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A B S T R A C T

Designers of energy systems often face challenges in balancing the trade-off between cost and reliability. In
literature, several papers have presented mathematical models for optimizing the reliability and cost of energy
systems. However, the previous models only addressed reliability implicitly, i.e., based on availability and
maintenance planning. Others focused on allocation of reliability based on individual equipment requirements via
non-linear models that require high computational effort. This work proposes a novel mixed-integer linear pro-
gramming (MILP) model that combines the use of both input-output (I-O) modelling and linearized parallel
system reliability expressions. The proposed MILP model can optimize the design and reliability of energy systems
based on equipment function and operating capacity. The model allocates equipment with sufficient reliability to
meet system functional requirements and determines the required capacity. A simple pedagogical example is
presented in this work to illustrate the features of proposed MILP model. The MILP model is then applied to a
polygeneration case study consisting of two scenarios. In the first scenario, the polygeneration system was
optimized based on specified reliability requirements. The technologies chosen for Scenario 1 were the CHP
module, reverse osmosis unit and vapour compression chiller. The total annualized cost (TAC) for Scenario 1 was
53.3 US$ million/year. In the second scenario, the minimum reliability level for heat production was increased.
The corresponding results indicated that an additional auxiliary boiler must be operated to meet the new re-
quirements. The resulting TAC for the Scenario 2 was 5.3% higher than in the first scenario.
1. Introduction

Energy systems such as combined heat power (CHP) and poly-
generation systems are touted to possess high efficiencies due to the in-
tegrated use of energy sources. However, what prevents such integrated
systems from being implemented on a wider scale is the lack of confi-
dence in the reliability of energy systems to perform a function for a
given period of time. Reliability is defined as the probability that energy
supply is uninterrupted and is expressed as a percentage of time that it is
expected to function. Interruptions and variations in energy supply can
happen at any time. Although most outages are momentary occurrences
and are generally brief, they do not adversely impact anyone other than
the most sensitive operations. Nevertheless, an average facility can
expect to experience an extended outage every other year. A reason for
this could be due to the way the energy system was designed or config-
ured. The design of an energy system can influence how cascading
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failures ripple through a network of interdependent process units. This
can be explained using Fig. 1. As shown in Fig. 1(i), an energy system is
expected to perform its function i.e., to produce process heat and is ex-
pected to operate at a minimum reliability (Rmin). However, the reli-
ability of the CHP unit (given by R2) in Fig. 1(i) is insufficient to meet the
expected Rmin and may lead to frequent system outages. To address this,
other equipment such as a boiler (with reliability, R1), can be allocated to
ensure that the energy system is able to produce heat and operate at an
overall reliability (R1 and R2) beyond Rmin (as shown in Fig. 1(ii)). Fig. 1
evidently implies that equipment reliability is a crucial factor when
designing an energy system to perform a given function.

In the past, several approaches have been presented to design energy
systems [1]. For instance, Andiappan et al. [2] developed a mathematical
model that optimizes the selection and sizing of equipment in a
tri-generation system based on seasonal variations in feedstock and en-
ergy demand. Meanwhile, Sy et al. [3] presented a target-oriented robust
er 2019
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Fig. 1. Allocation of equipment reliability based on function to produce heat.
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optimisation (TORO) approach to design a polygeneration system to
maximize its robustness against uncertainties. Andiappan et al. [4]
developed a design operability and retrofit analysis (DORA) framework to
analyze economically feasible retrofitting options for energy system de-
signs. Ling et al. [5] presented a minimax regret criterion framework to
design biomass CHP systems based on uncertainties in energy demand.
Ubando et al. [6] recently proposed an approach that combines fuzzy
linear programming and global sensitivity analysis for the optimal design
of a tri-generation system. Based on the aforementioned approaches, it is
evident that there is limited focus on the consideration of reliability
during the design of energy systems.

In view of this gap, Andiappan et al. [7] proposed a grassroots design
approach to allocate equipment redundancy. This approach used com-
bined chance-constrained programming and k-out-of-n system model-
ling. Meanwhile, Sun and Liu [8] developed a mixed-integer linear
programming (MILP) model for designing steam and power systems
considering reliability and uncertainty. The proposed MILP model [8]
incorporated the configuration of the system (e.g., equipment capacity,
efficiency, failure) as well as operational scheduling when computing the
optimized cost (i.e., minimum). Based on [8], the results show that
redundancy based on spare capacity and auxiliary equipment will pro-
vide more reliability and flexibility in utility systems. Later, a
multi-objective optimization model was developed by Rad et al. [9] for
the integration of utility systems in process industries. The model [9]
used total site analysis, site utility grand composite curves, cogeneration
targeting, and exergetic and economic analysis. The optimized
grassroots-based design in [9] was then subjected to reliability analysis.
In addition, the system availability, which is a function of failure and
repair rate, was considered in the analysis as it affects the cost of pro-
duction due to the expected repair cost [9]. Kim [10] proposed reliability
optimization model based on a continuous-time Markov chain approach.
This optimization model [10] addressed redundancy allocation problems
and reliability-redundancy allocation problems. The model [10] pro-
vided the lifetime characteristics of the system consisting of active and
standby redundant systems. Next, Pombo et al. [11] developed a
2

multi-objective model that utilized energy storage systems to increase the
network reliability of distribution facilities. The multi-objective model
[11] detemines the optimal capacity and location of batteries, optimum
number and location of switching devices by minimizing equipment cost.
Andiappan et al. [12] then developed an integrated framework to
improve the reliability of a tri-generation system. The framework de-
termines the most critical equipment within the system and subsequently
allocates redundancy. Manesh et al. [13] used Markov chain-based
method to analyse the reliability and availability of site utility (or
cogeneration) systems. The study [13] is to reduce the number of state
spaces and complexity of the utility system (i.e., number of components)
while achieving accuracy in the probability calculation needed in the
reliability analysis. The method has less computational time and thus can
be extended to less complex systems. Ade et al. [14] showed that inherent
safety plays a vital role in the reliability of processes at various parts of
the design stage. It was observed that inherent safety design principles
lead to simplifications (i.e., use of fewer equipment), longer corrective
downtime maintenance, and to an increase in overall risk.

Reliability models have been developed for other areas as well. For
example, Numminen and Lund [15] developed a qualitative framework
to assess the reliability of micro-grids. In Numminen and Lund [15], the
important factors that decrease reliability were identified. These factors
include the design, installation, and operation and maintenance of local
grids. Helyen et al. [16] proposed a fairness index to measure the
perceived acceptance of the distribution reliability levels among stake-
holders. This society-based indicator considered both equity (i.e.,
providing exactly what a sector needs) and equality (i.e., providing
equally in all sectors) in the reliability modelling framework. Adefarati
and Bansal [17] proposed the use of reliability indices based on the cost
of system failure or inability to supply power when using renewable
energy resources. The indices are as follows: loss of load expectation, loss
of load probability, and annual cost of load loss. The optimum configu-
ration in [17] resulted in the reduction of costs related to its life-cycle
energy use and greenhouse gas emissions.

A study by Honarmand et al. [18] proposed a supply chain-based
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method to determine reliability. This method [18] uses a Markov model
with measurements such as loss of load expectation, system average
interruption frequency index, and energy not supplied indices to deter-
mine the reliability of processes. Next, Penttinen et al. [19] proposed the
Open Modelling approach for Availability and Reliability of Systems or
OpenMARS, a method to assess performance and risk in complex and
dynamic systems. The model [19] is a hybrid of fault tree, Markov, and
function-based approaches, which are traditional risk assessment tools.
The results of the model are comparable and can be used for
risk-informed decision-making. Similarly, Wang et al. [20] developed a
model that combined Markov chain-based approach and reliability block
diagram to analyse reliability and availability for a hybrid cooling sys-
tem. The model [20] incorporated both operational availability and
functional availability, and maximum allowable downtime to determine
acceptable repair rates. Ye et al. [21] proposed a general mixed-integer
non-linear programming (MINLP) model that determines optimal selec-
tion of parallel units while considering reliability, availability, and cost in
chemical process systems. The model in [21] considers fixed probability
of single units in terms of availability and provides flexibility on the
characteristics of the parallel units (e.g., available capacity, cost of
equipment). The resulting rigorous model is applied to ensure the reli-
ability of methanol synthesis and hydrodealkylation processes. Ye et al.
[22] extended the MINLP model in [21] to optimize cost of an air sep-
aration process based on reliability and frequency of maintenance.
Essentially, this model [22] is aMarkov chain-basedmodel that considers
stochastic failures and repair processes. The strategies employed in the
model [22] include installing parallel units for critical components and
performing condition-base maintenance. Recently, Hollermann et al.
[23] proposed an optimization approach to identify (n – 1)-reliable en-
ergy supply system designs. This approach accounts for the failure of an
equipment when another is undergoing maintenance. Other
reliability-based approaches have been developed based on process
graphs (P-graphs) [24]. For instance, Voll et al. [25] developed an
automated superstructure framework using P-graphs to allocate redun-
dancy for distributed energy supply systems. Süle et al. [26] then pro-
posed a method to allocate redundant process units by mapping
reliability block diagrams (RBDs) in P-graphs. Meanwhile, Kovacs et al.
[27] proposed a P-graph synthesis algorithm to determine reliability of
networks based on generic (combined series and parallel) configurations.

The aforementioned works provide substantial basis for models that
design based on reliability. However, there are several areas that can be
explored further;

� The previous works that have addressed reliability issues focus on
equipment reliability but do not explicitly allocate equipment reli-
ability based on specific functions a system should deliver, i.e., based
on availability and maintenance planning.

� Previous papers present non-linear models that are generally complex
to solve (i.e., either labour intensive or resource intensive or both)
and challenging to guarantee a global optimum.

� Previous works [7, 12] focus exclusively on specifying minimum
reliability expectations for each individual unit. In reality, these
minimum reliability specifications for each unit may not be available
due to lack of historical data. In this context, minimum reliability is
typically specified for the entire system. Based on this, designers
should allocate sufficiently reliable equipment to meet the minimum
expectations for the entire system. However, this issue becomes more
complex when the system is expected to perform several functions
(i.e., produce heat and power).

To address the areas mentioned above, this work proposes a novel
MILP model framework to optimize the design of energy systems,
considering the reliability of the system to perform a function. In addi-
tion, the MILP model proposed in this work could determine the capacity
of the equipment in the synthesized energy system. This is achieved via
the combined use of a modified parallel system reliability approach and
3

input-output (I-O) modelling. The modified parallel system reliability
approach determines the optimum allocation of equipment of a given
function to meet an energy system's minimum required reliability. I-O
modelling is used to establish the capacity/sizing of the equipment
chosen by the modified parallel system reliability approach.

2. Methodology

The problem addressed in this work can be represented in Fig. 2. It is
described as follows; given a system with a set of technologies j 2 J, each
with unique minimum capacity (xjmin), maximum capacity (xjmax), reli-
ability (Rj), variable cost (VCj) and fixed cost (FCj). The system is required
to perform its function (i.e., produce heat and power) to meet demands.
The system is expected to meet a minimum reliability level to perform a
function (Ri

L). In this respect, the objective of this work is to synthesize an
optimum energy system with allocation of technologies j with unique Rj
to meet the overall minimum system reliability level for each function
while minimizing cost.

A mathematical model can be formulated to solve the above-
mentioned design problem. The model for this work is formulated using
the approach presented in this section. Firstly, the material and energy
balances of the design problem are expressed in the form of an input-
output (I-O) relationship as shown in Eq. (1);

X
j

Aijxj ¼ yi 8i (1)

As shown in Eq. (1), Aij is the process matrix of input or output flows
of stream i to or from a given equipment j. Aij represents the coefficient
values for inputs/output streams i. Negative values for Aij respresent
input streams, while positive values indicate product streams. For
example, if an equipment j takes in 650 kW of heat, Aij would be defined
as �650 for its input heat stream (i ¼ heat). On the other hand, if that
same equipment j produces power at 500 kW, Aij would be þ500 for its
product stream (i ¼ power). Meanwhile, the variable xj is the operating
capacity of equipment j. xj is expressed in terms of percentage (%),
whereby if xj ¼ 1, it would mean that technology j is operating at 100%
capacity. The variable yi represents the net output stream i from the plant.
Note that the value of yi can be either positive, negative or zero. Positive
values for yi indicate that stream i is a product from the plant. In contrast,
a negative yi means that stream i is an input into the plant. In the case
where yi is zero, that would mean stream i is purely an intermediate
stream.

Note also that xj in Eq. (1) is limited by the range shown in Eq. (2). As
shown, xjmin and xjmax are the lower and upper operating capacity limits
respectively. This represents the potential range of capacity in which
vendors can provide for equipment j. Alternatively, if there are no con-
straints on the operating capacity for equipment j (e.g., reactors), xjmax

can be replaced with an arbitrary large number while xjmin can be set as
low as zero. This way, the capacity of equipment j can be determined
without the constraint of size availability in the market. Alongside this, bj
is a binary variable that indicates whether equipment j is selected. As
shown in Eq. (3), bj takes the value of 1 if equipment j is needed and takes
the value of 0 if it is not required.

xmin
j bj � xj � xmax

j bj 8j (2)

bj 2 f0; 1g 8j (3)

Next, the limits for the net output supply of stream i are given by Eq.
(4). With Eq. (4), material and/or energy demands from the market can
be specified in the form of lower and upper limits Yi

L and Yi
U respectively.

This constraint is exclusively aimed at the outputs from the plant.

YL
i � yi � YU

i 8i (4)

However, it is important to allocate equipment reliability based on
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the required function. Function in this context, refers to the reliability to
produce stream i (e.g., steam, power, etc.). As several equipment may
produce the same supply of stream i, it is assumed that the allocation of
equipment j here is analogous to parallel system reliability. For instance,
if two or more equipment can perform the same function, these equip-
ment are assumed to be operating in parallel. Based on this assumption,
the allocation of equipment j based on reliability begins from the
expression shown in Eq. (5).

RL
i � 1�

Y
j

�
1�R

ðTij bjÞ
j

�
8i (5)

Rj is the reliability for equipment j. Note that reliability represents the
probability of equipment j operating in a given period. In other words, if
Rj takes the value of 95%, it would mean that equipment j would operate
at least 95% of the time. Meanwhile, Tij is a user-defined binary topo-
logical parameter indicating existence of a path from equipment j to
stream i. Note that a given system may have several output streams i but
not all of those streams would be required to meet a minimum require-
ment Ri

L. Hence, Tij is introduced to ensure that outputs that must meet
Ri
L, would take the value of 1, while those output streams that do not have

to meet Ri
L are assigned Tij ¼ 0. For example, Tij ¼ 1 indicates that

equipment j is capable of producing stream i, and Tij ¼ 0 would be
indicate otherwise. Ri

L is the minimum reliability target for equipment in
the energy system to produce stream i. From expression in Eq. (5), it can
be seen that the expression is non-linear in nature. Non-linear expressions
can cause models to take long durations to solve. In the case where a
solution is obtained from non-linear expressions, it would be a challenge
to determine whether the solution obtained is globally optimal.

To address this, a linear expression for reliability of supply for stream i
is derived as demonstrated in Eqs. (6), (7), (8). Firstly, (1 – Rj) from Eq.
(5) is the failure rate or unreliability of equipment j, which is the opposite
of reliability Rj and is given by Qj. Qj is then substituted into Eq. (5) to
give Eq. (6).

RL
i � 1�

Y
j

�
Q
ðTij bjÞ
j

�
8i (6)

RL
i � 1� �

Y
j

�
Q
ðTij bjÞ
j

�
8i (7)

1�RL
i �

Y
j

�
Q
ðTij bjÞ
j

�
8i (8)

Finally, from Eq. (8), a linear expression is formed by introducing
logarithmic expressions as shown in Eq. (9);

log
�
1�RL

i

� �
X
j

�
Tij bj

�
logQj 8i (9)

The primary objective of this work is to determine the minimized
Fig. 2. Problem statem

4

total annualized cost (TAC) while allocating sufficient equipment reli-
ability to produce stream i. Thus, the objective function for this model is
shown in Eq. (10);

minimize TAC¼CF
X
i

PUiyi þAF
X
j

�
VCjxj þ FCj bj

�
(10)

In Eq. (10), CF is a conversion factor to ensure that net flowrates are
annualized. In addition, PUi is the unit price/cost of input stream i. AF is
an annualising factor for the equipment costs, while VCj and FCj are
variable cost coefficient and fixed cost coefficient of equipment j cost
function respectively.

Note that the proposed MILP model focuses on allocating equipment
based on minimum reliability required for the system to perform its
functions. However, such reliability does not account for the reliability to
produce an exact amount of output of each product. Such consideration is
beyond the scope of this work and remains an area for future study.

To demonstrate the proposed methodology, two case studies are
presented in this work. The first case study consists of a pedagogical
example to illustrate the use of the methodology proposed. Following
this, a polygeneration system was solved as a second case study.

3. Results & discussion

3.1. Case study 1: pedagogical example

In this case study, a simple pedagogical example is used to demon-
strate the proposed approach in the previous section and is aimed at
illustrating the methodology in a simplified form. The pedagogical
example is a source-sink problem to design an energy system for a hotel
resort (Fig. 3). As shown, the hotel resort would require utilities (sinks)
such as heat, clean water, power and ice for its day-to-day operations. To
meet these demands, there are four potential technologies (sources), each
could provide at least one of the utilities mentioned. The standard sizes or
capacity for each technology is presented in Table 1. The objective here is
to determine the optimal reliability and operating capacity allocation of
technologies required to meet the defined utility demands based on cost
and minimum reliability required to produce utilities.

To simplify the cost estimation, this example assumes that the
annualised variable costs is a linear function of the operating capacity for
each technology and is given in Table 2.

To explore the pedagogical example, the following two scenarios
were solved;

� Scenario 1: Base Case
� Scenario 2: Increase in Minimum Required Reliability of System to
Produce Heat

Scenario 1 represents the base case for this example. The base case in
ent representation.



Fig. 3. Source-sink example.

Table 1
Available sizes for each technology.

Aij Poly-gen Unit RO Unit CHP Unit Engine Unit

Heat (kW) 688 500
Clean Water (L/s) 10 8
Power (kW) 1,207 800 500
Ice (kW) 800

Table 2
Annualized capital (variable and fixed) costs.

Unit/Module Annualized Variable Cost (VCj)
(US$/Operating Capacity)

Annualized Fixed
Cost (FCj) (US$)

Poly-gen Unit 25,000 15,000
RO Unit 130.31 1,000
CHP Unit 16,530 8,000
Engine Unit 5,000 5,000
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this sense, refers to a reference design. The reference design in Scenario 1
is used as a basis for comparsion in Scenario 2 to analyse changes in
decision-making. The minimum required reliability of supply and the
minimum energy demands are shown in Table 3. The model developed
for this example is coded in LINGO version 14, and is run on a LENOVO
P700 with 4 GB RAM and i7 Core 2.59 GHz Processor. The model con-
tains 18 continuous variables, 4 integer variables and 27 constraints.
Note the number of variables and constraints are derived from codes
inserted in LINGO. For instance, since there are four technologies
considered in this example, xj would be expanded to variables x1, x2, x3
and x4 in LINGO. The optimal solutions for both scenarios were obtained
within negligible time.

3.1.1. Scenario 1
In Scenario 1, the energy system is expected to meet the minimum

required energy demands and required reliability of equipment to
Table 3
Minimum required utility demands.

Required System Function
(To produce, yi)

Minimum Utility
Demand (Yi

L)
Minimum Required
Reliability of System (Ri

L),%)

Scenario 1 Scenario 2

Heat (kW) 688 80 85
Clean Water (L/s) 8 80 80
Power (kW) 800 80 80
Ice (kW) 700 80 80

5

produce utilities specified in Table 3. Scenario 1 represents the base case
for this example. The base case in this sense, refers to a reference design.
The reference design in Scenario 1 will then be used to compared in other
scenarios to analyse changes in decision-making. The MILPmodel for this
case study is formulated based on the generic equations proposed in Eqs.
(2), (3), (4), (5), (6), (7), (8), and (9). The model was then solved by
minimising Eq. (10). The optimal solution for Scenario 1 is shown in
Fig. 4. As shown, the energy system was able to meet the minimum en-
ergy demands and required reliability for the system to produce the
aforementioned utilities with just a polygeneration unit of 100% capac-
ity. The corresponding TAC and reliability for the baseline scenario were
40,000 US$/y and 80% respectively.

3.1.2. Scenario 2
As for Scenario 2, the minimum reliability required for the system to

produce heat is now increased to 85%. The samemodel in Scenario 1 was
then solved with the same computational resources and effort. The
optimal solution for Scenario 2 is shown in Fig. 5. For Scenario 2, the CHP
unit was required for operation alongside the polygeneration unit. This is
because the minimum reliability required of the system to produce heat
has now been increased and the polygeneration operation on its own,
would not be able to offer reliable heat supply. As a result, the CHP unit
was selected with operating capacity 35%, while the polygeneration unit
dropped in size from 100% in Scenario 1 to 88% in Scenario 2. This
means that CHP unit with operating capacity of 35% load is required to
supply a fraction of the required heat supply, allowing the poly-gen unit
to reduce its capacity. In this respect, the change in design decision
(sizing) was evident after increasing the target or minimum reliability.
This shows that reliability plays a significant role when sizing and allo-
cating equipment based on reliability to produce utilities. With the
operation of the CHP unit, the TAC and system reliability for Scenario 2
were increased to 50,660 US$/y and 98% respectively.

Note that solutions obtained in Scenarios 1 and 2 may seem obvious,
but they demonstrate the validity of the methodology developed in this
paper.
3.2. Case study 2: polygeneration system

The proposed methodology is then applied to a modified poly-
generation case study from Kasivisvanathan et al. [28]. Fig. 6 shows the
flowsheet of the polygeneration system which consists of an auxiliary
boiler unit, a combined heat and power (CHP) module, a vapour
compression chiller, and a reverse osmosis (RO) unit. Aside from this, it
can be seen that the polygeneration system is able to generate various
forms of product streams. These include heat, power, cooling, and treated
water. The process matrix for the polygeneration system is adapted from
Kasivisvanathan et al. [28] and is shown in Table 4. It is assumed that the



Fig. 4. Optimal solution for Scenario 1 - base case.

Fig. 5. Optimal solution for Scenario 2 - minimum reliability to produce heat increased to 85%.

Fig. 6. Polygeneration system.
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process matrix from Kasivisvanathan et al. [28] is determined prior at the
synthesis stage. It is imperative to note that the synthesis stage de-
termines the optimal selection of technologies and preliminary allocation
of flows. The preliminary flows are used as input for the process matrix.
In this case study, the aim is to optimize the design of the polygeneration
based on its operating capacity and its reliability to produce outputs.
Design optimisation focuses on more accurately defining and refining the
capacity allocations for technologies determined at the synthesis stage. In
this sense, there are possibilities where the size of a unit in a system could
6

be much smaller or larger than what was determined prior at the syn-
thesis stage.

The feasible partial load operating range and reliability for each unit
in the polygeneration is given in Table 5. Note that it is assumed that the
reliability, Rj assigned to each unit, is the resultant reliability from series
connections prior to that given unit. For instance, the reliability of the
auxiliary boiler (R2 ¼ 0.90) is set, taking into account of its connection
with the RO unit and CHP module. Hence, its reliability is a much lower
reliability since it is operating at the end of a series connection with the



Table 4
Process matrix for polygeneration system [28].

Aij CHP Module Auxiliary Boiler
(Aux. Boiler)

Vapour
Compression
Chiller
(V.C. Chiller)

RO Unit

Heat (kW) 18,199 6,881
Power (kW) 12,079 -69 -1,600 -410
Cooling (kW) 8,000
Treated Water
(L/s)

-33 -4 137

Fuel (L/s) -1.8 -0.23
Fresh Water (L/s) -342
Rejected Water
(L/s)

205

Table 5
Feasible partial load operating range and reliability for each unit in poly-
generation system.

Unit/Module xjmin (%) xjmax (%) Rj (%)

CHP Module 30 125 95
Auxiliary Boiler 35 125 90
Vapour Compression Chiller 35 125 92
RO unit 10 125 92

Table 6
Capital (fixed and variable) costs for each unit in polygeneration system.

Unit/Module Variable Cost Coefficient
(VCj)

Fixed Cost Coefficient
(FCj)

CHP Module 1,653 US$/kW 75.50 million US$
Auxiliary Boiler 305 US$/kW 3.95 million US$
Vapour Compression
Chiller

467 US$/kW 0.24 million US$

RO Unit 13.31 US$/L 0.01 million US$

Table 7
Cost of materials in polygeneration system.

Material (yi) Operating Cost Coefficient (PUi)

Fuel Oil 0.90 US$/L
Fresh Water 0.001 US$/L

Table 8
Minimum required energy demands.

Required System Function
(To produce, yi)

Minimum Energy
Demand (Yi

L)
Minimum Reliability
of System (Ri

L,%)

Scenario 1 Scenario 2

Heat (kW) 5,000 90 95
Power (kW) 7,000 95 95
Cooling (kW) 7,000 90 90
Treated Water (L/s) 80 90 90

V. Andiappan et al. Heliyon 5 (2019) e02594
RO unit and the CHP module.
To simplify the cost estimation, this case study assumes piecewise

linear cost functions with variable and fixed components. Meanwhile, the
annualising factor for the capital cost is assumed as 0.13/y. The annu-
alized capital cost coefficients for each of the units in the polygeneration
differ from each other based on the actual rating given in Table 6.

The costs of the materials streams are shown in Table 7. Since the
total cost is expressed annually, cost of the material streams must also be
expressed on an annual basis by using the annual operating time of 8000
h/y.

To optimize the design of units in the polygeneration system, the
following two scenarios were considered;

� Scenario 1: Base Case
� Scenario 2: Increase in Minimum Required Reliability to Produce
Heat

Similar to Case Study 1, the base case in Scenario 1 provides a
reference design. The reference design here is then used in Scenario 2 for
analysing the changes in the design configuration. The minimum
Fig. 7. Scenario 1
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required reliability and the minimum energy demands are shown in
Table 8. The MILP model developed for both scenarios consists of 22
continuous variables, 4 integer variables and 31 constraints. Similarly to
Case Study 1, the optimal solutions for both scenarios in Case Study 2
were obtained within few seconds.

3.2.1. Scenario 1
For the first scenario, the polygeneration system is expected to meet

the minimum required energy demands, while adhering to the minimum
required reliability to produce each supply specified in Table 8. For
instance, the required reliability to produce heat is set to 90%. This
means that the system needs to produce heat at least 90% of the time.
Following this, the I-O model for this case study is formulated based on
the generic equations proposed in Eqs. (1), (2), (3), (4), (5), (6), (7), (8),
and (9). The model is then solved by minimising Eq. (10) using the same
computational resources mentioned in the pedagogical example. Fig. 7
illustrates the optimal solution for Scenario 1. From Fig. 7, it can be seen
that both the minimum energy demands and required reliability were
- base case.



Fig. 8. Scenario 2 - minimum reliability to produce heat increased to 95%.
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met without the use of an auxiliary boiler. This is evident as the binary
(I2) and operating capacity (x2) variables for the auxiliary boiler were
computed as zero, to show non-existence and zero operation respectively.
Meanwhile, the optimal solution suggests that the CHP module, V. C.
Chiller and RO unit operates at 72%, 88% and 77% capacity respectively.
It is worth noting that the CHP plant was chosen over the boiler due to
the existence of other utility requirements such as power. Although the
boiler is a cheaper option, it is only capable of supplying the heat demand
at its expected reliability and not the power requirements specified. On
the other hand, the CHP plant can support both heat and power demands
as well as their respective reliability requirements. The corresponding
TAC for Scenario 1 was computed as 53.3 million US$/y.

3.2.2. Scenario 2
In Scenario 2, the polygeneration system is required to meet the same

energy demands in Table 8 but the minimum required reliability to
produce heat is now increased to 95%. The model was solved, and the
corresponding optimal solution is presented in Fig. 8. Fig. 8 suggests that
the auxiliary boiler was required for operation alongside the CHP mod-
ule. The reason for this is because the CHP is unable to produce heat
supply at higher reliability if operated alone. Hence, the auxiliary boiler
was selected with an additional operating capacity 35% to support the
increase reliability requirements for heat production. The TAC for this
scenario was determined as 56.1 million US$/y, which is a 5.3% increase
from Scenario 1.

4. Conclusion

A novel MILP model is developed in this work to optimize the
design and reliability of energy systems based on equipment function
and operating capacity. The proposed MILP model utilises I-O
modelling to determine the actual capacity required for each process
unit in an energy system. Then, the MILP model uses linearized par-
allel system reliability expressions to allocate equipment with suffi-
cient reliability to meet system functional requirements of the entire
system. To demonstrate the proposed MILP model, two examples were
solved. Future work will be directed towards formulating a mathe-
matical model that is able to address reliability expressions for
equipment in hybrid (combined series and in parallel) configurations
simultaneously. In addition, other conflicting variables such as flexi-
bility and start-up costs can be considered via multi-objective
optimization.
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