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Abstract

In this work, we propose a deep learning method for breast mass segmentation in ultrasound 

(US). Variations in breast mass size and image characteristics make the automatic segmentation 

difficult. To address this issue, we developed a selective kernel (SK) U-Net convolutional neural 

network. The aim of the SKs was to adjust network’s receptive fields via an attention mechanism, 

and fuse feature maps extracted with dilated and conventional convolutions. The proposed method 

was developed and evaluated using US images collected from 882 breast masses. Moreover, 

we used three datasets of US images collected at different medical centers for testing (893 US 

images). On our test set of 150 US images, the SK-U-Net achieved mean Dice score of 0.826, and 

outperformed regular U-Net, Dice score of 0.778. When evaluated on three separate datasets, the 

proposed method yielded mean Dice scores ranging from 0.646 to 0.780. Additional fine-tuning 

of our better-performing model with data collected at different centers improved mean Dice scores 

by ~6%. SK-U-Net utilized both dilated and regular convolutions to process US images. We 

found strong correlation, Spearman’s rank coefficient of 0.7, between the utilization of dilated 

convolutions and breast mass size in the case of network’s expansion path. Our study shows the 
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usefulness of deep learning methods for breast mass segmentation. SK-U-Net implementation and 

pre-trained weights can be found at github.com/mbyr/bus_seg.
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1. Introduction

Breast cancer is the most common invasive cancer in women [1]. Ultrasound (US) imaging 

has been widely used for the breast mass evaluation. In comparison to other medical 

imaging modalities, for instance magnetic resonance imaging, US is highly accessible 

and inexpensive, and when applied by expert radiologists it can accurately differentiate 

malignant and benign breast masses.

Assessment of breast US images requires extensive knowledge of characteristic image 

features shown to be related to benign or malignant breast masses. Various computer aided 

diagnosis systems (CAD) have been developed to aid radiologists with the interpretation 

of breast US images [2]. Mass segmentation is an important step in CAD systems since 

accurate segmentation enables better analysis of features related to breast mass shape. 

However, automatic segmentation in US imaging is considered a challenging task due to 

relatively low US image contrast, speckle noise and large variations in breast mass sizes and 

shapes [3,4]. Recently, deep learning algorithms are showing promise for breast mass image 

analysis. These effective data driven methods process input images to learn high level image 

representations and calculate, for instance, the segmentation mask or classification decision 

[5]. Convolutional neural networks (CNNs) have been successfully applied for the detection, 

segmentation and classification of breast masses in US [6–14].

Several deep learning based approaches have been investigated for the breast mass 

segmentation. Yap et al. applied transfer learning to develop fully convolutional networks 

for breast mass segmentation, and achieved good automatic segmentation performance [10]. 

Similarly, Xu et al. investigated the usefulness of fully convolutional networks and U-Net 

for breast mass segmentation [13]. They presented that utilization of dilated convolutions at 

deeper layers of fully convolutional networks may help improve segmentation performance. 

Dilated convolutions increase network’s receptive field, resulting in more efficient extraction 

of spatial details in comparison to conventional convolutions [13]. Han et al. proposed a 

semi-supervised approach to the development of segmentation networks [14]. They used 

generative adversarial networks to guide a fully convolutional neural network to generate 

more accurate segmentation maps [14].

In this work, we propose a novel variation of U-Net model for breast mass segmentation in 

US. U-Net is perhaps the most popular CNN for semantic object segmentation [15,16]. 

Standard U-Net architecture consists of contracting and expanding paths. First, in the 

contraction path (encoder) input image is processed using convolutional and pooling 

operators to produce a compressed image representation. Second, the representation is 
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upsampled with convolutional operators in the expansion path (decoder) to produce the 

segmentation mask indicating object location. Additionally, skip connections are used to 

propagate feature maps from the contraction to expansion path [15,17]. However, standard 

U-Nets utilize convolutions of fixed receptive field. The segmentation method proposed 

in this study is based on selective kernels (SKs) that can automatically adjust network’s 

receptive field via an attention mechanism, and mix feature maps extracted with both 

dilated and conventional convolutions [18]. Li et al. have shown that classification networks 

utilizing SKs can better recognize objects presented at different scales, and achieve better 

performance on the ImageNet dataset [18]. Here, we investigate whether a replacement 

of conventional convolutional blocks in U-Net architecture with SK blocks may help 

improve segmentation performance. Our network, named SK-U-Net, can automatically 

adjust receptive field and more efficiently utilize spatial information extracted at different 

scales, resulting in better segmentation of breast masses than the previous models that 

utilized fixed receptive fields [10,13,14]. We show that dilated convolutions are mainly 

utilized in the expansion path of the network to generate segmentations for larger breast 

masses, efficiently addressing the problem of large variations in breast mass sizes. Moreover, 

our study presents the robustness of the proposed deep learning segmentation method, which 

achieved good performance on three datasets of breast mass US images collected at different 

medical centers.

2. Materials and methods

2.1. Ultrasound data

To develop the deep learning segmentation methods we used a dataset of 882 breast mass 

US images, consisting of 678 benign and 204 malignant breast masses. The dataset was 

divided into training, validation and test sets with a 632/100/150 split. The ratio of malignant 

and benign breast masses was maintained for each set. The Health Insurance Portability and 

Accountability Act compliant retrospective study was approved by the Human Research 

Protection Program at the University of California, San Diego, USA. The data were 

collected at an American College of Radiology accredited center by experienced medical 

experts with one of three scanners: Siemens Acuson (59%), GE L9 (21%), and ATL HDI 

(20%). Manually selected regions of interest (ROIs) indicating breast mass areas were 

outlined by a single medical expert. Malignancy of breast masses was confirmed by biopsy, 

while benign breast masses were assessed either by biopsy or a clinical follow up of at least 

two years [11]. Several US images of malignant and benign breast masses from our dataset 

are presented in Fig. 1.

To better evaluate the proposed segmentation method we employed three publicly available 

datasets of breast US images collected at different medical centers. These data were used 

for testing only. For each dataset, manual ROIs generated by medical experts were provided 

by the authors. The first dataset, named UDIAT, consisted of 163 US images corresponding 

to 110 benign and 53 malignant breast masses (one mass per image) [7]. These data 

were acquired using Siemens ACUSON scanner from the UDIAT Diagnostic Centre of 

the Parc Tauli Corporation, Sabadell, Spain. The UDIAT dataset was utilized in several 

papers for breast mass segmentation and classification [7,10]. The second dataset, named 
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OASBUD, consisted of 100 US images corresponding to 48 benign and 52 malignant breast 

masses (one mass per image) [19]. This dataset was collected from patients of the Maria 

Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland. 

The OASBUD was originally used to investigate methods for breast mass classification 

[9,20,21]. The third dataset, named BUSI, consisted of 697 US images collected at the 

Baheya Hospital, Cairo, Egypt using LOGIQE9 and LOGIQE9 Agile US scanners [22]. 

Since all other datasets used in our study included only one breast mass per image, to make 

the later performance comparisons more straightforward, we removed US images from the 

BUSI dataset that included several breast masses. This modification resulted in 630 US 

images corresponding to 421 benign and 209 malignant breast masses. The BUSI dataset 

was originally used for breast mass classification with deep neural networks [23]. Several 

US images from the three datasets are presented in Fig. 2.

The same approach was applied to pre-process US images from each dataset. In the case 

of our dataset, we removed scanner annotations from US images. Next, all US images were 

resized using bi-cubic interpolation method to dimensions of 224 × 224, and processed 

with a 3 × 3 median filter. Manual ROIs were resized to 224 × 224 using nearest neighbor 

interpolation technique.

2.2. Segmentation method

General schemes of the SK-U-Net architecture and SK block are presented in Fig. 3. The 

SK-U-Net architecture was based on the U-Net architecture, with conventional convolution/

batch normalization/activation function blocks replaced with SK blocks [18]. The aim 

of each SK block was to adaptively adjust network’s receptive field and mix feature 

maps determined using different convolutions, effectively addressing the problem of large 

variations of breast mass sizes. Each SK block included two branches. The first one was 

based on convolutions with dilation size equal to 2 and 3x3 kernels filters, and the second 

one utilized 3 × 3 kernel filters with no dilation. The resulting feature maps were summed, 

and global average pooling was applied to convert feature maps to a single feature vector. 

Next, the vector was compressed using fully connected layer, with compression ratio equal 

to 0.5 (the number of features was halved). Compressed feature vector was decompressed 

with fully connected layer and processed with sigmoid activation function to determine 

attention coefficients for each feature map. Next, the obtained attention coefficients were 

used to weight the feature maps and calculate output of the SK block, using:

Fi = aiFi
d + 1 − ai Fi

c (1)

where Fi is the ith feature map, and Fi
d and Fi

c stand for the feature maps calculated 

using dilated and conventional convolutions, respectively. ai is the ith feature map attention 

parameter ranging from 0 to 1. For attention parameter of 1 the SK block fully utilized 

dilated convolutions, while for 0 conventional convolutions were applied.
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2.3. Training and evaluation

First, we trained a SK-U-Net segmentation model. Second, for comparison we also 

developed a regular U-Net, in this case the SK blocks were replaced with conventional 3 × 

3 convolutional filters, batch normalization layer and rectifier linear unit (ReLU) activation 

function. Both models were trained from scratch using the training set. The cost function J 
was defined in the following way:

J A, M = 1 − Dice A, M = 1 −
2 A ∩ M

A + M , (2)

where A and M stand automatic (predicted by the network) and manual segmentations, 

respectively. We used this cost function, because Dice score is commonly employed for the 

evaluation of segmentation models. Moreover, Dice score-based function is a good choice 

for segmentation of objects that strongly vary in size [24,25]. For both networks, the first 

block included 16 convolutional filters, and we doubled number of feature maps after each 

max pooling layer. In expansion path of the network, we halved the number of feature 

maps in blocks after each concatenation. The networks were trained using back-propagation 

algorithm and Adam optimization method [26]. Learning rate and the momentum were set to 

0.001 and 0.9, respectively. The learning rate was exponentially decreased every 4 epochs by 

a factor of 0.9 if no improvement was observed on the validation set. Batch size was set to 

12. The training was stopped if no improvement in respect to the Dice Score was observed 

on the validation set after 11 epochs. After the training, the better-performing model on the 

validation set was selected for further evaluation. To improve the training, we additionally 

applied data augmentation, US images were horizontally flipped and blurred with Gaussian 

noise.

After the training, we evaluated the models on the test set using standard segmentation 

performance metrics. First, mean Dice score was calculated for each model based on manual 

and automatically generated segmentation masks. Following the approach presented in the 

previous paper on breast mass segmentation, we also calculated mean Dice score for the 

results with Dice score >0.5 [10]. Second, for each model we calculated accuracy and 

area under the receiver operating characteristic curve (AUC) to assess how good were the 

networks at detecting mass pixels. Third, we determined the detection rate of each model as 

the ratio of correctly detected breast masses. Breast mass was considered correctly detected 

if the centroid of the automatic ROI was within the manual ROI.

We applied the same evaluation procedure to assess the segmentation performance of the 

SK-U-Net on the UDIAT, OASBUD and BUSI datasets. First, each dataset was separately 

used for testing. Second, we also investigated whether additional fine-tuning of the SK-U

Net can improve segmentation performance on these datasets. We applied the same fine

tuning and evaluation procedure for the UDIAT, OASBUD and BUSI datasets. Each dataset 

was randomly divided into training and testing sets with a 50%/50% split, with the ratio of 

benign and malignant breast masses maintained. Using the training set, we fine-tuned the 

SK-U-Net for 10 epochs. The same training approach was applied as before, but in this case 
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the learning rate and batch size were set to 0.0005 and 8, respectively. After the training, the 

fine-tuned model was evaluated on the test set. Next, we swapped the training and test sets, 

and repeated the procedure.

The calculations were performed in Matlab (Mathworks, USA) and Python. The networks 

were implemented in Keras with Tensorflow backend [27]. SK-U-Net implementation and 

pre-trained weights can be found at github.com/mbyr/bus_seg.

2.4. Attention mechanism

Two experiments were conducted to better understand the performance of SKs in breast 

mass segmentation. First, we assessed how dilated and conventional convolutions were 

utilized at different parts of the SK-U-Net. We calculated the mean sample attention 

corresponding to each breast mass and each SK block. The mean sample attention was 

defined in the following way:

αk(X) = 1
n∑

i = 1

n

αik(X), (3)

where X indicates sample US image, k stands for the kth SK block and n is the number of 

feature maps in the kth SK block. Block numbering is depicted in Fig. 3. Next, for each 

block we calculated the mean attention over all test sets using:

αk = 1
m∑

j = 1

m

αk Xj , (4)

where m is the number of US images in the combined test set, equal to 1043. Second, 

we investigated whether the dilated convolutions were more utilized for the processing 

of US images presenting large breast masses. For each SK block we determined the 

Spearman’s rank correlation coefficient between the mean sample attention and breast mass 

size expressed as the total number of ROI pixels (after image resizing).

3. Results

Table 1 presents segmentation performance scores obtained for the regular U-Net and the 

proposed SK-U-Net on our test set of 150 US images. Overall, our method achieved better 

performance than the U-Net. Mean Dice, accuracy, AUC and detection rate were equal to 

0.826, 0.979, 0.958 and 0.900 for the SK-U-Net, and 0.778, 0.976, 0.909 and 0.817 for 

the U-Net. In the case of the benign and malignant breast mass segmentation, mean Dice 

score achieved by the SK-U-Net for benign masses, 0.820, was worse than for malignant 

masses, 0.842, due to lower detection rate of benign breast masses. Nevertheless, median 

Dice score presented that the network generally performed better at benign breast mass 

segmentation. The SK-U-Net achieved median Dice score of 0.914 for benign masses and 
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0.898 for malignant masses. Several segmentation results for benign and malignant cases 

with Dice scores around median are presented in Fig. 4.

The SK-U-Net trained on our dataset achieved good segmentation performance on US 

images from different medical centers. However, the performance was lower than on our 

dataset. The summary of the obtained results is presented in Table 2. For instance, our 

method achieved mean Dice scores of 0.780, 0.646 and 0.676 on the UDIAT, BUSI 

and OASBUD datasets, respectively. The corresponding detection rates were equal to 

0.902, 0.775 and 0.780, respectively. Therefore, the network could efficiently detect breast 

masses on US images from another medical center. Additional fine-tuning improved the 

performance of the SK-U-Net on all test sets, especially in the case of the BUSI and 

OASBUD datasets. Due to the fine-tuning the mean Dice scores increased to 0.791, 0.709 

and 0.726 for the UDIAT, BUSI and OASBUD datasets, respectively. Moreover, for all three 

test sets we obtained better performance in the case of the benign breast mass segmentation. 

For instance, mean Dice scores obtained on the UDIAT dataset for the fine-tuned model 

were equal to 0.819 and 0.739 for benign and malignant breast masses, respectively. 

Representative automatic segmentations for all test sets from another centers are presented 

in Fig. 5. Moreover, Fig. 6 shows malignant cases from each dataset for which our network 

achieved segmentation performance below median Dice scores. These breast mass images 

include examples of indistinct margins and posterior acoustic shadowing.

Utilization of the SKs for each network block is depicted in Fig. 7a). Mean attention 

coefficients calculated using all test US images were equal to around 0.5 for the SK blocks 

corresponding to the contraction and expansion paths, illustrating that the SK-U-Net used 

both dilated and conventional convolutions to process US images. In contrary, the SKs in 

the middle of the network utilized more dilated convolutions, the mean attention in this case 

was equal to around 70%. Fig. 7b) shows the Spearman’s correlation coefficients between 

the mean sample attention coefficient and breast mass size obtained for each SK block. We 

found high correlation of around 0.7 in the case of the first SK blocks of the expansion path. 

The network utilized dilated convolutions to reconstruct ROIs corresponding to larger breast 

masses.

4. Discussion

Our study shows the usefulness of deep learning methods for breast mass segmentation 

in US. The proposed deep learning method based on U-Net equipped with SKs achieved 

good segmentation scores, and outperformed regular U-Net, illustrating the usefulness of 

automatic receptive field adjustment for efficient semantic object segmentation. Moreover, 

the proposed method was robust. We evaluated our model on three datasets of US 

images collected at different medical centers, and obtained good segmentation performance. 

However, the results obtained for other datasets were slightly lower than for our data. The 

mean Dice scores were equal to 0.780, 0.676 and 0.646 for the UDIAT, OASBUD and BUSI 

datasets, respectively. The better result obtained for UDIAT dataset might be due to the 

fact, that the UDIAT US images were collected with the ACUSON US scanner, the same 

US scanner used to collect our data. Appearance of US images is related to the US image 
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reconstruction method implemented by scanner manufacturer. The obtained results suggest 

that the US image reconstruction method might have impact on breast mass segmentation.

We presented that the network developed using data collected at one center can be fine-tuned 

with the data from another center to improve segmentation performance. After the fine

tuning of our SK-U-Net, the mean Dice scores increased by around 6%. The improvement 

was especially higher in the case of the segmentation of US images from OASBUD and 

BUSI datasets.

The segmentation methods proposed in this work achieved better or comparable 

segmentation performance in comparison to other studies [10,13]. However, it is difficult 

to directly compare our results with those reported by other authors due to different methods 

and evaluation schemes. Yap et al. used two datasets, including the UDIAT dataset, to 

develop deep learning segmentation methods based on fully convolutional networks [10]. 

They applied 5-fold cross-validation to evaluate the methods. Their better performing 

model achieved mean Dice scores of 0.763 and 0.548 for segmentation of benign and 

malignant breast masses, respectively. In comparison. our SK-U-Net (without fine-tuning), 

evaluated using entire UDIAT dataset, achieved mean Dice scores of 0.800 and 0.738 for 

segmentation of benign and malignant breast masses, respectively. While they did not report 

the segmentation scores for the UDIAT dataset separately, our results suggest that the SK

U-Net outperformed their segmentation method [10]. Moreover, Hu et al. developed deep 

learning segmentation methods based on a set of 570 US images collected from 89 patients 

[13]. Their better performing method based on fully convolutional network achieved high 

mean Dice score of 0.890. They presented that introduction of dilated convolutions at deeper 

layers of segmentation network may improve performance. In our study, we obtained similar 

results, but in an automatic fashion. The expansion path of our SK-U-Net utilized dilated 

convolutions (larger receptive fields) to generate ROIs for larger breast masses. Our results 

also showed that the SK-U-Net used both conventional and dilated convolutions to process 

US images in the contraction path. Moreover, the dilated convolutions were more utilized 

in the middle part of the segmentation network, which suggests that utilization of larger 

receptive fields might be especially important before the first feature map up-sampling. The 

better-performing segmentation network proposed by Han et al. achieved mean Dice score 

of 0.871 on a test set of 800 US images. Moreover, they evaluated their method on the 

UDIAT dataset, and achieved mean Dice score of 0.798, comparable to our result. To the 

best of our knowledge, the OASBUD and BUSI datasets have not been used to evaluate 

segmentation methods [19,23]. Both datasets were originally used to develop methods for 

differentiation of malignant and benign breast masses. Therefore in this paper for the first 

time we reported the segmentation performance scores for these datasets.

The approach proposed in this paper has several advantages. First, by replacing conventional 

convolution/batch normalization/activation function blocks with SK blocks we improved the 

performance of the segmentation network. In a regular U-Net, the receptive field is fixed, 

but in the proposed SK-U-Net the receptive field can be automatically adjusted to better 

address the segmentation problem. Our results presented that the SKs can be useful for the 

segmentation of objects that, like breast masses, vary in size. While we used the SKs to 

improve the performance of U-Net, the approach is general. In future, it would be interesting 
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to investigate the usefulness of the SKs for other segmentation networks, for instance fully 

convolutional networks.

There are several issues related to our study. First, we did not examine the usefulness of 

different deep learning based segmentation networks, such as fully convolutional networks 

or residual networks. Usefulness of SKs was investigated only in the case of the standard 

U-Net architecture. However, we could also assess other versions of the U-Net model, such 

as residual U-Nets, dense U-Nets or attention gated U-Nets [28–30]. We would like to 

explore the usefulness of other deep learning architectures for breast mass segmentation 

in future. Second, segmentation performance of machine learning methods is related to 

the quality of manual segmentations [31]. In our study, ROIs for each of four datasets 

were prepared by a different medical expert. Ideally, ROI annotator interobserver agreement 

should be considered to better evaluate automatic segmentation methods. In practice, a 

segmentation method that achieved a similar level of agreement as between several medical 

experts can be considered satisfactory. Even so, the accuracy of manual segmentation is not 

fully knowable, especially for malignant masses, where US artifacts may obscure portions 

of the mass boundary as seen in Fig. 6. Segmentation of US images presenting such 

masses, with indistinct margins and posterior acoustic shadows, is considered problematic 

and challenging. Third, we did not utilize post-processing methods to further improve 

the automatic segmentations. Various methods, such as conditional random fields, could 

be applied to improve automatic segmentations generated by deep neural networks [32]. 

Forth, in this work we developed the U-Net and SK-U-Net models from scratch based on 

a relatively small dataset of 882 US images. Hypothetically, segmentation performance of 

the proposed method could be further improved by incorporating more data for training 

if required for the intended clinical applications. Segmentation performance of the models 

could be additionally improved by using transfer learning, but this requires further studies.

5. Conclusions

In this work, we presented a deep learning method for efficient segmentation of breast 

masses in ultrasound. The proposed method was based on U-Net model equipped with 

selective kernels. Due to the selective kernels, the network could automatically adjust 

receptive fields to provide better segmentation performance in comparison to standard U-Net 

model. We presented the usefulness of the proposed network on three datasets of ultrasound 

images collected at different medical centers. We believe that the results and techniques 

presented in our study may serve as an important step to the development of deep learning 

methods for breast mass recognition. In future, we plan to investigate the usefulness of other 

deep learning methods for breast mass segmentation. We also plan to take into account the 

agreement between annotators to better evaluate automatic segmentation methods.
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Fig. 1. 
Several US images presenting benign and malignant breast masses used to develop the 

segmentation network.
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Fig. 2. 
US images from the UDIAT, OASBUD and BUSI datasets. These US images collected at 

different medical centers were used to test the proposed segmentation method.
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Fig. 3. 
The architecture of the proposed SK-U-Net, a modification of the U-Net. The SK block 

consisted of two branches. The first one utilized 3x3 dilated convolutions, while the second 

one used conventional 3x3 convolutions. Both feature maps were summed and used to 

calculate attention coefficients determining the usefulness of feature maps corresponding to 

different receptive fields.
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Fig. 4. 
Representative segmentation results (Dice score around test set median) obtained with the 

SK-U-Net for the test set of US images collected at our center.
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Fig. 5. 
Representative segmentation results (Dice score around test set median score) obtained 

with the SK-U-Net for the test sets collected at different medical centers. In this case, the 

SK-U-Net was additionally fine-tuned using US images collected at particular center.
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Fig. 6. 
Test segmentation results obtained for malignant breast mass images presenting indistinct 

margins and posterior acoustic shadows. In these cases, our SK-U-Net achieved 

segmentation performance below median Dice scores calculated for each dataset.
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Fig. 7. 
(a) Mean attention calculated using all test sets for each SK block of the SK-U-Net. 

The middle SK blocks utilized more dilated convolutions (mean attention > 50%). (b) 

Spearman’s rank correlation coefficients between mean attention and breast mass size 

calculated for each SK block. The network utilized dilated convolutions in the expansion 

path to reconstruct ROIs corresponding to larger breast masses.
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