranked 5000 CEBPB-

enriched regions detected by PICS for 1 hour after treatment with

tamoxifen. For mouse islet data we selected the 32:8 thousand

H3K4me1 sonicated ChIP-Seq reads that were within 1 kb of

centers of the top-ranked 5000 Pdx1 peak summits [19]. As

reference nucleosomes we selected 10000 top-ranked nucleosomes

of each method in the yeast MNase-Seq data and 2000 top-ranked

nucleosomes of each method in the mouse sonicated ChIP-Seq

data (figures 3, 4, and 5 in ‘figure S1’).

For each of the three data sets, we generated 14 random subsets

of reads that contained from 30% to 95% (with step size 5%) of the

original number of reads. For each data subset we calculated area-

under-the-curve (AUC) statistics for the three methods (Methods).

A larger AUC value for a subset of reads indicates that reference

nucleosome positions were detected more accurately and fre-

quently.

Figure 1 shows AUC profiles as a function of the number of

reads in random subsets for three methods. AUCs for PING were

consistently larger than for three methods, suggesting that PING

can predict nucleosome positions more accurately and may

require less deeply sequenced data than the other two methods.

TpF showed comparable performance only in Kaplan’s MNase-

Seq data, for which its templates should be appropriate (see

‘examples S1’). NPS predicted only nucleosomes that had

relatively high read counts; while our comparison method is

favorable to NPS, this method’s performance was lower with the

larger sets of reference nucleosomes, for which it returned

maximum sensitivities less than one.

Tests with alternative settings showed that results were robust to

the number of nucleosomes in reference sets. For example, we

tried reference sets with 5000 or 20000 nucleosomes in Kaplan’s

data, and reference sets with 1000 or 5000 nucleosomes in Heinz’s

and Hoffman’s data. In these assessments, PING generally

returned larger AUCs than the other methods (data not shown).

Prior to sequencing, given the biology that an experimental

design will address, it is desirable to be able to estimate how deeply

a sample should be sequenced; given sequencing data, it is

desirable to be able to estimate whether sufficient sequence data

has been generated. The AUC approach shown here may be

appropriate way to address the second issue, as, for an experiment

in which the slope of the curve is low as it approaches 100% of the

reads available, additional reads are unlikely to improve the

results.

Inferring nucleosome positioning with sonicated ChIP-
Seq data

As noted above, much histone modification data is available

from protocols in which the DNA has been fragmented by

sonication. In this section, using data for a mouse cell line, we

assess nucleosome-level results generated by PING from sonicated

data, and compare these with published occupancy profiles from

MNase-Seq data. We considered four biological states: before vs.

1 hour after tamoxifen stimulation, and regions around SPI1 vs.

CEBPB binding sites.

Using MNase-Seq data from PUER cells, in which SPI1

becomes localized to the nucleus and can bind DNA only after

tamoxifen treatment, Heinz et al. [20] showed that, globally,

positions of nucleosomes flanking SPI1 binding sites are more

distant from SPI1 sites after SPI1 binding. To determine whether

we could use PING to generate similar results using sonicated

ChIP-Seq data, we predicted nucleosome positions genome-wide

from sonicated ChIP-Seq H3K4me1 samples for both 0 hour and

1 hour after tamoxifen stimulation, and used PICS to predict

binding sites for SPI1 and for CEBPB. Figure 2 shows model-

based nucleosome profiles in +500-bp regions around the top-

ranked 5000 binding sites for both factors (compare to figure 9 in

‘figure S1’). The heatmaps show individual regions as pairs of

blue/red horizontal lines (denoting 0 and 1 hr respectively), with

Figure 1. Truncated AUC statistics for PING, TpF and NPS. Panels show the area under ROC curves (AUC), truncated at a specificity of 0.8, as a
function of number of reads in random subsets for PING, TpF and NPS. A larger AUC value corresponds to a more accurate method; the maximum
possible AUC value for the truncated curves is 0.2. Datasets are (A) MNase-Seq data from budding yeast [21], (B) sonicated H3K4me1 ChIP-Seq data
from a mouse cell line [20], and (C) sonicated H3K4me1 ChIP-Seq data from mouse adult islet tissue [19].
doi:10.1371/journal.pone.0032095.g001

Probabilistic Inference for Nucleosome Positioning
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darker colors indicating higher scoring (i.e. better positioned)

nucleosomes, while the profiles show the average nucleosome

occupancy across all TF binding regions. For both transcription

factors and time points, the heatmaps show that the distance

between {1 and z1 nucleosomes varies between regions, sug-

gesting caution in interpreting average profiles alone. Despite this,

from the heatmaps and profiles it is evident that the closest three

nucleosomes have shifted away from SPI1 binding sites by &50-bp

at the 1 hr time point, consistent with MNase-Seq data (Figure 4D

in [20]). We note that while the published MNase-Seq profile more

clearly indicates a global &50-bp shift, the relatively low MNase-

seq read densities did not support model-based nucleosome

predictions on individual genomic regions. Also, because SPI1 is

not localized to the nucleus at 0 hr [13], its profiles at this time point

are poorly defined; in contrast, upon SPI1 binding, at 1 hr, the

nucleosome profiles are better defined, suggesting that binding

stabilizes flanking nucleosome positions. Both heatmaps and profiles

suggest that nucleosome positioning is well defined for CEBPB at

both time points. While a small positional shift was evident for this

factor, CEBPB is localized in the nucleus and so is expected to be

associated with DNA at both time points, and this result is of

uncertain biological significance.

Together, these data from a mouse cell line indicate that PING

can be effective in inferring changes in nucleosome positions with

sonicated ChIP-Seq data, but that the degree of positioning, and

so the inferences possible, can depend on the transcription factor

and on the biological state.

Identifying transcription factor-nucleosome interactions
in mouse islet data

Transcription factor binding sites typically occur within nucle-

osome-free regions flanked within &250{450 bp by H3K4me1-

marked nucleosomes (‘bimodal’ sites) ([17,19,26]). Hoffman (2010)

used enrichment profiles [27] to show that both Pdx1 and Foxa2

can also bind motifs within regions enriched for H3K4me1

(‘monomodal’ sites). Such a pattern of association is characteristic

of ‘pioneer’ transcription factors (TFs) like Foxa2 [28]. Comparing

the functional properties of in vivo Pdx1 and Foxa2 binding sites that

were in bimodal vs. monomodal regions indicated that only bimodal

Pdx1- and Foxa2-bound loci were functional in regulating gene

expression.

To determine whether PING-based nucleosome predictions

could be used to distinguish transcription factor binding sites

flanked by paired H3K4me1-marked nucleosomes from sites within

nucleosomal DNA, we applied PING to the sonicated H3K4me1

ChIP-Seq data from mouse adult islets and liver (Methods). We used

the resulting predicted nucleosomes in islets to classify in vivo binding

sites of Pdx1 and Foxa2 in islets, using nucleosomes that we

predicted in H3K4me1 data from mouse liver as a negative control.

From the spatial relationship between a TF binding site (taken as the

Figure 2. Model-based nucleosome occupancy profiles for sonicated H3K4me1 ChIP-Seq data. Panels show nucleosome positioning
within +500 bp from the top-ranked 5000 in vivo transcription factor binding sites that PICS detected for (A) SPI1 and (B) CEBPB from sonicated
H3K4me1 ChIP-Seq data for 0 hour (blue) and 1 hour (red) after tamoxifen stimulation [20]. The heatmaps show nucleosome prediction profiles for
each region as pairs of blue/red horizontal lines, with darker colors indicating higher scoring, i.e. better positioned, nucleosomes. The lower part of
each heatmap shows genomic regions that lack detectable nucleosome positioning. Curves below each heatmap show average occupancy profiles
across all TF regions.
doi:10.1371/journal.pone.0032095.g002
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summit of an enrichment profile peak) and nearby predicted

nucleosomes in islets, we classified binding sites into three

subgroups: those flanked by paired H3K4me1-marked nucleosomes

(‘bimodal’), those within H3K4me1-marked nucleosomal-DNA

(‘monomodal’), and those with no H3K4me1-marked nucleosomes

within 1kb (‘NoNuc’). Figure 3a shows the number of regions in

each group, and shows that, consistent with the data of Hoffman

et al, the majority of transcription factor binding sites (62–81%) are

bimodal; however, between 5 and 9% are within nucleosomal

DNA.

Figure 3b shows the average read density profiles for sites in the

three subgroups, and the average model-based nucleosome

positioning profiles for sites flanked by paired nucleosomes versus

those bound to nucleosomal DNA. In the center of the regions, at

the Pdx1 and Foxa2 peak summit locations, profiles show a deep

valley for sites identified as flanked by paired H3K4me1-marked

nucleosomes, a sharp peak in the read density profile for sites

identified as bound within nucleosomal DNA, and a flat

unenriched profile for the ‘‘NoNuc’’ group. As a negative control,

we show the same profiles generated from mouse adult liver, in

which Pdx1 is not expressed, and in which Foxa2 binds &25% of

the sites identified in islets [19] (Figure 8 in ‘figure S1’). In liver, the

sites identified as flanked by paired nucleosomes show a slightly

lower nucleosome density at Pdx1 peak summit locations,

suggesting that some of these loci are bound by other factors in

this tissue. In contrast, the sites identified as bound within

nucleosomal-DNA for Pdx1 have no distinct profile. For Foxa2

some reduction in nucleosome density is noted at the peak summit

location for sites identified as bound within nucleosomal-DNA in

islets, probably because some of these sites are bound in liver. This

is consistent with previous results indicating that Foxa2 loci that

are bound in both islets and liver, and are monomodal in one

tissue, are often bimodal in the other [19]. Note that compared to

Heinz’s data, these data were generated from tissue rather than a

cell line; hence, we may expect more biological heterogeneity and

variability, and so potentially more variability in nucleosome

positions.

Following Hoffman (2010), to assess our classification results

using independent data we compared the expression levels for

genes associated with subgroups of binding regions, using

published islet RNA-seq data [29] (Figure 4). We assessed

expression levels differences between groups using a Kruskal-

Wallis test and a null hypothesis that there is no difference among

gene expression levels of three groups vs. the alternative hypothesis

that at least two groups are different. P-values were less than 10{16

for all combinations of two transcription factors and two tissues.

We then conducted a post-hoc multiple pairwise comparison [30]

for each combination of group pairs. Genes associated with

loci that lacked H3K4me1-marked nucleosomes were significantly

less expressed than regions in other groups (pv10{4). In con-

trast, genes associated with loci within nucleosomal DNA were

significantly less expressed than genes associated with loci

flanked by paired nucleosomes (p~1:3|10{5 for Pdx1 and

p~1:2|10{2 for Foxa2). This is consistent with sites flanked by

paired nucleosomes being more functionally active. As expected,

we saw no difference between these site types using H3K4me1-

based nucleosome calls in liver, using the same islet RNA-seq data

(p = 0.99 for Pdx1 and p = 0.21 for Foxa2). These results show that

using nucleosome positions predicted by PING to define the

‘modality’ of transcription binding sites generates more effective

Figure 3. Modality and nucleosome occupancy for Foxa2 and Pdx1 binding sites in mouse adult islet tissue. Panels show the modality
and nucleosome profiles for in vivo binding sites of the transcription factors Foxa2 (left) and Pdx1 (right) [19]. (A) The number of binding sites in
bimodal(bi), monomodal(mono) and NoNuc(No) groups. A NoNuc transcription factor binding site had no H3K4me1-marked nucleosome within 1 kb
of its peak summit, a monomodal site had at least one H3K4me1 nucleosome within 50 bp of its summit, and all other sites were bimodal. (B)
Average model-based nucleosome positioning profiles for the three classes of binding sites.
doi:10.1371/journal.pone.0032095.g003

Probabilistic Inference for Nucleosome Positioning
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bi/monomodal classification results than those originally generat-

ed from enrichment profiles.

Unlike Foxa2, Pdx1 is not known to be a pioneer factor, i.e. a

factor that can bind motifs within nucleosomal DNA [19]. Given

this, we compared spatial distributions of Foxa2- and Pdx1-bound

sites at predicted nucleosome locations to assess where these

transcription factors were predicted to bind within the nucleoso-

mal DNA. By profiling the density of the de novo Foxa2 and Pdx1

binding sites that were closest to their respective peak summit

locations, we found that Foxa2-bound sites were enriched near the

nucleosome centers and showed a periodicity of &20 bp (&2 helix

turns) (Figure 5). This profile is consistent with Foxa2 binding at

locations where the major groove faces away from the histone

octamer, as expected for its helix-turn-helix domain [27,31–33]. In

contrast, Pdx1-bound sites were enriched at two locations that

were &25 bp from the nucleosome center. While Pdx1’s homeo

Figure 4. Expression levels for genes associated with different types of nucleosome predictions. RNA-seq data for mouse adult islets are
from [29]. Nucleosomes were predicted from H3K4me1 data for (A,B) mouse adult islets and (C,D) mouse adult liver [19]. Dashed horizontal lines show
medians. In islets, genes categorized as bimodal and NoNuc respectively have significantly higher and lower expression levels than those in the
monomodal group. Nucleosome prediction groups are outlined in Fig. 3’s caption and in Methods.
doi:10.1371/journal.pone.0032095.g004

Probabilistic Inference for Nucleosome Positioning
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domain also associates with the major groove [34], the site profile

for this factor was only partially consistent with the locations in

which the major groove is accessible. To confirm that these

patterns of enrichment were a result of constraints placed on Pdx1

and Foxa2 binding, we found no comparable spatial enrichment of

Pdx1 and Foxa2 motifs around monomodal sites identified using

nucleosome positions predicted from liver H3K4me1 data

(Methods). These results indicate that both Pdx1 and Foxa2 can

bind within nucleosomal DNA, but have different preferences for

binding locations within the nucleosome. As well, the results

confirm that, for appropriate biological states, nucleosome

positioning can be defined with high spatial resolution from

sonicated data.

Discussion

In the work reported here, we describe PING, a model-based

method for predicting nucleosome positioning that can flexibly be

applied to either MNase-based and sonicated ChIP-Seq data.

Using an sampling-based ROC/AUC analysis, and three data sets

with different characteristics, i.e. MNase-Seq data from budding

yeast, and sonicated ChIP-Seq H3K4me1 data from a mouse cell

line and from mouse islet tissue, our method showed better overall

predictive accuracy and scalability than NPS and TemplateFilter.

While additional methods have been described, the two methods

that we used in comparisons have been shown to perform well,

and offer reasonable performance baselines. These comparisons

also showed that PING can readily be applied to data from

mammalian genomes, and is relatively robust to low read densities.

Given a method that could be applied to both MNase-based or

sonicated data, we addressed the question of the spatial resolution

available from sonicated data. Using published sonicated

H3K4me1 ChIP-Seq read data in a mouse cell line, PING-based

results for nucleosome displacement away from transcription

binding sites after tamoxifen stimulation were consistent with

results reported for MNase-Seq data. However, the contrast

between the occupancy profiles for SPI1 and CEBPB indicated

that nucleosome positioning predictions can depend on the

biological state.

Using PING-based nucleosome predictions from sonicated

H3K4me1 ChIP-Seq data from mouse islets, we refined the

classification of in vivo Foxa2 and Pdx1 binding sites into three

groups, and showed that the between-group gene expression

differences were more statistically significant for the updated

groups. Characterizing the binding profile of the pioneer

transcription factor Foxa2 on nucleosomal DNA in islet tissue,

we showed that, for appropriate biological states, sonicated data

can support positioning predictions that have high spatial

resolution. These results, and the flexibility and scalability of the

PING method, suggest that it may be useful in generating

mechanistic insight within sets of individual genomic regions using

short-read data; for example, in regions in which specific

combinations of epigenetic marks are associated with particular

functional properties.

Materials and Methods

Data sets
The ‘Kaplan’ MNase data are from S. cerevisceae (GEO data set

GSM351492 [21]). They were generated using MNase-Seq, i.e.

digesting linker DNA with MNaseI, size selecting mononucleo-

some DNA fragments, and single-end sequencing the ends of these

fragments. There are six biological replicates. Four have no

formaldehyde cross-linking and have between 3:3 and 5 million

aligned reads; two were cross-linked and have between 2:4 and 3:5
million aligned reads. These samples were deeply sequenced, given

the compact 12:1 Mb genome. Many nucleosomes had strong,

well-defined aligned read signals, and many appeared to be both

well positioned and accurately predicted by all three methods (see

‘examples S1’).

The sonicated ChIP-Seq ‘Heinz’ data were generated from the

mouse PUER cell line [20]. We used two H3K4me1 sonicated

samples from GEO data set GSE21512, which corresponded two

biological states: 0 hour, i.e. before stimulation (GSM538012) and

1 hour after tamoxifen stimulation (GSM538013). Single-ended 25-

bp reads were generated after sonicating chromatin to 200{300 bp,

then immunoprecipitating with an antibody against H3K4me1

(Abcam ab8895). These two samples contained 8.1 and 7.2 million

aligned reads respectively, and, given the &2:5 Gb mouse genome,

they were much less deeply sequenced than Kaplan’s data.

The sonicated H3K4me1 ChIP-Seq ‘Hoffman’ data were

generated from mouse adult pancreas islet and liver using Abcam

Figure 5. Profiles of predicted Foxa2 and Pdx1 binding sites on nucleosomal DNA. Panels show profile of predicted transcription factor
binding sites of (A) Foxa2 and (B) Pdx1 closest to the centre of a predicted PING nucleosome position for monomodal binding sites in mouse islet
tissue [19]. Dashed curves above dark gray regions show corresponding profiles in mouse liver. Profiles are truncated at +100 bp, and vertical
dashed lines show +75 bp from the estimated centres of the nucleosome-associated DNA. Foxa2 binding sites are enriched near the nucleosome
centers and show a periodicity of +20 bp, while Pdx1 binding sites are enriched at two locations that are +25 bp from the nucleosome center.
doi:10.1371/journal.pone.0032095.g005
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ab8895, as described in [19]. The data contains 11:8 and 14:9
million aligned reads in islet and liver respectively.

For Heinz data, to obtain the in vivo binding sites of transcription

factors of SPI1 and CEBPB, we used PICS [18] to analyze the

ChIP-Seq data GSM538000 (SPI1, 0 hr), GSM538001 (SPI1,

1 hr), GSM538006 (CEBPB, 0 hr), and GSM538007 (CEBPB,

1 hr). The in vivo binding sites for the transcription factors of Pdx1

and Foxa2 were obtained from [19].

Filtering duplicated reads
A relatively high number of duplicate reads (i.e. single-end reads

with identical 59 alignment coordinates) may be the result of biases

in library construction and PCR amplification. Since the spatial

distributions of locations of fragment starts should be more

concentrated near ends of wrapped DNA for MNase than for

sonicated data, we expect that we could see more repeated reads

that are not process artifacts in MNase data. To control potential

artifacts, while accommodating differences between MNase vs.

sonication protocols, we removed reads beyond an upper bound

that is set as a quantile for the number of duplicates found while

processing a data set. In practice, we chose the 99:5% quantile for

MNase data, and the 95% quantile for sonicated data. These

threshold quantiles can be set by a user. And, since PING models

read densities, highly ranked nucleosome predictions should be

rather insensitive to the value set for the upper bound on duplicates.

Segmentation of candidate regions
To process large data sets, particularly when multiple CPU

cores are available, it is preferable to split the aligned read data

into smaller disjoint subsets and process each subset separately. We

first segment the genomic aligned read data into ‘candidate’

regions, each of which has a minimum number of reads that were

mapped to forward and reverse strands. The segmentation step is

similar to that used for PICS [18]. To suit nucleosome-based data,

we adjusted the parameters and added an additional recursive

splitting step to avoid candidate regions being too long.

We detect such regions using a w-bp sliding window with an s-

bp step size, counting the number of forward and reverse strand

reads in the left and right half-windows respectively (reads within

25 bps from the center of the window are not counted), and we

retain windows that contain at least n forward reads and n reverse

reads. Here we used w~300 bp, s~2 bp and n~5 and merged

overlapping windows from left to right to obtain a disjoint set of

candidate regions (parameters are discussed in ‘text S1’).

Depending on the density of nucleosomes expected across the

genome for a given experiment (e.g. MNase-Seq), segmentation

could result in genomic regions that are long enough that applying

a mixture model to infer nucleosomes requires extended

computing times. To avoid this, we recursively divide candidate

regions that are longer than 1200 bps at points of low read density,

until no regions are longer than this.

Parameter estimation and model selection
Given the conjugate prior chosen, an Expectation-Maximization

(EM) algorithm can be derived to find the maximum a posteriori

(MAP) estimates for the unknown parameter vector H~(h1, . . . ,hK ),
where hk~(wk,mk,dk,s2

fk,s2
rk). Our algorithm is similar to that used

in PICS [18], and it is described in detail in the ‘text S1’. The main

difference comes in the M-step, for which we developed a novel

procedure to incorporate the spatial prior for the m’s.

Model fitting
After segmenting the whole genome into candidate regions

using a sliding window, we fit a PING model in each candidate

region. In practice, K , the number of mixture components in each

region, is unknown and needs to be estimated. In our previous

work with ChIP-Seq data for transcription factors (TFs), we used

the Bayesian Information Criteria (BIC) to estimate the number of

components, by trying K~1, . . . ,15 and selecting the value of K
with the largest BIC. For nucleosome-based sequence data,

candidate regions are often longer than is typical for TF data,

and we expect to routinely encounter much larger values of K
than for TF data. To reduce computing time, we try only integer

values of K in the interval ½Nnuc=3,Nnuc|1:5� where Nnuc is the

expected number of nucleosomes in a region, given the region’s

length, and is calculated as Nnuc~region length=200. Note that

this range will vary from region to region and is dynamically set

during a run.

Choosing the number of nucleosomes in each region
After having fit a model for each value of K in the above range,

we need to select a single best value in order to make inferences

about the nucleosome positions. While BIC is well suited for

selecting the number of components in mixture models, it does not

effectively use the information contained in our spatial prior (Eq.

2). Instead, we use a log likelihood penalized by our prior for m.

We select the value of K with the largest penalized log likelihood

as follows,

l(K jĤH){l
XK{1

k~1

(mkz1{mk{200)2, ð5Þ

where H is the final estimate for the parameters H, and l is the log-

likelihood as defined in the ‘text S1’. Even though our model

selection procedure gives satisfactory results for most regions, we

noted a few cases in which the results were not optimal because of

noise in read distributions. As with our PICS model, we have

derived approaches to check for noisy estimates and wrongly

estimated values of K , and to correct for these if needed. See ‘text

S1’ for details.

Scores of predicted nucleosomes, false discovery rates,
and differential enrichment of nucleosomes in two
high-throughput sequencing samples

In order to identify and rank a statistically meaningful subset of

nucleosomes, we define an enrichment score for each nucleosome. For

a given nucleosome, we define FChIP (RChIP), the number of observed

forward (reverse) ChIP read positions that fall within the 80%
contours of the forward (reverse) read position densities, i.e. within

mf +c:sf (mr+c:sr) where c~1:5 (approximately the 90% quantile

of the t4 distribution). We then define the enrichment score as

O~(FChIPzRChIP)=(2csf z2csr), which is an estimate of the

observed density of DNA enriched fragments contributing to this

nucleosome, after removing outliers. When a control sample is

available, we also define Ocont~(FcontzRcont)=(2c:sf z2c:sr), by

computing the number of observed forward/reverse reads in the

control sample that fall within the 80% contour of the forward/reverse

read position densities estimated from the ChIP sample. Using this

information, we define an enrichment score for the treatment relative

to the control as S~(Ncontrol=NChIP)|O=(Ocontz1), where the

addition of the constant one prevents a division by zero, and Ncontrol

(resp. NChIP) denotes the total read count in control sample (resp. IP

sample). The scaling of the enrichment score by Ncontrol=NChIP

accounts for the control and ChIP samples having different numbers

of reads (sequence depth). Note that the score introduced here is

slightly different from the one used in PICS [18]. We made

improvements by normalizing the scores by their peak widths (sigmas)
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which produces more stable nucleosome-based scores. When

control sample is available, false discovery rates (FDR) can be

calculated from the scores of nucleosomes using the approach

proposed in PICS [18].

Note that the estimated FDR depends on the definition of a

false call, and so on the choice of the negative control data. For the

work described here, we had available input DNA for the pancreas

islet and liver data sets [19]. Input DNA is widely used in protein-

DNA association work (i.e. transcription factor binding); however,

PING returned 475108 nucleosome calls from H3K4me1 data,

but only 1281 from the control dataset. So, while input DNA

should be useful for filtering out ChIP-seq artifacts, it appears to be

less useful for estimating an FDR in the context of nucleosome

prediction. H3/H4 datasets have been used to normalize histone

modification profiles against nucleosome density profiles (e.g.

[35]). Sequencing datasets from H3/H4 should have more

appropriate aligned read profiles than input DNA, and so may

be useful for estimating FDRs for nucleosome predictions;

unfortunately, these were not available for the data used here.

Calculating AUC values
We calculated AUC values in four steps. First, we predicted

nucleosomes using PING, NPS and TpF; i.e. we generated three

method-specific sets of reference predictions. The number of

predicted nucleosomes in each random subset is given in ‘table

S1’. Second, we generated receiver operating characteristic (ROC)

curves for each method using the predicted and reference

nucleosomes. Third, we truncated each ROC curve at a specificity

of 0.8, since sensitivity is of little value without a reasonable

specificity. Finally, we calculated AUC statistics as the area under

these truncated ROC curves.

To generate an ROC curve, we needed to define a threshold

distance, so that a reference nucleosome is called ‘detected’ if the

distance between the centre of the reference nucleosome and a

nucleosome predicted from a subset of reads is less than the

threshold. The threshold distances were chosen as 10 bp in

Kaplan’s MNase data, 30 bp in Heinz’s and Hoffman’s sonication

data. These values resulted in the areas under most full ROC

curves being larger than 0:5, where 0:5 is expected value for

binary random guesses. When we tested a distance that resulted in

all methods detecting reference nucleosomes less accurately than a

binary random guess, we increased the distance. To assess how

robust our results were with respect to the threshold distance, we

tried alternative settings and noted similar results. For example, we

tried threshold distances of 5 bp in Kaplan’s MNase data, 20 bp

and 40 bp in two sonication data as well as AUC statistics

calculated from the full ROC curves instead of the truncated ones.

In all of these assessments, PING generally performed better than

the two other methods.

Classification of transcription factor binding regions
We classify binding regions according to the distances between a

TF binding site to the nearest called nucleosome. After removing

weak nucleosome calls (see the following subsection for details), we

classify regions as follows. A binding region without any

H3K4me1-marked nucleosome detected within 1 kb of its peak

summit is called a ‘‘NoNuc’’ region. A binding region with at least

one H3K4me1 nucleosome detected within 50 bp of its peak

summit is called ‘‘monomodal’’. Other binding regions are called

‘‘bimodal’’.

Removing nucleosomes that have low read densities
Because nucleosomes with relatively low read densities are more

likely to be falsely called as present, it is helpful to detect and

remove them from PING predictions. For this, we compare each

predicted nucleosome to other nucleosomes in its neighborhood,

as follows.

For each predicted nucleosome, referred to as the ‘reference

nucleosome’, we select other predicted nucleosomes within

500 bp. We ignore any nucleosomes that are separated from the

‘reference nucleosome’ by a nucleosome-free region longer than

300 bp, which is PING’s upper threshold for filtering estimated

d’s. We refer to these selected nucleosomes as ‘neighborhood’

nucleosomes. We compare the reference nucleosome to each of its

neighborhood nucleosomes, and consider the reference nucleo-

some as ‘falsely-called’ if its read count is significantly lower than

that of any neighborhood nucleosome. In these comparisons, a

read count ratio for two nucleosomes is significantly different if it is

higher than a threshold, which we calculate adaptively using a

negative binomial model that takes into account the widths (s) of

forward/reverse read density distributions of the nucleosomes, as

follows.

In a neighborhood, given the reads count (N0) of a reference

nucleosome, the reads count (N1) of another nucleosome in its

neighbourhood follows a negative binomial distribution

N1*NB(size~N0, prob~(sr1zsf 1)=(sr0zsf 0zsr1zsf 1))

where sr0 and sf 0 describe the width of forward/reverse peak

of reference nucleosome, and sr1 and sf 1 describe the width of

forward/reverse peak of the nucleosome to be compared with.

An example threshold curve of N1=N0 is given in figure 6 in

‘figure S1’.

Multiple transcription factor binding regions associated
with the same gene

Multiple transcription factor binding regions can be associated

with the same gene. TFBS sites that are flanked by H3K4me1-

enriched regions are functional, while sites within H3K4me1-

enriched regions, or in regions without H3K4me1, are non-

functional in regulating gene expression [19]. Given this, when we

identify a monomodal region for a gene, we ignore NoNuc regions

for the same gene, and when we identify bimodal regions, we

ignore both monomodal and NoNuc regions for that gene.

Distribution of Pdx1 and Foxa2 motifs around
monomodal sites identified using liver nucleosome
positions

While we were interested in the results in islets, we also

generated the same results from liver data as a negative control, to

show that the results obtained in islet data were unlikely to have

occurred by chance. To generate the liver results, we needed to

identify nucleosome predictions that overlapped with a TF peak

summit in liver. For this, we use predicted nucleosomes from liver

H3K4me1 data to classify islet transcription factor binding sites

and obtained liver ‘‘monomodal’’ sites and corresponding liver

core nucleosomes.

In each ‘‘monomodal’’ region, we determined the TF site closest

to the peak summit of the transcription factor binding region, and

considered the center distance of this motif to the center of the

central nucleosome. We considered all ‘‘monomodal’’ regions, as

well as a subset of them chosen from the regions whose central

nucleosomes had corresponding PING score in the top 50000

among all predicted nucleosomes whole genome, again using the

elbow point of score distributions of all whole-genome predicted

nucleosomes (figure 7 in ‘figure S1’).
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