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Abstract: There have been magnificent advancements in the understanding of molecular mechanisms
of chronic diseases over the past several years, but these diseases continue to be a considerable
cause of death worldwide. Most of the approved medications available for the prevention and
treatment of these diseases target only a single gene/protein/pathway and are known to cause severe
side effects and are less effective than they are anticipated. Consequently, the development of finer
therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous
applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained
from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive
pharmacological properties. OA modulates the important signaling pathways, including NF-κB,
MAPK, ERK1/2, Wnt/β-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-β,
MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal
role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on
the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which
makes it an engrossing compound for research. Numerous preclinical and clinical studies also
displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation,
neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses
on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic
molecular mechanisms of its action.

Keywords: oroxylin A; chronic diseases; inflammation; molecular targets; pharmacokinetics

1. Introduction

Chronic disease or non-communicable disease is an umbrella term that is used to de-
fine a large number of ailments, including cancer, cardiovascular diseases (CVDs), chronic
respiratory diseases, and diabetes [1,2]. Despite remarkable improvements in the preven-
tion and therapy of multigenic chronic diseases, their prevalence among patients has not
reduced [1]. Lack of physical activity, tobacco and alcohol intake, poor or unhealthy diet,
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etc., are the foremost risk factors that catalyze the development and progression of these
ailments [2,3]. Most of these diseases are complex and occur through alterations in multiple
signaling pathways; hence, targeting a single pathway could not necessarily control disease
development [4–7]. Therefore, drug combinations addressing many molecular abnormali-
ties or disease hallmarks may be used to treat these diseases [8–10]. However, these drug
combinations are known to induce severe adverse side effects in patients and affect their
quality of life.

Consequently, there exists an increasing need for the development of safer, effica-
cious, multi-targeted, and affordable therapeutic regimens to supersede the extant toxic
and less efficient treatment strategies [11–13]. It is well acknowledged that medicinal
plants have immense potential for prophylaxis of multiple chronic diseases, including can-
cer [14–22]. A mounting number of preclinical and clinical evidence suggest that natural
compounds extracted from various plants are plausible candidates against a multitude of
life-threatening chronic diseases and different formulations can be used to increase their
bioavailabilities [2,23–35]. OA is one such compound, which has gathered attention among
scientific communities due to its remarkable multi-targeted properties in the prophylaxis
and regimen of various non-communicable diseases. OA is an O-methylated flavone found
mainly in Oroxylum indicum Scutellaria baicalensis and S. lateriflora. [36–38].

O. indicum has been an inevitable component in Asian ethnomedicinal systems since
time immemorial for the treatment of various disorders, which include arthritic and
rheumatic problems, diabetes, diarrhea, dysentery, gastric ulcers, jaundice, respiratory
diseases, and tumors [39,40]. The tonic of this plant is used against anorexia, asthma,
bronchitis, cough, dysentery, dyspepsia, fever, gout, leucoderma, neuralgia, rheumatoid
arthritis, vomiting, and wounds. The root bark is used for cancer, stomatitis, and tuberculo-
sis [40–42]. O. indicum is an important constituent in various Ayurvedic preparations, such
as Narayana Taila, Dasamularistha, Dhanawantara Ghrita, Syonaka putapaka, Dantyad-
yarista, Syonaka sidda ghrta, Amartarista, Brahma Rasayana, Brhatpancamulyadi kvatha,
and Chyavanaprasa [43–45].

Similarly, S. baicalensis and S. lateriflora have immense therapeutic potential and had
been in medicinal use since ancient times. The genus Scutellaria is widely employed in
Traditional Chinese Medicine (TCM) for treating an array of diseases, including diarrhea,
dysentery, hepatitis, high blood pressure, and vomiting [46]. S. lateriflora possesses anxi-
olytic and anti-convulsant potential and was used as a nervine tonic traditionally [47,48].
The herb also has anti-oxidative and DNA-protecting effects [49]. The major flavonoids
seen in the above plants, namely OA, baicalein, chrysin, and wogonin, have potential
alleviatory effects against several life-threatening chronic diseases [50,51].

2. Isolation and Purification of OA

OA is mainly found in the root-bark O. indicum, S. baicalensis (radix), S. lateriflora,
Anchietea pyrifolia, and Aster himalaicus, which are used extensively in Ayurveda and
TCM [40]. The crude extract of OA was first isolated from O. indicum using alcohol
percolation and distillation [52]. Later, OA was isolated by acetone extraction followed by
crystallization, which gave rise to the yield of only 0.86. More recently, Li and Chen isolated
and purified OA from S. radix using ethyl ether and hexane extraction and subsequently
performed high speed counter current chromatography and high-performance liquid
chromatography (HPLC) to obtain 93.2% purity [37]. This is currently the most widely used
method for the isolation and purification of OA. Moreover, the isolation of OA of purity
of more than 99% was shown to be achievable with the use of modern chromatography
technologies, such as HPLC, thin-layer high performance liquid chromatography, and silica
gel chromatography [53–55].

3. Structural Analysis

Structurally, OA is a 5, 7-dihydroxy-6-methoxy-2-phenylchromen-4-one and its molec-
ular weight is about 284.26 g/mol. It is a monomethoxy and dihydroxy flavone in which
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two -OH groups are positioned at carbon-5 and carbon-7, and one methoxy group is at
carbon-6 (Figure 1) (PubChem CID: 5320315). The two metabolites of OA are oroxylin A 7-
O-β-D-glucuronide or oroxyloside (OAG) and oroxylin A sodium sulfonate (OS) (Figure 1).
OAG (PubChem CID 14655552) is a monomethoxy or monohydroxy flavone derived
from OA. A plethora of studies revealed the anti-bacterial, anti-viral, anti-oxidant, anti-
inflammatory, anti-invasive, neuroprotective, hepatoprotective, and pro-apoptotic prop-
erties of OA, which buttresses its promising potential in the treatment of diseases [56–62].
Therefore, the current study recapitulates the prospects of OA for the prevention and
therapy of multiple chronic diseases.

Figure 1. Role of oroxylin A and its metabolites in treating different chronic diseases.

4. Molecular Targets of OA

It has been well established that natural products modulate multiple signaling path-
ways involved in the development of chronic diseases, which leads to their efficacy in
preclinical and clinical studies [63–67]. Accumulating evidence has shown that the excep-
tional potential of OA in the prevention and treatment of severe chronic diseases, such as
CVDs, diabetes, neurological diseases, inflammatory diseases, cancer, etc., by the modula-
tion of multiple pathways [40,68]. Copious pre-clinical studies explicated the tremendous
potential of OA as an anti-inflammatory agent. For instance, OA inhibited the expression
of several pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and
interleukins (IL-1β, IL-4, IL-6, IL-13) [69,70]. Apart from these, OA was also shown to re-
duce the expression of enzymes, including cyclooxygenase 2 (cox-2), inducible nitric oxide
synthase (iNOS), glycogen synthase kinase 3-β (GSK-β), lactate dehydrogenase (LDH),



Biomolecules 2022, 12, 1185 4 of 28

pyruvate kinases isozymes (PKM1/PKM2), etc., which envisages its anti-inflammatory
properties [71,72].

Further, the immense antioxidant properties of OA are also well documented. For
example, Wang and colleagues demonstrated that OA and OAG prevented FeSO4-induced
lipid peroxidation in liver homogenate and these compounds have substantial cytoprotec-
tive effects against H2O2-induced oxidative damage in human umbilical vein endothelial
cells [73]. In another study, PC12 cells pre-treated with OA were exposed to H2O2, which
resulted in a notable depletion in the intracellular calcium and ROS levels and an increase in
the mRNA level of Mn/SOD. Hence, it could be inferred that OA pre-treatment hampered
H2O2-induced oxidative stress [74]. Apparently, OA regulates the expression of multiple
proteins, such as transforming growth factor beta (TGF-β), nuclear factor E2-related factor
2 (Nrf2), mitofusin 2 (Mfn2), angiopoietin 2 (Ang-2), vascular endothelial growth factor
(VEGF), glutathione (GSH), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax),
caspase -3, -8 and -9, sirtuin 3 (SIRT3), alpha-smooth muscle actin (α-SMA), etc., [75–79].
The proteomic screening of cancer cells treated with OA has revealed that it downregu-
lates several factors, such as mitochondrial uncoupling protein 2 (UCP2), MMP-2, MMP-9,
PKM2, superoxide dismutase 2 (SOD2), hypoxia inducible factor 1 alpha (HIF-1α), and
PROX1 [62,80,81].

Subsequently, OA could downregulate different signaling pathways, including the
nuclear factor kappa B (NF-κB) pathway, the signal transducer, and the activator of tran-
scription 3 (STAT3) pathway; Wnt/β-catenin pathway and Notch-1 that have been im-
plicated in tumorigenesis [82–91]. Likewise, OA also regulates other pathways, such as
endoplasmic reticulum (ER) stress-mediated pathway, phosphatase, and tensin homolog
deleted on the chromosome 10/phosphatidylinositol 3-kinase/a serine threonine-protein
kinase (PTEN/PI3K/Akt) pathway, the extracellular signal-regulated kinase (ERK 1/2)
pathway, etc., [62,83,92–96].

5. OA for Cancer

Cancer is one of the leading causes of illness and fatalities with about 19.3 million
new cases being diagnosed annually worldwide and resulting in approximately 10 million
deaths [97]. Several innovative therapeutics, including targeted therapy, therapeutic repur-
posing, oncolytic virotherapy, immunotherapy, etc., have been employed in the treatment
of this disease; however, their long-term uses are not devoid of life-threatening side ef-
fects [98–108]. Recently, a very large body of literature has emerged on the promising
anti-cancer effects of the natural compound OA. The therapeutic effects of OA on various
cancers (both in vitro and in vivo studies) are listed in Table 1. Breast cancer is the foremost
cause of mortalities due to cancer among women with over 2 million cases diagnosed
each year worldwide [109–113]. Many studies have augmented the potential of OA as
a candidate for breast cancer treatment. For instance, a study found that OA inhibits
the proliferation of human breast cancer cells and reduced the tumor mass and volume
in breast cancer xenograft models, indicating that it has anti-cancer properties. Further,
under hypoxia, OA lowered cellular oxidative stress via upregulating SIRT3, which leads to
HIF-α destabilization and increased prolyl hydroxylase activity. Furthermore, OA elevated
SOD2 gene expression and activity through SIRT3-mediated de-acetylation [76]. Another
study found that OA suppressed cell proliferation, cell cycle progression, migration, and
epithelial-mesenchymal transition (EMT) in breast cancer cells by downregulating the
NF-κB pathway [114].

The incidence and progression of colon cancer tend to be deleterious to human health
and well-being [115,116]. The timely diagnosis of cancer development and metastasis is
very important for appropriate therapy and prognosis [117]. Accumulating number of
studies has proved the promising effects of OA against colon cancer. For example, in a
study it was found that OA elevated the expression of caspases 3 and 9, which are crucial
mediators of apoptosis along with inhibition of the regulator of apoptosis, Bcl-2. In addition,
the ROS levels and the Nrf2 expression were increased by OA [56]. In another study, OA
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and 5-fluorouracil (5-FU) synergistically resulted in the suppression of Bcl-2 and activation
of p53, Bax, and procaspase-3 in human colon cancer cells, which showed an antitumor
effect of OA in combination with 5-FU [118]. Additionally, in vivo studies in colon cancer
xenograft suggested that a high-fat diet accelerated tumor development in the colon and
OA decreased intracellular fatty acid levels, and hence caused fatty acid oxidation by
inactivating HIF-1α. Therefore, OA caused the reprogramming of fatty acid metabolism of
HCT 116 cells and can be a promising agent in the prevention of colon cancer [82]. OA had
shown intriguing antitumor effects against hepatocellular carcinoma cells. For instance, a
study revealed that OA in combination with 5-FU showed a higher inhibitory rate in H22
murine solid tumors than the 5-FU alone. OA also decreased the expression of cox-2, Bcl-2,
and procaspase-3 and increased the expression of p53 [119]. In another study, OA showed
inhibitory effects on TGF-β1/SMAD-induced EMT in HCC cells and elevated non-steroidal
anti-inflammatory drug activated gene-1 (NAG1) [120].

Gliomas are the most common primary tumors of the central nervous system with
characteristic genetic and epigenetic profiles [121,122]. Despite the advances in therapy,
tumor stem cells (TSCs) develop chemo- and radio-resistance, resulting in disease re-
currence [123–125]. However, a growing body of research suggests that OA could be a
potential therapeutic agent for glioma. For example, OA-reduced Notch-1 and myeloid
cell leukemia 1 expression (Mcl-1) and inhibited Akt and ERK activation in these cells.
Moreover, this compound increased the expression of Beclin 1, a crucial autophagy-related
protein, resulting in autophagy [126]. In another study, OA was shown to suppress IP3R1
Akt/β-catenin pathway remarkably, which resulted in sensitizing glioma cells to temozolo-
mide (TMZ) [94].

Hematological malignancies, such as leukemia, lymphoma, and multiple myeloma
are among the life-threatening cancers worldwide [127,128]. However, OA appears to
be a likely agent for the treatment of these malignancies. For instance, OA sensitized
acute myeloid leukemia (AML) cells to TNF-α [83]. Moreover, OA inhibited the PI3K/Akt
pathway and tRXRα in NB4 and HL-60 cells [83]. Similarly, OA improved CD11b/CD14 ex-
pression of AML/ETO- positive cells but downregulated histone de-acetylase 1 (HDAC-1)
protein levels in t (8i21)-positive AML cells. Further, OA enhanced C/EBPα and p21
expression. Taken together, this study proved that OA as a promising candidate for
AML1/ETO-positive AML differentiation therapy [129]. In addition, studies have proved
the efficacy of OA against chronic myeloid leukemia (CML). For example, Li and his co-
workers (2017) proved that OA could reverse imatinib resistance and induce apoptosis in
CML via suppressing the CXCL12/CXCR7 pathway and the expression of p-ERK [130].

Lung cancer is a major reason of death in both men and women globally [131–133].
Many studies explored the potential of OA in lung cancer therapeutics. For example,
OA suppressed regulatory T-cells (Tregs) generation in lung cancer cells by inhibiting the
secretion of TGF-β1 and downregulating NF-κB signaling in H460 cells [134]. Another
study revealed that OA in combination with cisplatin reversed hypoxia-induced cisplatin
resistance in lung cancer cell lines [135].

Esophageal squamous cell carcinoma (ESCC) is estimated to be the sixth primary
cause of cancer deaths globally with a high rate of fatality [97]. Intriguingly, several studies
have reported that OA could enhance the susceptibility of ESCC cells to X-ray radiation and
hence OA could be an effective radiosensitizer [136]. Besides, OA has shown promising
effects against skin cancer progression. In a recent study, OA was shown to decrease the
inflammatory factors and hyperplasia via the suppression of NF-κB signaling and SHC SH2
domain-binding protein 1 (SHCBP1) in skin cancer in vitro and in vivo models [137]. In
addition, fruitful results have been obtained from studies using OA against cervical cancer,
which is one of the major causes of cancer deaths in women around the world. For instance,
in a study, OA induced apoptosis of cervical tumor cells and suppressed Bcl-2 thereby
decreasing tumorigenesis [75]. Further, another study investigated the effects of OA against
Kaposi’s sarcoma and found that OA inhibited the invasion and neovascularization of
lymphatic phenotype endothelial cell line generated by the infection of Kaposi’s sarcoma-
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associated herpes virus (KSHV vIL-6) [80]. These studies collectively endorse the anti-
cancer properties of OA.

6. OA for Cardiovascular Diseases (CVDs)

CVDs such as acute coronary artery syndrome, atherosclerosis, cardiac arrest and
arrythmias are a major health concern worldwide [138–140]. Hence, the development of
intervention strategies with low cost and high efficacy is of paramount importance. OA
has been reported to have prolific effects on various chronic cardiac ailments (Table 1).
Doxorubicin (DOX) is a quinone-bearing anthracycline used to treat various hematologi-
cal malignancies, but its use has deleterious effects on the heart resulting in a decreased
number of cardiomyocytes and congestive heart failure, limiting DOX’s therapeutic ap-
plication [141,142]. Fortuitously, OA was shown to have cardioprotective effects against
the damages caused by DOX. For instance, a study that investigated the potential cardio-
protective activity of OA revealed that it activated sirtuin 1 via the cAMP/protein kinase
A pathway. As a result, OA prevented DOX-induced reduction in cardiac function, heart
weight loss, and myocardial apoptosis and prevented heart injury [143].

7. Endotoxemia

Metabolic endotoxemia is caused by an increased level of plasma lipopolysaccharide
(LPS), which ultimately results in metabolic disorders [144]. Metabolic endotoxemia also
causes low-grade inflammation, which ultimately leads to chronic diseases, such as non-
alcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), chronic kidney
disorders, and atherosclerosis [144–149]. Interestingly, OA treatment was shown to ele-
vate coronary flow and cardiac function in LPS-induced endotoxemia mice. Therefore,
it can be concluded that OA is a promising candidate for the treatment of myocardial
dysfunction [55].

8. Hind Limb Ischemia (HLI)

Peripheral artery disease results in ischemia due to artery obstruction; hence, increas-
ing angiogenesis is a crucial mechanism for revitalizing blood flow to the limb in response
to ischemia [150–152]. OA has shown beneficial effects in angiogenesis and blood flow
recovery by elevating VEGFA, angiopoetin-2 (Ang-2), fibroblast growth factor (FGF-2),
platelet-derived growth factor (PDGF-BB) levels and promoting endothelial cell (EC) prolif-
eration and migration. Further, OA has also been shown to downregulate macrophages
and neutrophils, thereby opening new possibilities in the treatment of HLI [153].

9. OA for Chronic Liver Diseases

Liver diseases pose a major threat to health and are considered among common non-
cancerous related deaths worldwide [154,155]. The major types of chronic liver diseases
include alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver
cirrhosis, and hepatocellular carcinoma (HCC) [155]. Nowadays, natural compounds
are a valuable source of anti-fibrotic therapeutics and OA has also been proved as an
effective candidate against chronic liver diseases (Table 1) [148,156–158]. For instance,
the hepatoprotective effect of OA was investigated by administering OA to mice with
CCl4-induced liver injury [69]. The expression of IL-1Rα, which acts as acute-phase protein
(APP) in the initial events of liver regeneration, was found to be increased, but the mRNA
levels of IL-6 and TNF-α were found to decline rapidly after treatment with OA [69].
Similarly, another study was conducted to identify the effects of OA against LPS and/or
D-galactosamine-induced acute liver injury in mice. In this study, OA decreased the levels
of TNF-α, alanine amino transferase (ALT), aspartate amino transferase (AST), and hepatic
malondialdehyde content, which are markers of hepatic oxidative stress. Further, OA
downregulated NF-κB and toll-like receptor (TLR4) pathway and upregulated Nrf 2 and
heme oxygenase (HO-1), which undoubtedly proved that OA reversed the effects of acute
liver injury [159].
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9.1. Liver Fibrosis

Hepatic fibrosis or simply liver fibrosis is a chronic disease resulting from the long-term
activation of physical, biochemical, or microbial stimuli in liver cells. The disease is marked
by abnormal fibroblast accumulation and excessive extracellular matrix (ECM) deposition,
as well as visible inflammatory lesions and structural changes [154,160]. Hepatic fibrosis
ultimately results in liver cirrhosis and hepatocellular carcinoma. However, many studies
have revealed that hepatic fibrosis is a compensatory repair mechanism in chronic liver
diseases, and hepatic stellate cells (HSCs) cause the initiation and development of hepatic
fibrosis [154,161]. A lot of evidence suggests that OA has a significant impact on liver
fibrosis and associated inflammation. For instance, in a study, the anti-inflammatory effect
of OA was investigated in activated HSCs. OA downregulated PI3/Akt/mTOR pathway
by scavenging ROS. Further, OA also hinders the secretion of pro-inflammatory cytokines
and caused autophagy in activated HSCs [92]. In another study, the effect of OA was
studied in a carbon tetrachloride (CCl4)-induced liver fibrosis mice model. As a result,
OA markedly repressed alkaline phosphatase (ALP), AST, and ALT, which are liver injury
markers. Besides, OA inhibited the expression of α-1 collagen, fibronectin, α-SMA, platelet-
derived growth factor beta receptor (PDGF-βR) and TGF- β R1 in the murine model of
liver fibrosis induced by CCl4. Further, OA increased the expression of the autophagy
markers, including Atg3, Atg6, Atg7, Atg4, Atg5, Atg9, Atg12, Atg14, and microtubule-
associated proteins 1A/1B light chain 3B (LC3-B), along with Beclin 1 in both CCL4-induced
murine model and HSCs. This study also proved the potential anti-fibrosis effect of OA
and unveiled that autophagy is required for OA to eliminate hepatic fibrosis [162]. In
another study, the effect of OA on the contraction of HSCs was explored and the results
showed that OA hindered HSC contraction by blocking the aerobic glycolytic pathway.
OA was shown to considerably reduce glucose uptake and lactate production, hexokinase
2 (HKII), phosphofructokinase 1 (PFK1) and PKM2 levels and the mRNA expression of
lactate dehydrogenase-A (LDH-A) [163]. Therefore, it can be concluded that OA could be a
potential therapeutic candidate against liver fibrosis and injury.

Loss of lipid droplets (LDs) is an important feature of liver fibrosis [164]. Therefore,
the effect of OA on the disappearance of lipid droplets was examined in a study. Intrigu-
ingly, OA treatment considerably declined the expression of adipose triglyceride lipase
(ATGL), which catalyzes lipolysis. Further, the effect of OA was accelerated by ROS-specific
scavenger N-acetyl cysteine (NAC). This study portrayed the anti-fibrosis effect of OA [79].
In another study, OA treatment reduced cell proliferation and fibrogenesis but induced
caspases and endoplasmic reticulum stress (ERS)-related proteins, resulting in the cell cycle
arrest of HSCs. It was thus proved that ERS pathway activation was required for OA to
induce apoptosis in HSC. Therefore, it can be concluded that OA has a therapeutic role in
hepatic fibrosis via ERS activation [165].

9.2. Alcohol Liver Disease (ALD)

ALD is a complex disease caused by overconsumption of alcohol and is marked by
a varied range of liver disorders, including liver cirrhosis, steatosis, and HCC [166,167].
Abstaining from alcohol must be the major objective of patients suffering from ALD, so
that the condition would not progress into severe cirrhosis and ensure a longer survival
rate [168]. The inhibitory effects of OA against ALD and its associated mechanisms have
been studied profoundly. For example, in a study, OA was found to reduce the number
of SA-β-gal-positive LO2 cells and inhibited cellular senescence in ethanol-treated hepa-
tocytes via the activation of the YAP pathway and decreasing the expression of p16, p12,
and HMGA1, which are important senescence markers [169]. In a different study, this
compound suppressed pyroptosis, a type of programmed cell death seen in ALD through
the NLR inflammasome dependent-canonical caspase 1 pathway. Further, OA also im-
proved proliferator activator receptor gamma co-activator 1 alpha (PGC-1α), which is a
major mitochondrial regulator and promotes the transcription of Mfn2. Taken together,
this study proved that OA can prevent ALD via PGC-1α/Mfn2 signaling [77]. In addition,
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Jin and his co-workers (2018) elucidated the effect of OA against alcohol-induced hepatic
steatosis where human hepatocyte LO2 cells were cultured and stimulated with ethanol to
induce damage and the treatment with OA lowered lipid droplet accumulation and nuclear
translocation of HIF-1α. However, the activation of HIF-1α reduced the effect of OA on
lipid droplets accumulation in this model [170].

10. OA for Eye Diseases

Retinal ganglion cells are located in the inner retina and their axons comprise the
optic nerve, which transports visual information to the brain. Several disorders of the
visual system cause functional and/or anatomical changes in retinal ganglion cells (RGCs)
(i.e., ischemic optic neuritis, demyelinating optic neuritis, diabetic retinopathy, glau-
coma) [171–175]. Several studies have investigated the neuroprotective functions of OA and
their effect on the survival of RGCs. For instance, OA decreased the number of ED1 positive
cells at the lesion site in the rat optic nerve crush model. In addition, the expression of the
glial fibrillary acidic protein (GFAP) was also decreased substantially in the OA-treated
group. Further, OA also reduced iNOS and cox-2 expression in retinas. Taken together, this
study proved the neuroprotective effect of OA on retinal ganglion cells [176].

A common cause of non-glaucomatous optic neuropathy in middle-aged and older
persons is non-arteritic anterior ischemic optic neuropathy (NAION), which causes irre-
versible vision loss [177,178]. In a very recent study, OA was found to be effective against
ischemic injury. OA markedly decreased the apoptosis of RGCs and optic disc edema
and upregulated the Nrf2 signaling pathway and its downstream antioxidant enzymes
NAD(P)H: quinone oxidoreductase (NQO-1) and HO-1 in the retina. Hence, OA can be
efficiently used as a therapeutic drug candidate in the NAION [179].

11. OA for Inflammatory Diseases
11.1. Allergic Asthma

Asthma is a chronic disease of the airways, which results in chest tightness, wheez-
ing, and coughing as a result of occasional airflow restriction and airway inflammation.
Thickening and constriction of bronchi, as well as increased mucus production and edema,
which occurs due to inflammatory and structural changes throughout the airway wall,
contribute to episodes of obstruction of airflow during asthma [180,181]. Airway smooth
muscle (ASM) thickening through hyper-responsiveness and remodeling, poor relaxation,
and persistent airflow blockage may also lead to asthma [182]. Many studies have de-
lineated the therapeutic effects of OA against allergic asthma. For instance, in a study,
OA was administered by oral gavage in an ovalbumin (OVA)-induced allergic asthma
model (BABL/c mice). OA elevated the number of inflammatory cells and airway hyper
responsiveness but suppressed OVA-induced NF-κB activation. The study envisages OA as
a therapeutic drug for the treatment of allergic asthma [183]. In addition, the anti-allergic
and anti-inflammatory effects of OA were studied in vitro in rat RBL-2H3 mast cells and
in vivo in a murine-ovalbumin-induced allergic asthma model and the β-hexosaminidase
activity was measured in vitro and the results showed that OA reduced the expression of
IFNγ, IL-4, and IL-13 and suppressed inflammation and mucin production in lungs. Hence,
this study proved the promising anti-allergic effects of OA [70].

11.2. Inflammatory Bowel Disease (IBD)

IBD is a chronic inflammatory disease that includes two types of diseases, including
Crohn’s disease and ulcerative colitis, and is manifested by prolonged stomach pain and
diarrhea [184–186]. These characteristic symptoms are caused due to the reduced efficacy
of the epithelial barrier and the colossal infiltration of immune cells into the intestinal
tract and due to the disrupted immune response to commensal flora (gut microflora that
is resident inside the human intestine) [186–188]. Congregate evidence suggests that OA
can be an alternative therapy for IBD. For instance, Bai and his colleagues investigated the
inhibitory effects of OA on low-grade colonic inflammation caused by fiber deficiency in the
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diet. OA allayed colitis and inhibited colitis-associated colon cancer development in mice.
OA increased the amount Eubacterium coprostanoligenes (a probiotic gut bacteria), thereby
resulting in an anti-inflammatory effect [189]. In another study, OA has been reported
to ameliorate IBD via inhibiting pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α,
and the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome in
dextran sodium sulfate (DSS)-induced murine model [190]. Furthermore, the effect of OAG
was also investigated in DSS-induced colitis and analyzed its anti-inflammatory effects.
OAG was observed to reduce myeloperoxidase (MPO) and iNOS activities and decreased
inflammatory cell infiltration. Moreover, OAG downregulated NF-κB via the activation
of PPARγ and reduced the expression of IL-1β, IL-6 and TNF-α in bone marrow-derived
macrophages (BMDM) and mouse macrophage cell line RAW 264.7 [191]. These studies
open up the possibilities of using OA as a potential therapeutic agent against IBD.

11.3. Osteoarthritis

Osteoarthritis is the most common chronic joint disease, which is prevalent in old age
and affects the majority of those over 65 years of age [192,193]. It mainly affects joints of the
knees, hips, and hands and results in mobility impairment [194,195]. Many studies throw
light on the attenuating effects of OA in the development and progression of osteoarthritis.
For instance, OA was found to maintain the homeostasis of ECM of chondrocytes via
the stimulation of IL-1β and inhibition of NF-κB and Wnt/β-catenin signaling [196]. In
another study, the chondroprotective activities of OA were investigated on IL-1β-induced
chondrocytes inflammatory reactions. The results revealed that OA markedly suppressed
the upregulation of cox-2 and NOS by IL-1β. Besides, OA attenuated IL-1β-stimulated
upregulation of MMP-3 and MMP-13 expression, disintegrin, and matrix metalloproteinase
with thrombospondin motifs, ADAMTS-4 and ADAMTS-5 expression. Furthermore, OA
suppressed the activation of ERK 1/2 and PI3K/Akt signaling pathways and caused the
reversal of IL-1β-induced type II collagen and aggrecan degradation [72]. Both studies
suggest that OA could be a potential therapeutic agent for osteoarthritis.

11.4. Rheumatoid Arthritis (RA)

RA is a chronic inflammatory autoimmune disease that mostly affects the joints and
has a detrimental effect on the health and quality of life of the patients [197]. Non-steroidal
anti-inflammatory medicines, anti-rheumatism drugs, and glucocorticoid drugs are the
most common therapeutics used for RA [198,199]. A plethora of studies has revealed
that natural plant extracts and compounds considerably reduced the symptoms of RA in
preclinical and clinical settings [200,201]. The effect of OA was investigated in collagen-
induced arthritis (CIA) and human RA fibroblast-like synoviocytes (FLS). OA was shown
to markedly reduce serum anti-collagen II antibodies, IL-1β, IL-6, IL-17, TNF-α, and the
number of Th17 cells but increase the number of Tregs. Further, OA suppressed p38, MAPK,
ERK1/2, and NF-κB signaling, and hence decreased inflammation to a large extent [202].

12. OA for Neurological Disorders
12.1. Attention-Deficit/Hyperactivity Disorder (ADHD)

Affecting about 5.29 percent of children and adolescents around the world, ADHD is
a common neurodevelopmental disease in childhood resulting in impairments in personal,
social, or vocational function, leading to isolation, worse grades, and a higher risk of depres-
sion and antisocial behavior. Inattention, impulsivity, and hyperactivity are the hallmarks
of ADHD [203–206]. The psychostimulant drugs used for the treatment of ADHD, such
as methylphenidate, has worse side effects, such as loss of appetite, insomnia, nausea,
and dry mouth, and these medications are associated with the risk of substance use disor-
der [207,208]. Therefore, there has been an increased interest in alternative therapeutics,
including plant-based compounds. Researchers have investigated the potential of OA for
the treatment of ADHD. For instance, in a study, OA alleviated ADHD-like behavior in a
spontaneously hypertensive rat (SHR) model. Given that, the GABAergic system has an
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inevitable role in ADHD, it was hypothesized that OA modulated GABA-A receptors, but
the results showed that OA influenced other systems, such as DAergic, etc. Further, OA
inhibited dopamine (DA) uptake just like methylphenidate, a dopamine transporter blocker
drug. In conclusion, the above study proved that OA enhances ADHD-like behaviors by
improving DA neurotransmission and not by the GABA pathway as reported earlier [209].

12.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disorder that progresses with age
and is marked by cognitive impairment [210–212]. It is the most common type of dementia,
and the symptoms usually start with moderate memory loss and progress to cognitive
impairment, dysfunctions in day-to-day activities, and a variety of other issues [213–216].
Severe neuronal loss and lesions occur even before the clinical diagnosis of the disease.
Therefore, the timely delivery of neuroprotective medications is crucial [217]. In a study, OA
was found to prevent neuronal apoptosis, which is an important hallmark in neurodegener-
ative diseases. The main bioactive flavones in S. baicalensis, including OA, were evaluated
for neuroprotective effects against amyeloid β-protein fragment (Aβ 25–35) (involved in the
pathogenesis of AD) induced neuronal damage. All the compounds inhibited Aβ 25–35-
induced ROS generation and resulted in cell cycle arrest. Further, the compounds reduced
the expression of iNOS and cox-2, which resulted in the suppression of inflammatory
cytokines, including TNF-α, NO, and PGE2. In addition, the compounds downregulated
the NF-κB/MAPK pathway and relieved the Aβ 25–35-stimulated neuronal apoptosis [71].

12.3. Memory Impairment

Numerous studies have reported the neuroprotective effects of OA. For instance, in
a study, OA was investigated against memory impairment induced by transient bilat-
eral common carotid artery occlusion (2VO) in mice [218]. The number of brain-derived
neurotrophic factor (BDNF) positive cells and cAMP response element-binding protein
(CREBP) was shown to be significantly increased by OA. Besides, OA elevated Nissl bodies
and OX-42 positive cells of the dentate gyrus and hippocampal CA1 areas. These results
suggest that OA suppressed memory impairment and could be a plausible candidate for the
treatment of memory loss [218]. Another study examined the effect of OA on drug-induced
memory impairment using mice treated with scopolamine or diazepam. Intriguingly, OA
restored cognitive impairments in mice and prevented GABA-induced Cl− influx in a
single cortical neuron. These results opened novel avenues for using OA as a potential
drug for the treatment of memory impairment [219].

13. OA for Obesity

Obesity is determined using the body mass index (BMI), which is calculated by weight
in kilograms divided by height in square meters. Adults with a BMI of 25.0 to 29.9 kg/m2

are considered overweight, while those with a BMI of 30 kg/m2 or greater are considered
obese [220]. The exact cause of obesity is numerous but microorganisms, epigenetics,
higher fecundity, lack of sleep, endocrine disruptors, pharmacological iatrogenesis (illness
caused by medical examination or treatment), and intrauterine and intergenerational
impacts have all been related to obesity [221,222]. Obesity increases the chances of various
protracted and fatal diseases, including cancer and many studies are ongoing to combine
fundamental science with clinical research for better prevention and treatment strategies
for this disease [223,224]. Accumulating data has revealed that OA has a beneficial effect on
obesity (Table 1). For instance, a study investigated the anti-obesity effect of OA in mature
adipocytes. OA was found to repress intracellular lipid accumulation. The adipogenic
assay in 3T3-L1 pre-adipocytes and pancreatic lipase assay showed that OA prevented lipid
accumulation in 3T3-L1 pre-adipocytes. Further, OA also inhibited PPARγ and C/EBP
α, the major adipogenic transcription factor [225]. However, further investigations are
required to establish the definite role of OA in the treatment and prevention of obesity.
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14. OA for Other Diseases

Coxsackievirus B (CVB) is a human pathogen that causes diseases such as myocarditis,
pericarditis, meningitis, and pancreatitis [226,227]. In a study, the effects of OA on pan-
creatitis were investigated in the CVB3-infected mice model and it was found that OA
attenuated the changes in body weight and blood glucose levels induced by CVB3 infection
and lowered the pancreatic lesions and inflammatory factors IL-6 and TNF-α but increased
phospho-eIF2 α levels [228]. Therefore, OA could be used as a potential pharmacological
agent against CVB3-induced pancreatic injury.

OA is also effective against osteoporosis, which has been proved by various studies.
For instance, Xian and his colleagues (2021) established that OA reduced the formation
and function of osteoclasts, the multi-nucleated cells responsible for bone resorption by
lowering intracellular ROS levels and suppressing the activity of nuclear factor of activated
T cells 1 (NFATc1), the master transcriptional regulator of osteoclastogenesis. This study
explained the anti-osteoclast effect of OA, and it can be a promising agent that aids in
the treatment of osteolytic diseases [229]. Figure 2 briefly summarizes the mechanisms of
action of OA against various chronic diseases.

Figure 2. Mechanisms of action of OA against various chronic diseases.

15. Pharmacokinetic Studies of OA

To date, a considerable amount of studies have been published on the pharmacokinet-
ics and pharmacodynamics of OA. For instance, a study examined the pharmacokinetics
and excretion and tissue distribution of OA in rats using the sensitive and rapid UPLC-
MS/MS methodologies for the quantification of OA and its two metabolites OAG and
OS. All three compounds were distributed throughout the rat tissues, with OA being
more widely distributed in the liver and its metabolites being distributed more in the
kidneys [230] Additionally, ultra-high-performance liquid chromatography-tandem mass
spectrometry methods were used to identify OA, OAG, and OS in beagle dog plasma [231].
Another study developed and validated solid-phase extraction-liquid chromatography-
tandem mass spectrometry (SPE-LC/MS/MS) for the simultaneous detection of OA and
OAG from S. baicalensis following oral treatment in rats. The occurrence of these com-
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pounds in rat brains and plasma was demonstrated in this investigation, imply that they
have the ability to cross the blood–brain barrier [232]. In another study, the in vitro cell
pharmacokinetic profiles of OA and OAG were reported in tumor cell lines via a highly
selective and sensitive solid-phase extraction (SPE)-UPLC-MS/MS method. This study
showed that both OA and OAG were found to be largely distributed in the nuclei of HepG2
tumor cells [233].

16. Safety and Toxicities of OA

A plethora of studies has shown the anti-cancer and anti-inflammatory activities of
OA in both in vitro and in vivo settings. A study conducted by Mu et al. showed that
OA of up to 100 µM did not significantly kill the normal human cells, i.e., HUVECs and
L-02 cells, whereas the same dose killed the cancer cells -HepG2, K-562, and MDAMB-
435 significantly [234]. Moreover, dose increments up to 400 µM showed a detrimental
effect on these cancer cells, whereas only around 40% cell death was shown in normal
cells [234]. Another study showed that OA of 50 mg/kg administered orally along with
200 mg/kg of imatinib significantly inhibited tumor growth in K-562 xenograft models
without affecting the body weight and vital organs, such as heart, kidney, liver, and
spleen [235]. More recently, Wei et al., (2019) showed that OA of 300 mg/kg when treated
alone or in combination with TMZ (50 mg/kg) effectively inhibited the glioma growth
in BALB/c nude mice. The toxicity studies showed that OA did not induce changes in
body weight and toxicity to peripheral blood cells and vital organs [236]. This study also
showed that OA abrogated TMZ induced reduction in body weight, leukocyte count, and
lung injury, indicating the safety of OA in normal cells/organs [236]. However, dose
standardization for different diseases, and safe and toxic doses of OA for humans are
currently unknown due to the lack of clinical studies.

17. Discussion and Conclusions

It is now well established that flavonoids are polyphenolic secondary metabolites found
in plants and a variety of foods. Apart from their biological roles, flavonoids have a broad
spectrum of pharmacological activities, including anti-atherosclerotic, anti-inflammatory,
anti-cancer, anti-thrombotic, anti-viral, and anti-osteoporotic actions [237–240]. We have an
immense amount of preclinical and clinical evidence in support of natural compounds as
therapeutic drugs for a wide variety of chronic diseases. In the current review, we attempted
to accentuate the pharmacological properties of the flavonoid, OA, against various chronic
diseases, such as cancer, CVDs, liver diseases, eye diseases, neurological, and inflammatory
diseases. OA is manifested to modulate different targets and pathways that lead to the
development of these chronic diseases. Considering its multi-targeting properties and
high capability in regulating various signaling pathways, OA is a credible candidate
for forthcoming drug development with minimal side effects. Overwhelming pieces of
evidence have spelled out the significant anti-oxidant, anti-analgesic, and anti-neoplastic
effects of OA. It is widely known that inflammation and oxidative stress are the two most
critical factors in the development of a wide range of chronic diseases. Numerous studies
have recognized OA as a multifaceted drug due to its prominent anti-inflammatory, anti-
oxidant, and anti-tumorigenic effects. This compound has shown a significant reduction
in oxidative stress and enhanced antioxidant enzyme activity in various models. These
remarkable anti-oxidant and anti-inflammatory qualities make OA one of the greatest
therapeutic possibilities in the future.

According to studies, OA reduced the expression of inflammatory markers, such as
TNF-α and interleukins (IL-1, IL-4, IL-6, IL-13, etc.), which are produced in response to
deleterious external stimuli and have been associated with a variety of human diseases,
such as arthritis, cancer, and liver injury. It is well known that cellular oxidative stress
brings about inflammation and results in the development of various chronic diseases.
This inflammation is caused by the generation of free radicals as a result of infection or
injury [241]. Multiple lines of evidence strongly suggested that OA protects cells from
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oxidative damage by elevating the levels of anti-oxidant enzymes, such as SOD. Moreover,
a large body of literature has extensively documented the abilities of OA to modulate
various signaling pathways, such as NF-κB, STAT-3, ERK/MAPK, Hh, PI3K/Akt, etc., and
many genes and proteins, such as cox-2, MMP-9, NAG-1, HIF-1α, VEGF, cyclin B1, survivin,
p21, p27, p53, PARP, caspases, etc., [54,120,242–250].

Accumulating number of studies have explained the chemosensitizing and radiosensi-
tizing properties of OA against various cancers. For instance, the synergistic effects of OA
with cisplatin were evaluated in a study where OA significantly reduced NSCLC cell resis-
tance to cisplatin by binding to HIF-1α, and thereby inhibiting xeroderma pigmentosum
group C transcription (XPC) [135]. Various studies also reported that OA can potentially
reverse imatinib drug resistance in CML cells [251]. Similarly, OA in combination with 5-FU,
reversed the multidrug resistance by decreasing the expression of the multidrug resistance
gene (MDR1) [252]. OA also possesses radiosensitizing properties, as evident in the studies
conducted by Tan and his colleagues (2017) where OA exhibited radiosensitization of ESCC
cells by arresting the tumor cells in the G2/M phase and inducing apoptosis [136].

Most crude medications or compound formulations in Ayurveda and TCM are made
as decoctions and administered orally. Pharmacokinetic studies in rats after intragastrical
administration of OA or its source plants revealed that OA may be absorbed in its native
form from the gastrointestinal tract and that the concentration of OA in the plasma increased
over time. When OA, OAG, and OS were administered, OA was more broadly distributed
in tissue than its metabolites after oral administration, and the tissue concentration level of
OA was the highest [230,253,254].

Even though OA has shown therapeutic potential in many in vitro investigations, it
has a very low oral bioavailability due to its significant first-pass metabolism and primary
glucuronidation in the guts [255]. Furthermore, the metabolites of OA, such as OAG and
OS, also proved effective against a few chronic diseases. In a study, several derivatives of
OA were synthesized and screened for antitumor activities in HepG2 cell lines. Intriguingly,
some derivatives showed higher tumor inhibitory and apoptotic properties than OA. This
study opened up new possibilities for synthesizing more efficient derivatives of OA as
promising anti-cancer agents [256].

Comprehensively, OA embodies various biological roles and stands to be one of the
most efficacious compounds in the prophylaxis and therapy of different chronic diseases
with boundless potential in drug discovery. However, more clinical research is needed to
back up the aforementioned findings. Furthermore, as stated earlier, more potent analogs
and formulations of OA could aid in the advancement of safer and more effective drugs
for a variety of chronic conditions. However, detailed clinical evaluation and trials are
mandatory to examine the efficiency and toxicity of the compound and its formulations,
thereby making OA an invaluable therapeutic agent.

Table 1. Preventive and therapeutic properties of OA against various chronic diseases.

Disease In Vitro/
In Vivo

Dose/Conc. Model Mechanism of Action
or Outcome References

Cancer

Breast cancer In vitro 50, 100, 200 µM MDA-MB-231,
MCF-7

↑SIRT3, SOD2, PHD activity,
↓glycolysis, HIF-1α,
mitochondrial ROS

[76]

In vivo 100 mg/kg MDA-MB-231
xenograft

↑SIRT3, SOD2, ↓tumor volume
and mass, glycolysis, HIF-1α,

hexokinase II,
[76]

In vitro 10, 20, 40 µM MDA-MB-231

↑E-cadherin, p27, ↓cell
proliferation, CDK2, cyclin E,
vimentin, N-cadherin, EMT,
migration, invasion, COX-2,

NF-κB, IL-6, IL-8, TNF-α

[114]
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Table 1. Cont.

Disease In Vitro/
In Vivo

Dose/Conc. Model Mechanism of Action
or Outcome References

Cervical cancer In vitro 5, 20, 80 µM HeLa
↑Procaspase-3, procaspase-8,
procaspase-9, cleaved PARP,
apoptosis ↓Bcl-2, cell growth

[75]

In vivo 40, 80 mg/kg HeLa xenograft
↑Cleaved PARP, ↓tumor growth,

Bcl-2, procaspase-3, procaspase-8,
procaspase-9

[75]

Colon cancer In vitro 200 µM/L HT-29 cells
↑Bax, p53, PARP, procaspase-3,

ROS,
↓COX-2, Bcl-2, PGE2

[118]

In vivo 100 mg/kg HT-29 ↓Tumor, COX-2 [118]

In vitro 100 µM/L HCT-116 ↑Caspase-3, caspase-9, Bax, ROS,
Nrf2, HO-1, NQO1, ↓Bcl-2, [56]

In vivo 50, 100, 200 mg/kg HCT-116 xenograft ↑Nrf-2, apoptosis, ↓tumor growth [56]

ESCC In vitro 10, 50 µM TE13, ECA109
↑Apoptosis, G2/M arrest,

radiosensitization,
↓cyclin B1, cdc2

[136]

Glioma In vitro 25, 50, 75, 100, 125,
150, 175, 200 µM U251, U118, U87 ↑Autophagy, Beclin, ↓Akt, ERK

Notch-1, Mcl-1 [126]

In vitro 50 µM C6, U251 ↑Apoptosis, ↓p-Akt, β-catenin,
IP3R1, p-GSK-3β [94]

In vivo 150 mg/kg C6 xenograft ↑Apoptosis, ↓Akt/β-catenin,
IP3R1, p-GSK-3β, [94]

Hematological
malignancies In vitro 60 µM K562, KU812

with M2-10B4
↑Apoptosis, ↓CXCL12/CXCR7,

p-ERK, p-BAD, survivin [130]

In vivo 200 mg/kg K562 xenograft ↑Apoptosis, ↓CXCR7, p-ERK,
CD13+ cells [130]

In vitro 20 µM HL-60, NB4 ↑TNF-α sensitivity, ↓tRXRα,
PI3K/Akt, NF-κB [83]

In vivo 80 mg/kg AML cell xenograft ↑Survival, ↓NF-κB, AML
cell population [83]

In vitro 10–160 µM
t (8i21)-positive

kasumi-l,
primary AML cells

↑C/EBPα, p21, CD11b/CD14,
↓AML 1/ETO, HDAC-1 [129]

In vivo 200 mg/kg NOD/SCID mice ↑Survival, ↓HDAC-1,
AML1/ETO, CD45+ cells, [129]

Hepatocellular
carcinoma In vitro 50 µM HepG2 cells

↑Apoptosis, p53, cleaved PARP,
↓Cell viability, TS and DPD

mRNA, COX-2, Bcl-2,
procaspase-3

[119]

In vivo 1000 mg/kg/day H22 xenograft ↓Tumor growth, tumor weight [119]

In vitro 12.5, 25, 50 µM SMMC-7721
↑NAG1, acetylation of C/EBPβ,
↓migration, invasion, EMT,

p-SMAD2/3, TGF-β1/SMAD axis
[120]

In vivo 200 mg/kg SMMC-7721 ↑E-cadherin, ↓pulmonary
metastasis, vimentin, twist1 [120]

Kaposi’s sarcoma In vitro 20–1000 µM KSHVvIL-6
↑Apoptosis, PPARγ, invasion,

neovascularization, ↓Prox1,
VEGFR3, LYVE-1, podoplanin

[80]

Lung cancer In vitro 40 µM H460 ↓Tregs, TGF-β, NF-κB [134]

In vivo 60 mg/kg H460 xenograft ↓Tumor, Tregs, FOXP3, [134]

In vitro 50 µM/L H460, A549, 95D,
PC9, HCC827, H1975

↑Apoptosis, ↓tumor,
XPC transcription [135]

In vivo 50 mg/kg H460 xenografts
↑Cisplatin sensitivity, ↓tumor

growth, Ki67, PCNA,
XPC expression

[135]
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Table 1. Cont.

Disease In Vitro/
In Vivo

Dose/Conc. Model Mechanism of Action
or Outcome References

Skin cancer In vitro 20 µM JB6P+
↓Transformation, inflammation,
SHCBP1, NF-κB p65, IL-1β, IL-6,

IL-18, TNF-α, COX-2, iNOS,
[137]

In vivo 40 mg/kg DMBA/TPA mice

↓SHCBP1, IL-1β, IL-4, IL-6, IL-18,
TNF-α, NLRP3, PCNA

tumorigenesis, incidence rate,
tumor multiplicity,

epidermal thickness

[137]

Cardiovascular diseases

Cardioprotective
effects In vivo 40 mg/kg C57BL/6 mice

↑Body weight, SIRT1,
cAMP/protein kinase A,

improved contractile function,
Nrf2, HO-1, NQO1, Bcl-2,
↓plasma and cardiac CK-MB,

LDH, LVEDP, 4-HNE,
nitrotyrosine, gp91phox, NADPH

oxidase 4, p47phox, p67phox,
IL-6, IL-1β, MMP-2, MMP-9,
p-IκBα, caspase 3/7 activity,

PARP activity, apoptosis

[143]

Endotoxemia In vivo 10, 20 µM Sprague-Dawley rats ↑Coronary flow, LVDP ↓CPP [55]

Hind limb
ischemia In vivo 10 mg/kg/day C57BL/6 mice

↑VEGFA, Ang-2, FGF-2,
PDGF-BB, angiogenesis,

perfusion recovery, regeneration
of myocytes ↓IL-1β, tissue injury,
ischemia, apoptosis of myocytes

[153]

Chronic liver
diseases

Acute liver injury In vivo 60 mg/kg C57 BL/6 mice
↑IL-1Ra, HGF, EGF, PCNA

positive cells, survival, ↓IL-1β,
IL-6, TNF-α, necrotic areas

[69]

In vivo 15, 30, 60 mg/kg BALB/c mice
↑Nrf 2, HO-1, ↓AST, ALT, TNF-α,

MDA, MPO activity, NF-κB,
TLR4, necrosis

[159]

ALD In vitro 10–100 µM LO2 cells ↑YAP, ↓AST, ALT, LDH, p21, p16
and HMGA1 [169]

In vivo 30 mg/kg ICR mice ↑YAP, ↓AST, ALT, ALP,
lipid vacuolation [169]

In vitro 10, 20, 40 µM LO2 cells
↑Mfn2, PGC-1α, ↓LDH, IL-1β,
IL-18, caspase-1, NF-κB, ROS,

NLRP3 inflammasome
[77]

In vivo 40 mg/kg ICR mice ↓Inflammation, lipid
accumulation, ALT, ALP, AST [77]

Hepatic steatosis In vitro 10, 20, 40 µM LO2 cells
↑CPT1, PPARα, PPARγ, ↓lipid
droplet accumulation, HIF-1α,
apoptosis, SREBP1, FAS, SCD1

[59]

In vivo 30 mg/kg ICR mice ↓ Apoptosis, ALT, AST, ALP, IL-6,
IL-8, TNF-α [59]

Hepatic fibrosis In vitro 20, 30, 40 µM HSCs

↑LC3-B, Atg3, Atg4, Atg5, Atg7,
Atg9, beclin, Atg12, Atg14,
↓α-SMA, desmin, α1collagen,

fibronectin, TGF-β, TNF-α, p62

[162]

In vivo 20, 30, 40 mg/kg ICR mice

↑LC3-B, Atg5, beclin1, ↓AST, ALT,
ALP, α-SMA, α1collagen,

fibronectin, PDGF-βR, TGF-βR1,
p62, fibrosis lesions,

necrosis, inflammation

[162]



Biomolecules 2022, 12, 1185 16 of 28

Table 1. Cont.

Disease In Vitro/
In Vivo

Dose/Conc. Model Mechanism of Action or
Outcome References

In vitro 20, 30, 40 µM HSCs
↓Hexokinase II, LDH-A, PFK1,

PKM2, actin stress fibers,
p-MLC2, contraction

[163]

In vivo 40 mg/kg ICR mice
↓Liver injury, glycolysis, α-SMA,
α1collagen, fibronectin, ALT, AST,

TBIL, IBIL, p-MLC2
[163]

In vitro 20, 30, 40 µM HSC

↑SLC7A11, GSH, lipid droplet
content, retinol, cholesterol,
triglyceride ↓ATGL, α-SMA,

α1collagen, fibronectin,
desmin, ROS

[79]

In vivo 20 mg/kg C57BL/6

↑Antioxidant activity, ↓liver
fibrosis, collagen deposition lipid

droplet content, retinol,
cholesterol, triglyceride, α-SMA,

collagen I

[79]

In vitro 20, 30, 40 µM HSC

↑Autophagy, Atg5, Atg12, beclin,
LC3B, ↓ NF-κB, NLRP3, TNF-α,
IL-1β, p-PI3K, p-Akt p-mTOR,

ROS, p62, IL-1β, IL-4, IL-6, IL18,
TNF-α, IFNγ

[92]

In vivo 20, 30, 40 mg/kg C57BL/6 ↓ NF-κB, α-SMA, IL-1β, IL-4, IL-6,
IL18, TNF-α, IFNγ

[92]

In vitro 20, 30, 40 µM LSECs ↓VEGF-A, angiogenesis [256]

In vivo 40 mg/kg ICR mice ↓VEGF-A, Ang-2, CD31, HIF-1α [256]

In vitro 20, 30, 40 µM HSC

↑Cleaved caspase-9, cleaved
caspase-3, cleaved PARP, p51, p21,
p27, S-phase arrest, Bax, collagen

degradation, MMP-9, ATF4,
p-PERK, cleaved ATF6,

↓Fibrogenesis, PDGF-β, TGF-β,
EGFR, cyclin A, cyclin E, CDK-2,
Bcl-2, collagen synthesis, TIMP-2,

α-SMA, collagen I

[165]

In vivo 20, 30, 40 mg/kg ICR mice ↑ERS pathway, IL-6, IL18, TNF-α,
AST, ALT [165]

Inflammatory diseases

Allergic asthma In vitro 0.1, 0.3, 1, 3, 10, 30
µM RBL-2H3 mast cells ↓β-Hexosaminidase release,

antigen-induced degranulation [70]

In vivo 5 mg/kg Female BALB/c mice
↓IFNγ, IL-2, IL-4, IL-5, IL-13,

eosinophils, inflammation
score, mucin

[70]

In vivo 15, 30, 60 mg/kg BALB/c mice

↓ IgE, p-IκB, p-NF-κB, IL-4, IL-5,
IL-13, airway hyporesponsiveness,

inflammatory cells infiltration,
thickening of alveolar wall

[183]

Inflammatory
bowel disease In vivo 50 mg/kg BALB/c mice ↓Inflammation, IL-1β, IL-6, IL-17,

TNF- α, Muc2, IFNγ
[189]

In vivo 100, 200
Mg/kg BALB/c mice

↓Distribution of CD11b+

inflammatory cells and F4/80+

macrophages, MPO, iNOS,
NLRP3, IL-1β, IL-6, TNF- α, p65

[190]

Lung
inflammation In vitro 50, 100, 150 µM BEAS-2B and RAW

2647 cells ↑Nrf2, GSH, HO-1, ↓TNF-α, IL-1β [143]

In vivo 15, 30, 60 mg/kg C57BL/6

↑GR activity, GSH, ↓interstitial
edema, infiltrated immune cells,
alveolar wall thickness, TNF α,
IL-1β, MCP-1, 3-nitrotyrosine,

8-OHdG, 8-isoprostane

[143]
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Table 1. Cont.

Disease In Vitro/
In Vivo

Dose/Conc. Model Mechanism of Action
or Outcome References

Rheumatoid
arthritis In vitro 1, 4, 16 µM FLS cells ↑IL-10, ↓IL-1β, IL-6, p-ERK,

p-MAPK, p65 [202]

In vivo 10 mg/kg DBA/1 mice with
CIA

↑Tregs ↓total IgG, IgG1, IgG2a,
IgG2b, IL-1β, IL-6, IL-17, TNF-α,

arthritis score, swelling, joint
inflammation, Th17 cells

[202]

Osteoarthritis In vitro 2.5, 5, 10, 20, 50 µM Chondrocytes

↓IL-1β, MMP-13, ADAMTS-5,
NO, PGE2, ALP IL-6, TNF-α,
NF-κB, RUNX-2, collagen X,

β-catenin

[196]

In vivo 10 mg/kg OA-induced mice
model ↓OARSI score [196]

In vitro 2–128 µM Chondrocytes ↓NOS, cox-2, MMP-3, MMP-13,
ERK1/2, PI3K/Akt [72]

Obesity In vitro 25, 50, 75 µM 3T3-L1
pre-adipocytes

↓Lipid accumulation,
adipogenesis, PPARγ, C/EBPα [225]

Neurological diseases

ADHD In vivo 5, 10 mg/kg SHR, WKY ↓Drinking attempts, drinking
frequency, dopamine reuptake [209]

Alzheimer’s
disease In vitro 10, 50, 100 µM PC12 cells

↓Ca2+, Bax, iNOS, cleaved
caspase-8, cleaved PARP-1,

TNF-α, NO, PGE2, p-IκBα, cox-2,
p-NF-κB, p-p38, p-JNK, ROS,

apoptosis, cell cycle arrest,

[71]

Memory
impairment In vivo 5 mg/kg ICR mice

↑ChAT, ↓Nissl bodies, OX-42
positive cells, GFAP positive cells,

iNOS, spontaneous alteration
behavior, micro glial cell

activation, lipid peroxidation

[218]

↑—Increase/Upregulation; ↓—Decrease/Downregulation.
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Abbreviations

4-HNE—4-Hydroxynonenal; 8-OHdG—8-Hydroxy-2′-deoxyguanosine; α-SMA-alpha smooth
muscle actin; ADAMTS5—A disintegrin and metalloproteinase with thrombospondin motifs 5;
AML—Acute myeloid leukemia; ALD—Alcohol liver disease; ALL—acute lymphocytic leukemia;
ALP—Alkaline phosphatase; ALT—Alanine aminotransferase; cAMP—Cyclic adenosine monophos-
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phate; Ang-2—Angiopoetin-2; AST—Aspartate amino transferase; ATF4—Activating transcription
factor 4; Atg—Autophagy related; ATGL—adipose triglyceride lipase; BAD—Bcl-2 associated ago-
nist of cell death; BAX—Bcl-2 associated X protein; Bcl-2—B-cell lymphoma 2; C/EBPα—CCAAT
binding protein alpha; C/EBPβ—CCAAT binding protein beta; cdc2—Cell division cycle 2; CD—
Cluster of differentiation; CDK—Cyclin dependent kinase; ChAT—Choline acetyl transferase; CK-
MB—Creatinine kinase MB; CPP—Coronary perfusion pressure; DPD—Dihydropyrimidine de-
hydrogenase; COX-2—Cyclooxygenase-2; CXCL2—Chemokine C-X-C motif ligand 2; CXCR4—
Chemokine receptor type 4; EGF—Epidermal growth factor; EGFR—Epidermal growth factor
receptor; EMT—Epithelial-mesenchymal transition; ERK—Extracellular signal-regulated kinase;
ERS—Endoplasmic reticulum stress; FAS—Fatty acid synthase; FGF-2—Fibroblast growth factor 2,
FLS—Fibroblast-like synoviocytes; FOXP3—Forkhead box P3; GFAP—Glial fibrillary acidic protein;
GR—Glutathione reductase; GSK-3β—Glycogen synthase kinase 3 beta; GSH—Glutathione; HDAC—
Histone deacetylase; HGF—Hepatocyte growth factor; HIF-1α—Hypoxia inducible factor 1 alpha;
HKII—Hexokinase II; HNF—Hepatocyte nuclear factor; HMGA1—High mobility group AT-hook 1;
HO-1—Hemeoxygenase-1; IBL—Indirect bilirubin; IκBα—IkappaB kinase alpha; IFNγ—Interferon
gamma; IL—Interleukin; iNOS—Inducible nitric oxide synthase; IP3R1—Inositol 1,4,5-triphospshate
receptor, type 1; JNK—Jun N-terminal kinase; LC3-B—Microtubule-associated proteins 1A/1B light
chain 3B; LDH—Lactate dehydrogenase; LSEC—Liver sinusoidal endothelial cells; LVDP—Left
ventricular developed pressure; LYVE-1—Lymphatic vessel endothelial hyaluronan receptor 1; Mcl-
1—Myeloid cell leukemia 1; MCP-1—Monocyte chemoattractant protein 1; MDA—Malondialdehyde;
MDM—Mouse double minute; MDR—Multi drug resistant gene; Mfn2—Mitofusin 2; MLC2—
Myocin light chain 2; MMP—Matrix metalloproteinase; MMPo—Mitochondrial membrane poten-
tial; MPO—Myeloperoxidase; mTOR—Mammalian target of rapamycin; NADPH—Nicotinamide
adenine dinucleotide phosphate; NAG1—Non-steroidal anti-inflammatory drug activated gene-1;
NF-κB—nuclear factor-kappa B; NQO1—NAD(P)H quinone dehydrogenase 1; NOS—nitric oxide
synthase; Nrf2—Nuclear factor erythroid-2-related factor-2; OARSI—Osteoarthritis research soci-
ety international; OSSC—Oral squamous cell carcinoma; PARP—Poly (ADP-ribose) polymerase;
PCNA—Proliferating cell nuclear antigen; PDGF-BB—platelet-derived growth factor; PDGF-βR—
platelet-derived growth factor beta receptor; PERK—Protein kinase RNA-like endoplasmic reticulum
kinase; PFK—Phosphofructokinase; PGE2—Prostaglandin E2; PHD—Prolyl hydroxylase; PI3K—
Phosphoinositide 3 kinase; PKM1/M2—Pyruvate kinase isozymes M1/M2; PPARα—Peroxisome
proliferator-activated receptor alpha; PPARγ—Peroxisome proliferator-activated receptor; Prox1—
Prospero homeobox 1; ROS—Reactive oxygen species; RUNX2—Runt related transcription factor 2;
SCD1—Stearoyl-CoA desaturase 1; SIRT3—Sirtuin 3; SHCBP1—SHC binding and spindle associated
1; SLC7A11—Solute carrier family 7 member 11; SOD2—Superoxide dismutase 2; SREBP1—Sterol
regulatory element binding protein 1; STAT3—Signal transducer and activator of transcription;
TBIL—Total bilirubin; TGF-β—Transforming growth factor-beta; TGF-βR1—Transforming growth
factor-beta receptor 1; TIMP-2—Tissue inhibitor of metalloproteinases 2; TLR4—Toll like receptor
4; TNF-α—tumor necrosis factor alpha; Tregs—regulatory T-cell; tRXRα—Truncated retinoid X
receptor alpha; TS—Thymidine synthetase; VEGFA—Vascular endothelial growth factor A; VEGFR3—
Vascular endothelial growth factor receptor 3; XPC—Xenoderma pigmentosum group C protein;
YAP—Yes1 associated transcriptional regulator.
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