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The viscosity-radius relationship for 
concentrated polymer solutions
Dave E. Dunstan

A key assumption of polymer physics is that the random chain polymers extend in flow. Recent 
experimental evidence has shown that polymer chains compress in Couette flow in a manner counter to 
expectation. Here, scaling arguments and experimental evidence from the literature are used to 
determine the relationship between the viscosity, η, and chain radius of gyration, RG. The viscosity-
radius of gyration relationship is found to be ( )η ~ RG

m γ̇  where m(γ̇) is the power law exponent of the 
viscosity-temperature relationship that depends on the specific polymer-solvent system and the shear 
rate, γ̇. The viscosity is shown to be a power law function of the radius, and to decrease with decreasing 
radius under conditions where the chains are ideal random walks in concentrated solution. 
Furthermore, this relationship is consistent with both the widely observed viscosity-temperature and 
viscosity-shear rate behavior observed in polymer rheology. The assumption of extension is not 
consistent with these observations as it would require that the chains increase in size with increasing 
temperature. Shear thinning is thus a result of a decreasing radius with increasing shear rate as 

/ ( )R γ̇~G
n m γ̇−  where n is the power law exponent. Furthermore, the thermal expansion coefficients 

determine the variation in the power law exponents that are measured for different polymer systems. 
Typical values of n enable the measured reduction in coils size behavior to be fitted. Furthermore, the 
notion that polymer chains extend to reduce the viscosity implies that an increasing chain size results in 
a reduced viscosity is addressed. This assumption would require that the viscosity increases with 
reducing coil radius which is simply unphysical.

Polymers are of interest for reasons spanning wide practical application, through to the elegant theories of pol-
ymer dynamics introduced by Kuhn, Flory and de Gennes1–3. The theories show universal applicability through 
scaling arguments, suggesting a reductionist truth that is the aspiration of many other branches of physics3. A 
key focus of the area has been to understand the molecular basis of rubber elasticity and polymer rheology4–6. 
Considerable effort has been devoted to developing models to predict the visco-elastic flow behavior of polymer 
solutions and melts7,8. A general behavior of the type shown in Fig. 1 is observed for these systems where the 
viscosity is seen to decrease with increasing shear rate in classical visco-elastic behavior4,6,9,10. Prediction of this 
behavior has been undertaken using a number of molecularly based models with varying degrees of success. A 
simple empirical model, the Power Law model, has been used to model the shear thinning behavior with a power 
law exponent4,9,11. Typical power law exponents have been observed for polymer solutions that are in the range of 
0.5–1.0 suggesting a key universal physics underlies this behavior4,9,12.

A key assumption used in the models of polymer dynamics and rheology is that the chains extend in the flow 
to reduce the viscosity and imbue the solution with elasticity10. Here we present a brief history of the develop-
ments in polymer experiments and modelling in order to explain why the assumption that the chains extend in 
flow has become universally accepted and that there is little evidence for extension in simple Couette flow other 
than that observed for DNA and indeed recent experimental evidence shows chain contraction in flow for ran-
dom chain polymers13–25.

Here we review the chronology of the developments in experimental and theoretical developments in polymer 
physics. Gough (1805) and later Joule (1859) were the first to report on the contraction of rubber materials with 
increasing temperature26,27. Considerably later in 1920, Staudinger reported on the connected, polymeric, nature 
of rubber like materials that leads to their rather fascinating properties28,29. Kuhn was the first to postulate the 
dumbbell model of polymers in flow in his seminal 1933 Kolloid Z. paper1. He was the first to recognize that the 
macroscopic properties could be predicted from understanding single chain behavour1. The dumbbell model 
first posed by Kuhn, in which the polymers behave as two beads on an elastic (Hookean) spring, is still used 
currently in modified forms5. The beads experience a Stokes drag that causes extension and compression as the 
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dumbbell precesses in Jeffery orbits30. In a later paper, Kuhn developed a statistical mechanical model to predict 
the Hookean force law for the chains that acts as a restoring force to counter the hydrodynamic forces31. Kuhn 
also predicted that the dumbbell could either extend or compress in flow as it rotates around the vorticity axis.

Several papers by Mooney32,33, James and Guth34 and Flory35,36 then developed the Rubber Theory from statis-
tical mechanics. The rubber theory accounts for both compression and extension and predicts the modulus over 
a reasonable range of strains37.

In 1942 Kuhn and Grun published the first paper to assume that the chains extend in simple flow. They calcu-
lated the relationship between the reduced shear rate and the end-to-end vector of the chains38. In this paper the 
predicted reduced extension is plotted versus the reduced shear rate to show a limiting extension at high shear 
rates.

The 1950’s then saw two key papers published by Rouse and Zimm39,40. The paper by Rouse presents the so 
called free draining model for the polymer coils where both hydrodynamic interactions and excluded volume are 
neglected. Zimm included hydrodynamic interactions for the theta condition (no excluded volume) in his 1956 
paper40. Following the work of Rouse and Zimm, Peterlin published two papers that modelled the chains as an 
“ellipsoid whose axial ratio increases with shear”41–44.

Flory published two seminal texts in 1953 & 1969 that examined polymers from a largely theoretical perspec-
tive and established the idea of excluded volume effects and “ideal chains” at high concentrations2,45.

The French physicists then followed by publishing a number of key papers that culminated in De Gennes’ 
book Scaling Concepts in Polymer Physics in 1978 that introduced the reptation concept and further developed the 
scaling arguments first postulated by Flory3. Shortly after de Gennes book, Doi and Edwards authored The Theory 
of Polymer Dynamics in 198646. The connection to the rheological behaviour was further advanced by Ferry in 
198011 and then Bird et al. in their classic two volume text of 19875,6. An elegant and comprehensive review by 
Larson10 from 2005 outlines the development of the field in a chronological manner.

The experimental developments in the field, as reviewed below, have generally been coincident with advances 
in experimental methods that have enabled measurement of the key the parameters. Two of these are the chain 
deformation and orientation in flow. The advent of lasers and the development of light scattering with high reso-
lution enabled the first light scattering measurements in flow to be undertaken. The pioneering work of Cottrell, 
Merrill and Smith in 1969 was the first measurement of light scattering from polymer solutions in shear47. More 
recently, Link and Springer 199348 and then Lee, Solomon49 and Muller 1997 furthered this work50. Generally, 
the interpreted deformation is much less than the models predict. Much of the observed behaviour can be inter-
preted as orientation of the random ensemble of prolate chains in the flow field49,51,52. The orientation of the pro-
late chains, in Jeffery orbits, increases the scattering cross section in the direction perpendicular to the vorticity 
direction resulting in the appearance of extension. The quiescent solution is isotropic and becomes anisotropic 
through flow induced orientation of the prolate chains. Rheo-optic measurements on dilute solutions of poly-
diacetylenes in Couette flow show increased projection of the chains in the flow direction, with no deformation 
of the backbone49.

A significant body of work has been generated measuring the flow induced birefringence of polymer solutions. 
This field is rather neatly summarised by Meissner and Janeschitz-Kriegl53. Much of the work has focused on 
measuring the stress optic coefficients and validating the so called stress-optic law. It should also be noted that the 
stress optic coefficients are found to be both positive and negative for differing polymer systems, suggesting that 
the flow induced behaviour is very different for the different systems measured53. The variation in the stress-optic 
coefficients arises from the inherent refractive index difference between the backbone and the solvent, the flow 
induced orientation of the prolate chains and the spatial orientation of the chains46.

Figure 1.  The viscosity versus shear rate behavior for a range of temperature for low density polyethylene melts 
at a range of temperatures. Original data source, J. Meissner, Kunststoffe, 61, 576–582, 1971. The data is replotted 
from Dynamics of Polymeric Liquids I: Fluid Mechanics by Bird et al.6.
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More recently a number of very elegant works on fluorescently labelled DNA in flow have been undertaken. 
Two of the key papers are by Smith, Babcock and Chu, Science 199916 and Le Duc, Haber, Bao and Wirtz, Nature 
199920. In both works the DNA was visualised using fluorescence microscopy with sliding plates to generate 
Couette flow and maintain the DNA molecules in the field of view. The problem with these works is that the DNA 
is claimed to be representative of random chain polymers in solution. The images show that this is not the case. 
The DNA images are not of a random chain of 440 segments whose conformation is determined by entropy16,20. 
The observed unfolding shows a blob like structure that unfolds in a manner that does not appear to be a random 
coil like structure. Furthermore, the resolution of the microscopy method determines that compression is difficult 
to observe16. Larson has written a comprehensive review of the rheology of dilute solutions of flexible polymers 
focusing on the progress and problems10. A considerable component of the review is focused on simulations 
and modelling the data obtained from DNA. A key conclusion is that the measured deformation is less than 
expected. Given the importance of understanding polymer deformation in flow, the body of experimental data is 
not perhaps as comprehensive as would be expected with considerable weight being given to DNA. It should be 
noted that DNA does not show the same rheological behaviour as that observed for typical random coil polymers. 
Typical random coil polymers have conformation that is determined by their entropy, show decreasing viscosity 
with increasing shear rate and increasing temperature54,55. Calf thymus DNA shows decreasing viscosity with 
shear rate and an increasing viscosity with temperature55. A recent study by Bravo-Anaya et al. has shown that 
the rheological behaviour is a result of interacting aggregates of the DNA molecules in flow54. The interaction 
between segments of the DNA molecules is suggested to be driven by H-bonding.

Rheo-optical measurements on synthetic polymers have shown chain orientation in dilute solution and com-
pression at concentrations above critical overlap in the semi-dilute region23,49,56. The semi-dilute region is defined 
as where the chain interact with excluded volume effects present. The concentrated region is such that the chains 
behave as ideal random walks and their size scales as the square root of the molecular weight. Compression in 
flow has been observed for semi-dilute polymers in Couette flow21,23,57. These experimental results have prompted 
a revision of the idea of extension being a universal assumption for polymers in simple planar flow. An alterna-
tive approach that assumes compression, allows the measured radius-shear rate behaviour to be predicted, and 
the power law behaviour observed for polymers in flow to be modelled25. Furthermore, using a force balance 
argument that predicts the shear thinning rheological behaviour, also enables the viscosity-radius relationship 
to be predicted. The predicted power law behaviour of the viscosity-radius is in close agreement with the exper-
imentally observed behaviour25. Interestingly, this shows that the viscosity decreases as the radius decreases in 
a manner that is physically consistent with the observed behaviour for concentrated random chain polymers25.

Since Kuhn’s original paper, the possibility of compression in Couette flow has not been considered and exten-
sion is assumed in the field3–6,46,58. The compression component has been ignored for chains in flow, however, 
recent experimental evidence has shown chain compression in Couette flow at semi-dilute concentrations22,23,25.

Here, scaling arguments and experimental evidence are used to show that chains are predicted to compress 
in flow, and that variations in the observed power law exponents for shear thinning can be explained by the 
non-ideality embodied in the thermal compressibility of differing polymers59,60. Here the term non-ideality is 
used to indicate that the chains deviate from random objects and have a degree of chemical interaction resulting 
in enthalpic effects as observed in their contraction with increasing temperature.

Theory
Adam and Delsanti first used scaling arguments to derive the viscosity-temperature relationship for semi-dilute 
polymer solutions61:

η
ν

ν γ− −
− −

~ ~T T (1)m9(2 3 )
3 1 ( )

Here, an exponent of m = −9 is obtained using the scaling exponent ν = ½ as is found for the concentrated poly-
mers in good solvents3,45. Equation 1 is assumed valid for concentrated polymer solutions as the derivation by 
Adam and Delsanti is of a general nature and not restricted to the semi-dilute region providing C > C*. 
Furthermore, the viscosity of concentrated solutions is generally observed to decreases with increasing tempera-
ture (see Fig. 1) with a power law behavior that is consistent with the T−m behavior. However, the power law of 
−16 obtained for the low shear data is not predicted by Equation 1. Cheng et al. and Daoud et al. have shown that 
the scaling exponent varies from 3/5 to 1/2 in the semi-dilute regime59,62,63. Here the value of ν = ½ is used as the 
accepted value for chains in concentrated solution where excluded volume effects may be ignored. The justifica-
tion for this assumption is that in concentrated solutions the chains are interacting and the excluded volume 
interactions become isotropic such that they can effectively be ignored. Experimental data obtained for a number 
of polymer systems all show a decreasing viscosity with increasing temperature with a range of power law expo-
nents being measured. The range of values vary between −1 and −166,11,64–66. As such we have used the general 
equation with a power law of − m(γ


). The range of m values determined experimentally is thought to be due to 

variation in the interchain frictional interactions. The important fact is that the generally observed behavior is for 
a power law of decreasing viscosity with increasing temperature. Bird et al. discuss the time temperature super-
position in detail in the Dynamics of Polymeric Liquids and state that “ … varying the temperature at a fixed 
shear rate is equivalent to varying shear rate at a fixed temperature”6 (p142).

The region where the scaling law applies is also important to consider the range of validity of the interpreta-
tion. Equation 1 has no shear rate dependence, however analysis of the data of Fig. 1 shows that the power law 
exponents of the viscosity-temperature relationship depend on the shear rate. For the data presented, m varies 
from −16 to −4 with increasing shear rate (See Fig. 2). The physical reason for m(γ


)is not immediately obvious. 

The work of Adam and Delsanti is based on the assumption that the segment lengths decrease with increasing 
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temperature61. We postulate that the frictional interaction between the chains is of chemical origin and therefore 
changes as a function of temperature and is then also a function of shear rate.

Assuming that the chains are ideal, and that the entropic force determines the chain response to an external 
force, yields the usual Hookean force law:

=f k Tr R3 / (2)s B 0
2

where fs is the entropic force, kB Boltzmann’s constant, T the absolute temperature, r the average end to end dis-
tance of the chain, and R0 the end-to-end distance of the unperturbed chain. Here, it is noted that the mean 
square of end-to-end distance of the chain is related to the radius of gyration such that 〈 〉 =r R6 G

2 2 where RG is 
the radius of gyration58. Debye first derived the relationship between the end-to end vector and the radius of 
gyration67. Flory presents the complete argument for random chains of large molecular weight in Statistical 
Mechanics of Chain Molecules (p5 Eq. 6)2. The end-to-end vector is the sum over all the segments. The radius of 
gyration is the root mean square distance of the collection of masses from their centre of gravity. Lagrange 
(appendix A in Flory)2 related the centre of gravity for a system of masses to the distances between their centres 
taken pairwise. Providing the number of segments is large, the relationship between the end-to-end vector and 
the radius of gyration given above is valid2.

It is assumed herein that in the scaling relationships, the end-to-end distance and the radius of gyration are 
equivalent.

Equation 2 shows that for a given force, an increase in temperature results in a decreasing end-to-end distance 
of the chain, and therefore radius. This is true for polymeric materials (rubbers) under tension, where contraction 
with increasing temperature is observed26,27,37,68–70. Remarkably, the contraction of rubber materials with temper-
ature is predicted by the theory and has been observed experimentally. This effect was a key finding of the early 
work of Gough and Joule that was at the time not explained26,27. Experimentally measured polymer radii in dilute 
solution using light scattering where the chains are not under traction have also been measured71,72. A number 
of reports have suggested that the chains in solution increase with increasing temperature, however, a number of 
these studies have observed aggregation of the chains with increasing temperature as reviewed by Xingyuan et 
al.71 and Wang et al.72 Other studies have used intrinsic viscosity measurements to show that the chains decrease 
in size with increasing temperature in solution64–66,73.

Physical measurements on polymeric materials show that the chains contract with increasing temperature, 
as predicted by the entropic models of polymer chains developed from statistical mechanics2,3,31,74,75. The book 
by Mark and Erman, Rubberlike Elasticity, gives a comprehensive review of the measurement and interpretation 
of the mechanical measurements on rubbers75. Several key papers on the measurement and interpretation are 
by Shen et al. and Anthony et al.76,77. The viscosity of concentrated polymer solutions is seen to decrease with 
increasing temperature suggesting that the chains contract with temperature6,11. Equation 2 can then be used to 
derive the temperature radius relationship that is in accord with the experimental data37,68. It is assumed that the 
form of Equation 2 is correct for a concentrated ensemble of chains. The form of the equation describing rubber 
elasticity relates the shear modulus of the material to the temperature:

=G NkT (3)

Figure 2.  logarithm of the viscosity versus logarithm of the temperature data taken from Fig. 1. Data are for the 
two shear rates of low shear (3 × 10−3 s−1) and high shear (500 s−1). The data is fitted to a power law curve with 
power laws of −16 and −4 found for the low shear and high shear data respectively. The R2 values are 0.99 in 
both cases.
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where N is the density of entanglements. The definition of the modulus indicates that a concentrated polymer will 
contract as the temperature increases, as is experimentally observed37,68,71,75. Maintaining the system under con-
stant stress while varying the temperature requires that the entangled system will show an inverse strain relation-
ship with temperature. Assuming that the entangled system will deform affinely, the strain will be proportional to 
the change in end-to-end distance.

In steady state flow the compressive and entropic forces on the chain will be equal and constant so that it is 
assumed Equation 2 is valid as the chains in flow are under traction. Assuming that the force is approximately 
constant in steady state flow, Equation 2 then yields the relationship:

~T r1/ (4)

And as r ~ RG it follows that;

~T R1/ (5)G

Combining (1) and (5) using the transitive property of equality yields:

η γ
~ R (6)G

m( )

Equation 6 shows that the viscosity decreases with decreasing radius of gyration when the entropic contribution 
to the chain restoring force is considered. Several approximations have been made in deriving this equation. 
Equation 5 is for a constant force and is valid at a given shear rate at steady state where the forces on the chain are 
constant. Chain contraction is usually measured at an apparent equilibrium75 and the viscosity is measured under 
steady state conditions. The chains in flow will tumble in Jeffery orbits and therefore experience an average force 
as they tumble. It is assumed that they experience an averaged and effectively constant force in steady state flow. 
The power of the radius shown in Equation 6 suggests a viscosity dependence on the volume fraction that goes as 

.γ


m( )
3

The value of m(γ

) = 9 determined using the model of Adam and Delsanti suggests that the three-body 

interactions are important. Einstein proposed a volume fraction squared dependence of the viscosity at high 
concentrations for hard spheres that has also been used for polymers58. Given that the concentration is high, the 
Batchelor expansion to higher orders of volume fraction would also be possible such that cubic and higher order 
dependence on volume fraction is not unreasonable78. The decreasing viscosity observed in typical shear thinning 
then results from a decreasing coil size in solution5,11. Furthermore, by assuming that the polymeric solutions 
show power law behaviour4,9:

η γ−


~ (7)n

where γ

 is the shear rate. Experimentally measured values for n typically lie between 0.5 and 19,12.

Combining (6) and (7) yields:

γ γ−


~R (8)G
n m/ ( )

Equation 8 determines that as the shear rate increases, the radius decreases as the observed shear thinning occurs. 
This has been experimentally observed as is shown in Fig. 3 below. The data of Fig. 3 yields measured power 
law behavior for the decrease in radius with shear rate. For the two systems measured, the exponents are 0.07 
(PMMA) and 0.0042 (BCMU) yielding power law exponents of n = 0.63 and 0.038 respectively. The power law 
exponent, n = 0.63 for PMMA is well within the range of values found for these polymer systems. Remarkably, 
the Power Law index for PMMA is found to be 0.6279. All measurements were performed in laminar flow as con-
firmed by direct visual observation of 0.3 μm tracer particles in the polymer solutions up to 2500 s−1 23. Secondary 
flows or Taylor vortices are predicted to occur at shear rates of ~1.3 × 104 s−1 with water in the Couette cell with 
the given radius and gap ratio80,81. Given the significantly higher viscosities of the polymer solutions, the onset of 
secondary flows is expected to occur at significantly higher shear rates than those used in the reported studies.

A considerable body of work exists in the literature relating to the thermo-elasticity of polymeric materi-
als37,59,69,74,75. Variations in the value of n, the power law exponent, is determined by the thermal expansion coef-
ficient of the materials, that is attributed to the energetic interactions and therefore deviations from ideality and 
the universal physics described above.

Mark, Price et al. and Flory present a thermodynamic argument relating the equilibrium force required to 
maintain a rubber strip at constant elongation as2,45,69,75:

=



∂
∂



 −





∂
∂



f U

L
T S

L (9)T V T V, ,

where ∂ ∂U L is/ the derivative of the internal energy of the chains with respect to length and ∂ ∂S L/  is the deriv-
ative of the entropy. The two terms in equation [9] are then the energetic and entropic contributions to the total 
force. The total force is then simply written as:

= +f f f (10)e s

where fe and fs are the energetic and entropic contributions to the restoring force.
It can be shown for Gaussian chains that69,82:
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=
< >f

f
T d ln R

dT (11)
e 0

2

where the thermal expansion coefficient κ is defined;

κ = dlnr dT/ (12)2

A number of studies have reported experimental values of κ for a range of different polymer and solvent systems. 
The recent literature is summarized by Graessley and Fetters59,60. The κ values reported for the different polymer 
systems can be either positive or negative indicating that the enthalpic intramolecular thermal expansion deviates 
from Equation 5 both positively and negatively75.

Integrating (12) and ignoring the constant terms yields:

κ~lnR T (13)G
2

Combining equations (1) and (13) yields:

η γ κ−
 ~ lnR (14)m

G
( ) 2/

Equation (13) shows that the energy contribution to the change in chain size with viscosity depends on the sign 
of κ. The energy contribution adds to the entropic contribution so that:

η +












γ

κ

γ





~ R
lnR
1

(15)
G
m

G

m

( )
2

( )

where the sign of κ determines whether the second term is added or subtracted from the first term in equation 
(15).

Using the first term of the Taylor expansion yields:

η κ
+




 −






γ
γ





~ R
R2( 1) (16)

G
m

G

m
( )

( )

Equation 16 shows that the sign of the energy contribution to the thermal expansion coefficient determines 
the rate at which the viscosity changes with radius.

This equation then demonstrates in physical terms why the values of n vary for different polymers. The val-
ues of κ vary for different polymers in both sign and magnitude, and this variation yields differing power law 
exponents (n) and behavior59,60. There has been some discussion in the literature as to the meaning of κ, however 

Figure 3.  Measured end-to-end distance plotted as log r versus log shear rate. Data for 800kD 4-BCMU23 has 
the fitted equation: log r = −0.0046 log(γ


) + 1.7 with the coefficient of determination: R2 = 0.23. Data for 49kD 

FRET tagged PMMA in Couette flow shows the fitted equation: log r = −0.072 log(γ


) + 0.69 with R2 = 0.88. 
The lines of best fit yield an inverse 0.07 +/− 0.02 power of the radius with shear rate for the PMMA and 
0.0042 +/− 0.002 for the 4-BCMU. The error bars are approximately the size of the symbols. The error 
associated with each point is: ~5% in the shear rate due to the radius/gap ratio of the Couette cell. For the 
4-BCMU the un-sheared size of the chain is 49 +/− 1 nm and for PMMA the size is 4 +/− 0.1 nm. Taken from 
ref.25, Fig. 1.
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it is assumed to be intramolecular in nature and a result of the conformational energies of the network chains. 
Essentially it is the ability of the chemical bonds in the chain to absorb energy. Thus, it is independent of the con-
centration or swelling of the network, the polymer molecular weight, or degree of cross linking74,75. It is a measure 
of the degree of non-ideality of the chains and as shown above, has implications for the power law behavior of the 
viscosity9,12.

The model presented here is consistent with experimental observations of chain contraction with increas-
ing temperature and the viscosity of semi-dilute polymer solutions decreasing with increasing temperature and 
increasing (Couette) shear rate22,23,56. Furthermore, in extensional strain where polymer extension has been meas-
ured, the extensional viscosity increases6,11. While the measured extensional viscosity of concentrated polymer 
solutions are observed to increase with increasing extensional strain rate, there is currently no consensus on 
the power law behavior. This is due to the apparent lack of reliability of the data for the instruments used, how-
ever, the general observation is that the extensional viscosity increases with increasing extensional strain rate83. 
However, the extensional viscosity measurements suggest that the chains are increasing in size in extensional 
flow. Extension of chains in extensional flow has been measured using neutron scattering84–86. Equation 6 suggests 
that the measured increasing extensional viscosity with increasing strain rate is due to an increasing chain size 
through extension87. Given the observed behavior, both equations 7 and 8 may be written as having positive pow-
ers of the shear rate. In purely extensional flows, the chains are then predicted to extend, while in Couette flow 
the chains contract. In Couette flow the tumbling of the chains averages the hydrodynamic forces on the chain to 
result in an overall compressive force.

The equations derived from scaling arguments describe the temperature dependence of the chain size and vis-
cosity. The extension of DNA in flow may also be rationalized where the temperature dependence of the viscosity 
is the opposite of that observed for typical random chain polymers. As such, the behavior of DNA may not be 
representative of “polymers” as is generally claimed16,88. Nonetheless, the increasing viscosity with temperature 
found for DNA is consistent with the model developed herein.

Conclusions
Scaling arguments, developed previously, are used to determine the dependence of the viscosity, η, on the radius 
RG for polymer chains in concentrated solutions as; η γ

~ RG
m( ) where γ


m( ) is the observed power law exponent of 

the viscosity-temperature behaviour. The relationship derived is consistent with recent experimental observations 
and is also physically consistent with the shear thinning and temperature dependence observed for typical poly-
mer solutions and melts. Shear thinning is thus a result of a decreasing radius with increasing shear rate as 

γ γ−


~RG
n m/ ( ) where n is the power law exponent. The thermal expansion coefficient determines the variation 

observed in the shear thinning power law exponents for different polymer systems. Recent experimental evidence 
on DNA extension in flow is also consistent with the model developed where the viscosity of the DNA solutions 
increases with temperature in a manner that is not typical of random chain polymers. This suggests that DNA is 
not a universal model of random chain polymers as purported in the literature.
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