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Abstract

Background

Analytic measurement of serum tumour markers is one of commonly used methods for can-

cer risk management in certain areas of the world (e.g. Taiwan). Recently, cancer screening

based on multiple serum tumour markers has been frequently discussed. However, the

risk–benefit outcomes appear to be unfavourable for patients because of the low sensitivity

and specificity. In this study, cancer screening models based on multiple serum tumour

markers were designed using machine learning methods, namely support vector machine

(SVM), k-nearest neighbour (KNN), and logistic regression, to improve the screening perfor-

mance for multiple cancers in a large asymptomatic population.

Methods

AFP, CEA, CA19-9, CYFRA21-1, and SCC were determined for 20 696 eligible individuals.

PSA was measured in men and CA15-3 and CA125 in women. A variable selection process

was applied to select robust variables from these serum tumour markers to design cancer

detection models. The sensitivity, specificity, positive predictive value (PPV), negative pre-

dictive value, area under the curve, and Youden index of the models based on single

tumour markers, combined test, and machine learning methods were compared. Moreover,

relative risk reduction, absolute risk reduction (ARR), and absolute risk increase (ARI) were

evaluated.

Results

To design cancer detection models using machine learning methods, CYFRA21-1 and

SCC were selected for women, and all tumour markers were selected for men. SVM and

KNNmodels significantly outperformed the single tumour markers and the combined test
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for men. All 3 studied machine learning methods outperformed single tumour markers and

the combined test for women. For either men or women, the ARRs were between 0.003–

0.008; the ARIs were between 0.119–0.306.

Conclusion

Machine learning methods outperformed the combined test in analysing multiple tumour

markers for cancer detection. However, cancer screening based solely on the application of

multiple tumour markers remains unfavourable because of the inadequate PPV, ARR, and

ARI, even when machine learning methods were incorporated into the analysis.

Introduction
Several tools based on tumour markers have been developed for cancer risk management.
However, each tumour marker test has been developed and validated for a specific category of
anticipated cancer. In clinical practice, such tests are widely used in monitoring response to
cancer treatment, but there is a lack of evidence supporting their use for screening multiple
cancers. However, in certain areas of the world (e.g. Taiwan), people who fear of getting cancer
often ask their clinicians to perform a combined set of common tumour marker tests to deter-
mine the likelihood of cancer development. In most cases, screening tests reveal no serologic
sign of malignancy; however, some tests reveal suspicious results requiring further cancer sur-
veying, with some patients were finally receiving a cancer diagnosis. In the literature, though
lacking of evidence to be a screening tool, several studies have proposed that a panel of multiple
serum tumour markers is probably more convenient and cost-effective for screening cancers in
certain contexts because the cost of testing kits has decreased and the automated panel of test-
ing has improved in recent years [1–8]. The true efficiency and the technique of statistical anal-
ysis of such panels remain unclear for populations who actively seek cancer screening through
serologic testing.

Conventionally, according to the individual threshold value of tumour markers, the algo-
rithm of the combined test would alarm patients with any one elevation of such tumour mark-
ers [1, 2, 7, 8]. However, the combined test has been proven to not significantly improve the
discrimination ability of multiple tumour markers [6, 9]. The results of limited accuracy and
evidence accordingly made the role of multiple tumour markers test insignificant and not rec-
ommended for routinely clinical use.

Recent studies have explored the application of machine learning methods in medical deci-
sion fields, including cancer risk prediction and aiding medical diagnosis [6, 9]. Several super-
vised machine learning methods, such as support vector machine (SVM), k-nearest neighbour
(KNN), and logistic regression (LR) models, have received considerable attention in various
medical applications over the past decades. Supervised machine learning methods can predict
the class of an unknown case by generating a classification model from a set of training samples
with a known class label. Multiple tumour markers subjected to the aforementioned machine
learning methods have been proven to be superior to the combined test for diagnosing specific
cancer types [6]. Several studies have also revealed that multiple variable analysis by using
machine learning methods exhibits superior performance for cancer diagnosis or prognostic
prediction compared with pathological studies [10, 11]. However, the effectiveness of applying
machine learning methods to multiple tumour marker analysis for cancer screening has not yet
been extensively established.
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Therefore, we proposed that computational analysis techniques using the supervised learn-
ing methods SVM, KNN, and LR could probably develop classifiers for screening cancers by
multiple tumour markers test. In this paper, we elucidate their efficiency and compare the per-
formance of SVM, KNN, and LR models.

Materials and Methods

Patient Eligibility
This retrospective study was approved by the Ethics Committee of Chang Gung Memorial
Hospital (IRB no. 104-4097B). Patient records were anonymised and de-identified prior to the
analysis. We included 21 614 (9710 men and 11 904 women) apparently asymptomatic individ-
uals who had at least once voluntarily undergone an out-of-pocket tumour marker panel test
between March 2003 and December 2012 consecutively at the Linkou branch of Chang Gung
Memorial Hospital [2]. We excluded 418 men and 500 women with previously diagnosed
malignancies. All eligible individuals (9292 men and 11 404 women) had complete data on 6
tumour markers (AFP, CEA, CA19-9, CYFRA21-1, SCC, and PSA) for men and 7 tumour
markers (AFP, CEA, CA19-9, CYFRA21-1, SCC, CA125, and CA15-3) for women [1, 2]. AFP,
CEA, CA19-9, SCC, PSA, CA125, and CA15-3 were measured using commercially available
kits (Abbott Diagnostics, Abbott Park, IL, USA). CYFRA21-1 was analytically determined with
a commercially available kit (Roche Diagnostics Corp., Indianapolis, IN, USA). All assays of
tumour markers met the requirements of the College of American Pathologists (CAP) Labora-
tory Accreditation Program, thus ensuring that the results were accurate and reproducible.
Data were obtained from a cancer registry to determine whether each patient had received a
new diagnosis of malignancy within 1 year of the tumour markers test. The data from the can-
cer registry revealed that of the 9292 men, 100 had received a diagnosis of malignancy within 1
year of the test. The cancer to noncancer ratio was 100:9192 for men. Similarly, of the 11 404
women, 87 had received a new diagnosis of malignancy within 1 year of the analytic measure-
ments. The cancer to noncancer ratio was 87:11 317 for women.

Subsequently, a ratio of 2:1 (training to validation) was used to randomly allocate individu-
als to the training or validation set. All randomisations were performed using Matlab (Math-
Works, Natick, MA, USA). For the men, 67 cases of newly diagnosed cancer and 6128
noncancer cases were randomised to the training set. Moreover, for the training set, random
undersampling was applied [12–14] because of the extremely unbalanced data set used in this
study. A cancer to noncancer ratio of 1:1 was adopted to randomise 67 individuals from the
6128 noncancer cases to the final training set. Consequently, the training set, which comprised
67 cases of newly diagnosed cancer and 67 noncancer cases, was used to train the machine
learning models. For the women, 116 cases (58 newly diagnosed cancer cases and 58 noncancer
cases) were randomised to the training set. In addition, one-third of all individuals were ran-
domly allocated to the validation set to test the performance of the constructed models. The
validation sets comprised 3097 cases (33 cases of newly diagnosed cancer and 3064 noncancer
cases) for men and 3801 cases (29 cases of newly diagnosed cancer and 3772 noncancer cases)
for women. The tumour types of occult cancer cases were also listed in the training and valida-
tion sets.

Evaluation of Importance of Each Tumour Marker
To evaluate the importance of each tumour marker in the screening of cancers, a multivariate
LR analysis of the tumour markers was performed for both sexes. Analyses were performed
using SPSS (Version 20; SPSS Inc., Chicago, IL, USA). The continuous variables of all
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individuals were input to evaluate the significance. Results with P< .05 were considered statis-
tically significant.

Variable Selection on the Basis of the Youden Index
Using multiple variables in machine learning methods does not necessarily improve the predic-
tion performance. The Youden index was used as a performance indicator for selecting the vari-
ables used in the classifier models in this study. The Youden index, which is among the most
widely used performance indicators in biomedical studies, is calculated using the following for-
mula: Youden index = Sensitivity + Specificity − 1. In this study, 6 and 7 tumour markers were
analytically measured for the men and women, respectively. Therefore, 63 tumour marker com-
binations (26 − 1 = 63) were evaluated for men and 127 (27 − 1 = 127) for women. Each combi-
nation was evaluated using an LR classifier. To evaluate the performance of the classifiers,
training and validation data sets were randomly constructed with a ratio of 2:1. The evaluation
was repeated 100 times for each combination, and the Youden index values for each combina-
tion were averaged and compared. Only combinations with the highest averaged Youden index
for each specific number of tumour markers were listed and compared. The appropriate combi-
nation of tumour markers for men and women were then used in the following experiments.

Development of the SVMModels for Cancer Screening
In this study, we considered the binary classification problem. The discrimination ability of an
SVM classifier is determined by generating a hyperplane in a high-dimensional space to dis-
criminate the cancer group from the noncancer group. The SVMmodels used in this study were
constructed using a Matlab version of the LIBSVM 3.20 software package, which is the most
well-known and widely applied SVM software tool [15]. An effective SVMmodel was con-
structed using the procedures outlined in the manual by a previous study [16]. Briefly, the pro-
cedures mainly included 2 steps: (1) select an appropriate feature mapping kernel function such
that the 2 groups might become linearly separable after mapping the samples into high-dimen-
sional space, and (2) determine the parameters c (penalty for misclassification) and γ (function
of the deviation of the radial basis function [RBF] kernel). In this study, the RBF kernel was
selected. Previous research has proven that the RBF is superior to the linear kernel or sigmoid
kernel in nonlinear classification problems such as cancer diagnosis [6]. This was confirmed in
our preliminary trial. Subsequently, the values of c and γ were determined through an iterative
grid search by 5-fold cross-validation in the training set, as detailed in previous studies [6, 16].

Development of the KNN Algorithms for Cancer Screening
KNN is an instance-based algorithm used for classification. The KNNmodels used in this
study were constructed using Matlab (MathWorks). In this study, the number of the nearest
number was set to 7 according to our preliminary trial. For each case in the validation set, the
Euclidean distances from the cases in the training set were calculated. The class categories of
the 7 cases with Euclidean distances closest to the validation case were recorded. The class of
the validation case was accordingly predicted on the basis of the major class categories of these
7 closest cases.

Development of the LR Models for Cancer Screening
LR is a widely used and well-established methodology and is one of the most reliable classifica-
tion methods for binary classification problems. The LR-based classifier was also constructed
using Matlab (MathWorks). Training samples were used to determine the coefficients of each
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variable for the regression function, which was then used to further classify the validation
cases. The probabilities of each validation case being classified as cancer and noncancer were
set to p and q respectively, where p + q = 1. Subsequently, the odds (p divided by q) was used to
predict the label of the validation cases. The cases were classified as cancer when the odds were
one or more. Otherwise, the cases were classified as noncancer.

Validation and Comparison of Various Models for Cancer Screening
The receiver operating characteristic (ROC) curve was used to evaluate the performance of the
SVM-, KNN-, LR-based cancer screening models and the single tumour markers in panels.
ROC curves for all machine learning methods and tumour markers were generated using SPSS
(Version 20; SPSS Inc.). Furthermore, the area under the curve (AUC) was calculated to com-
pare the discrimination abilities of machine learning methods and single tumour markers.
Moreover, the performance of these machine learning methods was tested using the validation
set. The performance of the combined test was also evaluated. The algorithm of the combined
test was based on the threshold of each tumour marker. The thresholds of the tumour markers
used in this study were 15 ng/mL for AFP, 5 ng/mL for CEA, 37 U/mL for CA19-9, 3.3 ng/mL
for CYFRA21-1, 2.5 ng/mL for SCC, 4 ng/mL for PSA, 35 U/mL for CA125, and 30 U/mL for
CA15-3. The sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and Youden index of the cancer screening models were calculated for the machine
learning methods and the combined tests. The 95% confidence interval (CI) of the Youden
indices of each method was calculated for further analysis, as detailed in previous studies [17,
18]. Moreover, for clinical consideration, the relative risk reduction (RRR), absolute risk reduc-
tion (ARR: cancer screened), and absolute risk increase (ARI: false diagnosis) were evaluated.

Statistical Analyses
Data from the training and validation sets were analysed and are represented as the mean
(median) ± standard deviation. An unpaired t test was used to compare the training and valida-
tion sets. The Fisher exact test was used to analyse the tumour types of occult cancer cases in
the training and validation sets. Results with P< .05 were considered statistically significant.
To evaluate the importance of each tumour marker, the standard error (SE) of the coefficients
and the mean and 95% CI of odds ratios were calculated for each tumour marker. One-way
analysis of variance (ANOVA) with a statistical significance level of 0.05 was used to examine
the effects of the different tumour markers combinations on the Youden index values, AUC
values of various machine learning methods and single tumour markers, and Youden index
values of machine learning methods and the combined tests. The Tukey honestly significant
difference post hoc test was used to determine the differences when the null hypothesis of
ANOVA was rejected. Results with P< .05 or< .01 were labelled separately. All statistical
analyses were performed using SPSS (Version 20; SPSS Inc.).

Results

General Patient Characteristics
Of 21 614 individuals, 918 individuals were excluded; the remaining 20 696 eligible individu-
als were included in this study. In the step of random under-sampling, the training sets com-
prised 134 and 116 cases for men and women, respectively. Moreover, 3097 and 3801 cases
for men and women, respectively, were randomly allocated to the validation set at a ratio of
2:1 (training to validation), as shown in Table 1. In the descriptive analysis, variables including
age and the tumour markers were compared between the training and validation sets. For the
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men and women, the average age of the cases in the validation set was significantly less than
those in the training set. In addition, for the men, the average CYFRA21-1 and CA19-9 values
in the validation set were significantly lower than those in the training set. For the women,
only the average CYFRA21-1 value was significantly lower in the validation set. The distribu-
tion of other tumour markers was similar between the two sets. For the men, the major
tumour types of occult cancer in the training set were prostate (20.90%), colorectal (13.43%),
lung (10.45%), liver (10.45%), and head and neck (7.46%) cancers; the major tumour types in
the validation set were lung (18.18%), head and neck (15.15%), urinary (15.15%), prostate
(9.09%), and hematopoietic and lymphoid (9.09%) cancers. For the women, the major tumour
types of occult cancer in the training set were breast (25.86%), gynecologic (22.41%), thyroid
(12.07%), lung (8.62%), and gastric (6.90%) cancers; the major tumour types in the validation
set were breast (34.48%), gynecologic (24.41%), thyroid (20.69%), lung (6.90%), and colorectal
(6.90%) cancers, as shown in Table 2. No significant differences were observed in the distribu-
tion of the tumour types of occult cancer between the training and validation sets for both
men and women.

Variable Significance for Men andWomen
Multivariate LR analysis was performed to evaluate the significance of each variable. Tables 3
and 4 present the coefficients of the variables in the regression equation and the significance of
each variable. For the men, 4 tumour markers (CEA, CA19-9, CYFRA21-1, and PSA) were sig-
nificantly associated with the rate of cancer diagnosis, as shown in Table 3. For the women, 2
tumour markers (CYFRA21-1 and CA15-3) were significantly associated with the rate of newly
diagnosed cancers in multivariate analysis, as shown in Table 4.

Table 1. Clinicopathological Information for the Training and Validation Sets.

Variable Training Set Validation Set p-value

Male

No. of patients 134 3097 -

Age (yr) 57. 19 (57) ± 14.05 50.59 (50) ± 12.33 <0.001*

AFP (ng/mL) 2176.31 (3.44) ± 25124.34 77.83 (3.24) ± 4111.53 0.336

CEA (ng/mL) 6.40 (2.3) ± 26.45 2.23 (1.84) ± 2.09 0.07

CA19-9 (U/mL) 15.72 (7.23) ± 32.25 8.38 (5.00) ± 12.01 0.01*

CYFRA21-1 (ng/mL) 2.07 (1.80) ± 1.15 1.68 (1.47) ± 0.98 <0.001*

SCC (ng/mL) 0.71 (0.40) ± 0.91 0.62 (0.40) ± 0.48 0.243

PSA (ng/ml) 15.06 (1.04) ± 140.91 1.34 (0.80) ± 2.24 0.262

Female

No. of patients 116 3801 -

Age (yr) 51.16 (51) ± 12.44 48.25 (48) ± 11.57 0.014*

AFP (ng/ml) 4.06 (3.09) ± 6.59 3.54 (2.96) ± 4.07 0.405

CEA (ng/ml) 5.88 (1.47) ± 28.70 1.85 (1.28) ± 17.56 0.136

CA19-9 (U/ml) 11.58 (6.72) ± 13.09 16.15 (6.43) ± 302.69 0.367

CYFRA21-1 (ng/ml) 1.92 (1.46) ± 2.21 1.40 (1.23) ± 0.84 0.014*

SCC (ng/ml) 0.60 (0.40) ± 0.89 0.51 (0.30) ± 0.59 0.325

CA125 (U/ml) 17.45 (9.875) ± 23.79 14.54 (10) ± 24.62 0.197

CA15-3 (U/ml) 10.36 (8.65) ± 5.07 9.75 (8.50) ± 4.77 0.206

Data are presented as mean (median) ± standard deviation. Significant differences are denoted by * (P < .05).

doi:10.1371/journal.pone.0158285.t001
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Table 2. Occult Cancer Tumour Types for the Training and Validation sets.

Tumour Type Training Set Validation Set

Male no. of tumours/total no. (%) no. of tumours/total no. (%) p-value

Lung 7/67 10.45% 6/33 18.18% 0.35

Liver 7/67 10.45% 2/33 6.06% 0.71

Colorectal 9/67 13.43% 1/33 3.03% 0.16

Prostate 14/67 20.90% 3/33 9.09% 0.17

Thyroid 4/67 5.97% 2/33 6.06% 1.00

Gastric 4/67 5.97% 1/33 3.03% 1.00

Pancreas 3/67 4.48% 1/33 3.03% 1.00

Bile duct 1/67 1.49% 1/33 3.03% 1.00

Head & Neck 5/67 7.46% 5/33 15.15% 0.29

Urinary 3/67 4.48% 5/33 15.15% 0.11

Hematopoietic & lymphoid 3/67 4.48% 3/33 9.09% 0.39

Skin 4/67 5.97% 1/33 3.03% 1.00

CNS 1/67 1.49% 0/33 0% 1.00

Thymus 0/67 0% 1/33 3.03% 0.33

Unknown primary 2/67 2.99% 1/33 3.03% 1.00

Female

Lung 5/58 8.62% 2/29 6.90% 1.00

Liver 1/58 1.72% 1/29 3.45% 1.00

Colorectal 3/58 5.17% 2/29 6.90% 1.00

Breast 15/58 25.86% 10/29 34.48% 0.46

Gynecologic 13/58 22.41% 7/29 24.14% 1.00

Thyroid 7/58 12.07% 6/29 20.69% 0.34

Gastric 4/58 6.90% 0/29 0.00% 0.30

Pancreas 1/58 1.72% 0/29 0.00% 1.00

Bile duct 1/58 1.72% 0/29 0.00% 1.00

Head & Neck 2/58 3.45% 0/29 0.00% 0.55

Urinary 2/58 3.45% 1/29 3.45% 1.00

Hematopoietic & lymphoid 1/58 1.72% 0/29 0.00% 1.00

Skin 1/58 1.72% 0/29 0.00% 1.00

Unknown primary 2/58 3.45% 0/29 0.00% 0.55

doi:10.1371/journal.pone.0158285.t002

Table 3. Results of the Multivariate LR Analysis (Male).

Variable Coefficient SE Odds Ratio 95% CI p-value

AFP .000 .006 1.000 .989–1.011 0.987

CEA .185 .029 1.203 1.137–1.274 <0.001*

CA19-9 .005 .002 1.005 1.001–1.009 0.020*

CYFRA21-1 .409 .063 1.505 1.331–1.701 <0.001*

SCC -.276 .200 .759 .512–1.124 0.169

PSA .073 .014 1.076 1.047–1.106 <0.001*

Constant -5.934 .221 .003 <0.001*

Significant differences are denoted by * (P < .05). (SE: standard error; CI: confidence interval)

doi:10.1371/journal.pone.0158285.t003
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Variable Selection for Men andWomen
Six (AFP, CEA, CA19-9, CYFRA21-1, SCC, and PSA) and 7 (AFP, CEA, CA19-9, CYFRA21-1,
SCC, CA125, and CA15-3) tumour markers were measured for the men and women, respec-
tively. Accordingly, 63 combinations of tumour markers for men and 127 for women were
evaluated using the Youden index to select an appropriate combination of variables for con-
structing effective cancer classification models with the highest sensitivity and specificity. As
shown in Fig 1(a), the combination of AFP, CEA, CA19-9, CYFRA21-1, SCC, and PSA attained
the highest Youden index values for the men. By contrast, for the women, the combination of
CYFRA21-1 and SCC exhibited significantly higher Youden index values compared with the
other combinations, as shown in Fig 1(b). Consequently, to construct machine learning models
for screening of cancers, all tested tumour markers were selected for the men, but only
CYFRA21-1 and SCC were selected for the women.

Performance for General Cancers Screening
ROC curves and AUC values were used to assess the performance of the various machine
learning methods and each tumour marker for cancer surveying (Fig 2, Tables 5 and 6). For the
men, the performance of the machine learning methods in the analysis of the multiple tumour
markers was generally superior to those of the single tumour markers based on the AUC val-
ues, as shown in Fig 2(a) and 2(b) and Table 5. The AUC values of the SVM, KNN, and LR
models were significantly higher than those of AFP (P< .01), CEA (P< .01), CA19-9 (P<

.01), CYFRA21-1 (P< .01), SCC (P< .01), and PSA (P< .01). For the women, the various
machine learning methods used in the analysis of CYFRA21-1 and SCC also outperformed the
single tumour markers (P< .01), except for CYFRA21-1, as shown in Fig 2(c) and 2(d) and
Table 6.

For the men (Table 7), the SVMmodel attained the highest sensitivity (0.758), whereas
KNN algorithm attained the highest specificity (0.862) and PPV (0.039). All methods attained
high NPVs (all higher than 0.994). Among the machine learning methods, the SVMmodel and
the KNN algorithm, but not the LR model, attained significantly higher Youden index values
than the combined test (P< .01). Moreover, the SVMmodel attained higher Youden index val-
ues compared with the KNN and LR models and the combined test (P< .01). By contrast, for
the women (Table 8), the KNN algorithm attained the highest sensitivity (0.655), whereas the
combined test attained the highest specificity (0.880) and PPV (0.022). Moreover, all the meth-
ods attained high NPVs (all higher than 0.994). The SVM, KNN, and LR models attained sig-
nificantly higher Youden index values (P< .01) compared with the combined tests. Moreover,

Table 4. Results of the Multivariate LR Analysis (Female).

Variable Coefficient SE Odds Ratio 95% CI p-value

AFP .005 .016 1.005 .973–1.038 0.744

CEA -.003 .003 .997 .991–1.003 0.282

CA199 .002 .001 1.002 .999–1.004 0.186

CYFRA21-1 .280 .050 1.323 1.199–1.460 <0.001*

SCC .048 .071 1.050 .914–1.206 0.493

CA125 -.001 .001 .999 0.997–1.001 0.502

CA15-3 .038 .017 1.039 1.006–1.074 0.020*

Constant -5.799 .235 .003 <0.001*

Significant differences are denoted by * (P < .05). (SE: standard error; CI: confidence interval)

doi:10.1371/journal.pone.0158285.t004
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Fig 1. (a) Variable Selection (Male). Evaluation of Youden index values (expressed as Youden index + 1)
under various tumour markers combinations are displayed as the mean ± the standard deviation for each
combination (as indicated). Significant differences are denoted by$ (P < .05). (b) Variable Selection
(Female). Evaluation of Youden index values (expressed as Youden index + 1) under different combinations
of tumour markers are displayed as the mean ± the standard deviation for each combination (as indicated).
Significant differences are denoted by$ (P < .05).

doi:10.1371/journal.pone.0158285.g001
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Fig 2. (a) ROC Curves of the Various Machine Learning Models for Cancer Screening (Male). (b) ROC
Curves of the Various Tumour Markers for Cancer Screening (Male). (c) ROCCurves of the Various Machine
Learning Models for Cancer Screening (Female). (d) ROCCurves of the Various Tumour Markers for Cancer
Screening (Female).

doi:10.1371/journal.pone.0158285.g002
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the SVMmodel outperformed both the KNN and LR model, as indicated by the significantly
higher Youden index (P< .01). Additionally, the ARR, RRR, and ARI are reported in Tables 9
and 10. For the men, the ARRs ranged from 0.005 to 0.008, with the SVMmodel attaining the
highest ARR (0.008). The number needed to treat (NNT) was calculated from the ARR. The
NNTs for the males ranged from 125 to 200. The ARIs ranged from 0.137 to 0.241, where
resulted in numbers needed to harm (NNHs) ranging from 4 to 7. For the women, the ARRs
ranged from 0.003 to 0.005, with the KNN model attaining the highest ARR (0.005).

Table 5. AUC Values of Various Classifiers and Tumour Markers for Cancer Screening (Male).

Classifier/Tumour marker Area under the curve 95% CI

SVM .726 .621-.831

KNN .727 .630-.825

LR .766 .676-.856

CYFRA21-1 .657 .562-.752

CEA .639 .538-.741

AFP .607 .507-.706

CA19-9 .599 .498-.701

PSA .568 .454-.682

SCC .514 .418-.609

CI: confidence interval

doi:10.1371/journal.pone.0158285.t005

Table 6. AUC Values of the Various Classifiers and Tumour Markers for Cancer Screening (Female).

Classifier/Tumour marker Area under the curve 95% CI

SVM .650 .529-.771

KNN .699 .594-.804

LR .649 .528-.770

CYFRA21-1 .651 .530-.771

SCC .610 .518-.703

CA15-3 .583 .459-.708

CA125 .576 .472-.679

CA19-9 .572 .456-.688

CEA .531 .394-.668

AFP .504 .403-.605

CI: confidence interval

doi:10.1371/journal.pone.0158285.t006

Table 7. Performance of the Various Methods for Cancer Screening (Male).

Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Youden Index (95% CI)

SVM .758 (.612-.904) .757 (.742-.772) .032 (.020-.044) .997 (.994-.999) .514 (.403-.626) **

KNN .515 (.345-.686) .862 (.850-.874) .039 (.020-.057) .994 (.991-.997) .377 (.230-.524) **

LR .485 (.315-.656) .859 (.847-.871) .036 (.019-.053) .994 (.991-.997) .344 (.197-.490)

Combined Test of 6 Tumour Markers .515 (.345-.686) .851 (.838-.864) .036 (.019-.052) .994 (.991-.997) .366 (.220-.511)

The Youden index values of the SVM, KNN, and LR models were compared with the combined test. Significantly higher differences are denoted by ** (P <

.01).

doi:10.1371/journal.pone.0158285.t007

Incorporation of Machine Learning Methods Improves Tumour Markers Analysis for Cancer Detection

PLOS ONE | DOI:10.1371/journal.pone.0158285 June 29, 2016 11 / 16



Consequently, the NNTs for the females ranged from 200 to 333. Besides, the ARIs ranged
from 0.119 to 0.306. The calculated NNHs ranged from 3 to 8.

Discussion
Screening of cancers has received considerable attention in developed and developing countries
owing to the heavy economic and quality-of-life burden caused by cancers. Although testing
for multiple tumour markers in cancer screening lacks sufficient evidence for evaluating its
effectiveness and it is associated with adverse risk–benefit outcomes, it is widely used in certain
areas (e.g. Taiwan). The present study focused on determining whether machine learning
methods can improve the discrimination ability of multiple tumour markers for cancer screen-
ing. In Taiwan, more than 96% of the population is covered by the National Health Insurance
(NHI) program [19]. Patients covered by the NHI program can seek medical help for their
symptoms without paying additional money. In this study, 20,696 individuals who had at least
once undergone an out-of-pocket health check-up were considered apparently asymptomatic
[1, 2]. Those who had previously received a cancer diagnosis before undergoing the tumour
marker test were excluded from the analysis. Given the high case number and the relatively
long study period (approximately 10 y), the cases included in this study are representative of
the health check-up population in Taiwan.

Table 8. Performance of the Various Methods for Cancer Screening (Female).

Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Youden Index (95% CI)

SVM .517 (.335-.699) .816 (.804-.828) .016 (.007-.025) .996 (.994-.998) .347 (.198-.500) **

KNN .655 (.482-.828) .691 (.676-.706) .021 (.013-.029) .995 (.993-.998) .333 (.213-.453) **

LR .517 (.335-.699) .758 (.744-.772) .016 (.008-.024) .995 (.992-.998) .275 (.137-.414) **

Combined Test of 7 Tumour Markers .345 (.172-.518) .880 (.870-.890) .022 (.009-.035) .994 (.991-.997) .225 (.073-.377)

The Youden index values of the SVM, KNN, and LR models were compared with the combined test. Significantly higher differences are denoted by ** (P <

.01).

doi:10.1371/journal.pone.0158285.t008

Table 9. RRR, ARR, and ARI of the Various Machine Learning Methods and the Combined Test (Male).

RRR (95% CI) ARR (95% CI) ARI (95% CI)

SVM .758 (.623-.845) .008 (.004-.012) .241 (.226-.256)

KNN .515 (.317-.655) .006 (.003-.008) .137 (.124-.149)

LR .485 (.280-.632) .005 (.003-.008) .140 (.128-.152)

Combined Test of 6 Tumor Markers .515 (.317-.655) .006 (.003-.008) .148 (.135-.160)

doi:10.1371/journal.pone.0158285.t009

Table 10. RRR, ARR, and ARI of the Various Machine Learning Methods and the Combined Test
(Female).

RRR (95% CI) ARR (95% CI) ARI (95% CI)

SVM .517 (.303-.665) .004 (.002-.006) .183 (.171-.195)

KNN .655 (.478-.772) .005 (.003-.007) .306 (.291-.321)

LR .517 (.303-.665) .004 (.002-.006) .240 (.226-.254)

Combined Test of 7 Tumor Markers .345 (.086-.531) .003 (.001-.005) .119 (.109-.129)

doi:10.1371/journal.pone.0158285.t010
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Because of the extremely unbalanced data set used in this study, in which the noncancer
cases outnumbered the cancer cases by a ratio of approximately 100:1, using an appropriate
method for partitioning the data set into the training and validation sets was crucial. Given
that most machine learning methods are generally developed for balanced data sets, improved
results might be obtained when pre-analysis processing is performed for original data [12–14].
In this study, random under-sampling was used to create a balanced training set, in which the
number of cancer cases was identical to that of noncancer cases. By contrast, the ratio of cancer
to noncancer cases was unchanged for the validation set. Therefore, the proportion of cancer
cases in the validation set was identical to that in the original cohort. This arrangement enabled
calculating the PPV and NPV of each classifier. Both the PPV and NPV values are crucial
information in making clinical management decisions.

The distribution of a few variables differed between the training and validation sets, as
shown in Table 1. Specifically, for the men, the average age, CA19-9, and CYFRA21-1 were sig-
nificantly lower in the validation set. For the women, the average age and CYFRA21-1 were sig-
nificant lower in the validation set. Generally, in clinical practice, correctly interpreting tumour
marker results is relatively difficult for physicians when patients are younger and the analytical
levels of tumour markers are lower. Despite these distribution differences between the training
and validation sets, these data may ensure that the improved discrimination ability was not
because of the relatively easy validation set.

Appropriate variable selection can reduce the number of tumour markers in cancer screen-
ing models constructed using machine learning methods. In addition, variable reduction
would result in less calculation, leading to less computation-intensive models. For variable
selection, multivariate LR analysis and the Youden index were used and compared in this
study. Variables significantly associated with the cancer screening outcomes would be selected
as appropriate variables in multivariate LR analysis [20]. In this study, multivariate LR analysis
results revealed that CEA, CA19-9, CYFRA21-1, and PSA and CYFRA21-1 and CA15-3 were
significantly associated with the prediction outcomes of cancer screening for the men (Table 3)
and women (Table 4). However, the combination of all 6 tumour markers attained the highest
Youden index values for the men (Fig 1(a)). Moreover, the combination of CYFRA21-1 and
SCC attained the highest Youden index values for the women (Fig 1(b)). Although discordance
was observed between these 2 methods, the results of the Youden index were adopted. The
Youden index is simple to calculate and exhibits a linear relationship with the AUC [21]. In
addition, both the sensitivity and specificity of a cancer screening classifier model can be opti-
mised as much as possible by using the Youden index.

The performance of the machine learning methods evaluated in this study was generally
higher than that of all single tumour markers (Tables 5 and 6) and the combined test for cancer
screening (Tables 7 and 8). The SVM, KNN, and LR models are all superior classifiers whose
abilities to support medical decision have been widely studied [9, 10, 20, 22, 23]. It is reasonable
to expect that the performance of multiple tumour markers combined with machine learning
methods would be higher than that of the single tumour markers for cancer screening, because
multiple variables may provide additional information. Moreover, single tumour markers are
not recommended as a tool for cancer screening or diagnosis (3). A single threshold is deter-
mined for each tumour marker on the basis of statistical analysis. However, a single threshold
value is difficult to determine when all tumour markers are combined together. Consequently,
the discrimination ability of the combined test might be compromised. By contrast, machine
learning methods learn from the distribution pattern of all variables for a specific classification
problem. Consequently, the performance of machine learning methods might be optimised as
much as possible; thus, these methods are superior to the combined test, in which the threshold
value for each tumour marker must be determined independently.
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By contrast, for the women, the performance of the machine learning methods, single
tumour markers, and combined test was not as high as those for the men. The underlying rea-
sons might be complicated. First, the menstrual cycle may cause fluctuations in multiple endo-
crines. Studies have described the effect of endocrine levels on the tumour marker levels [24–
27]. The level of the well-known tumour marker CA125 is mainly elevated during the men-
strual cycle. Moreover, AFP is reported to be elevated during some specific period or situation
of pregnancy [25]. Furthermore, diseases specifically affecting women, such as benign uterus
diseases, pelvis inflammatory diseases, or benign breast tissue diseases, are involved in the acti-
vation of epithelial cells [26, 27]. All these diseases may cause elevation of epithelium-associ-
ated tumour markers in noncancerous diseases. In this situation, incorporating machine
learning methods into analysis of multiple tumour markers still yielded higher performance
compared with the combined test.

The NPVs of all the machine learning methods and the combined test were high (Tables 7
and 8). Consequently, either method is appropriate for excluding the risk of cancer when the
prediction is negative. However, the PPVs of all methods were low (1.6%–3.9%) (Tables 7 and
8). For rare diseases, which inherently have low prevalence and incidence, mathematically low
PPVs might be obtained even when the classifier has high sensitivity and specificity [28]. In the
included cohort, cancer prevalence was low (1.08% and 0.76% in men and women, respec-
tively). Consequently, a low PPV level would be almost inevitably obtained for the cancer
screening models in this study. High PPV performance could be obtained through simulations
with higher prevalence. Moreover, PPV performance is mathematically associated with sensi-
tivity, specificity, and disease prevalence. If the prevalence of cancers increased to 10% in men,
the PPVs would be elevated to 0.257, 0.293, 0.277, and 0.278 for the SVM, KNN, LR, and com-
bined test, respectively. Similarly, PPVs would be elevated to 0.238, 0.191, 0.192, and 0.242 for
SVM, KNN, LR, and combined test in female population.

Several other studies have applied machine learning methods to analyse data from microar-
rays to screen or diagnose cancers [29, 30]. These studies have generally demonstrated substan-
tially high discrimination ability for malignancy. However, the high cost of microarrays might
prevent their wide application for screening cancers in the general population. A practical and
ideal screening tool should exhibit adequate sensitivity, specificity, and cost-effectiveness. In
this study, all analytical measurements were performed in a CAP-accredited laboratory, and
the test results are accurate and reproducible. Application of mmachine learning methods to
analysis of multiple tumour markers for cancer screening was studied. The results showed that
the performance of the machine learning methods was generally higher than that of the com-
bined test for cancer screening. Nevertheless, this study has some limitations. First, analytic
measurement of multiple tumour markers for cancer screening has not yet been considered as
an evidence-based practice. Additionally, given the retrospective nature of this study, few indi-
viduals with ongoing but unconfirmed examinations would be misclassified into the noncancer
class. Moreover, all individuals in this study spent additional money to undergo out-of-pocket
health examinations. They were assumed to have a relatively higher financial status. It would
be questionable to generalise the results derived from such a sample to the general population
in Taiwan. Moreover, although cases were collected over approximately 10 years in this study,
every category of cancer may have not been covered owing to the paucity of cases with occult
cancer (Table 2). To train a reliable model, more data distribution patterns of various cancer
types must be included. Overall, analysis of the multiple tumour markers by using various
machine learning methods improved the performance of the multiple tumour markers for
identifying occult cancers in the apparently asymptomatic population.

For clinical consideration, however, the ARRs and ARIs (Tables 9 and 10) in this study indi-
cate that analytical measurement of multiple tumour markers for cancer screening is not
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favourable. On the basis of the ARRs and ARIs, 1 in 125–200 males were helped (cancer
screened), whereas 1 in 4–7 males were harmed (false diagnosis). Similarly, 1 in 200–333
females were helped, whereas 1 in 3–8 females were harmed. Although the machine learning
methods attained higher ARRs than the combined tests, their ARRs and ARIs were inadequate
for clinical application for either men or women. It means that machine learning methods
could mine the maximal values out of multiple tumour markers. Nevertheless, routine use of
multiple tumour markers for cancer screening is not recommended because the clinical indica-
tors were still not improved adequately by the machine learning methods.

Conclusion
The machine learning methods investigated in this study outperformed the combined tests in
the analysis of multiple tumour markers for discriminating cancer cases from noncancer cases.
However, cancer screening based solely on the use of multiple tumour markers remains unfa-
vourable because of the inadequate PPVs, ARRs, and ARIs, even after incorporating the
machine learning methods into the analysis.
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