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Correlated spin currents generated by
resonant-crossed Andreev reflections in
topological superconductors
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Topological superconductors, which support Majorana fermion excitations, have been

the subject of intense studies due to their novel transport properties and their potential

applications in fault-tolerant quantum computations. Here we propose a new type of

topological superconductors that can be used as a novel source of correlated spin currents.

We show that inducing superconductivity on a AIII class topological insulator wire, which

respects a chiral symmetry and supports protected fermionic end states, will result in a

topological superconductor. This topological superconductor supports two topological phases

with one or two Majorana fermion end states, respectively. In the phase with two Majorana

fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially

separated leads due to Majorana-induced resonant-crossed Andreev reflections. The

resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed

topological superconductors can be realized using quantum anomalous Hall insulators in

proximity to superconductors.
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T
he search for topological superconductors that support
Majorana fermions (MFs)1 has attracted much theoretical
and experimental studies in recent years2–8. These studies

are strongly motivated by the fact that MFs in topological
superconductors are non-Abelian particles and have potential
applications in fault-tolerant quantum computations9,10. Recent
studies have pointed out that one of the most promising ways to
engineer topological superconductors is by inducing s-wave
superconductivity on semiconductor wires with Rashba spin-
orbit coupling in the presence of external magnetic fields11–17.
This results in so-called D class topological superconductors that
break time-reversal symmetry and support a single MF end state
at each end of a superconducting wire18,19. These D class
topological superconductors also exhibit a number of interesting
transport properties such as fractional Josephson effects20,21,
resonant Andreev reflections22,23 and enhanced crossed Andreev
reflections24,25. So far, the search for D class topological
superconductors has been one of the most important areas in
the study of topological superconductors.

However, according to the Altland–Zirnbauer symmetry classi-
fication scheme18, there exist other topological superconductors
that belong to different symmetry classes. Many aspects of the
physical properties and potential applications of various types of
topological superconductors have yet to be explored.

Here we demonstrate that inducing s-wave superconductivity
on a AIII class topological insulator18,19, which respects a chiral
symmetry and supports fermionic end states as illustrated in
Fig. 1a, will result in a new type of superconductor. The resulting
superconductor is in the BDI class, which respects a time-
reversal-like symmetry and the particle hole symmetry, and it is
classified by an integer topological invariant NBDI

19,26–28. This
BDI class superconductor supports two distinct topological
phases distinguished by one (NBDI¼ 1) and two (NBDI¼ 2) MF
end states at each end of the wire, respectively. While the
superconductor in the NBDI¼ 1 phase has almost identical
transport properties as a D class topological superconductor,
the NBDI¼ 2 phase exhibits several transport anomalies.
Particularly, in the NBDI¼ 2 phase, local Andreev reflections
(ARs) are completely suppressed at the normal lead/topological
superconductor interface at zero bias due to the destructive
interference between the AR amplitudes induced by the two MFs.
When two normal leads are attached to the two ends of the
superconductor, resonant-crossed AR processes can happen,
causing an electron from one normal lead to be reflected as a

hole in the other lead with probability of unity. In reverse
processes, when a current is driven from the superconductor to
the leads, Cooper pairs can split into two spatially separated leads
and form correlated electron pairs with perfect efficiency. We call
this phenomenon resonant Cooper pair splitting. Remarkably, the
outgoing currents of the two leads are correlated and spin-
polarized. Importantly, we show that these unique transport
properties of BDI class topological superconductors can be
experimentally realized using quantum anomalous Hall insulators
in proximity to an s-wave superconductor.

Results
From class AIII to class BDI. In this section, we first point out
how to obtain a BDI class topological superconductor from an
AIII class topological insulator. The properties of the MF end
states are also studied. Second, we study the local AR properties
of the BDI class topological superconductor by attaching a nor-
mal lead to one end of the topological superconductor. Third, we
examine the effects of resonant-crossed ARs and resonant Cooper
pair splitting induced by the double MF end states in the NBDI¼ 2
phase. The generation of correlated spin currents using these
novel phenomena is also discussed. Lastly, we discuss the relation
between the BDI class topological superconductor and quantum
anomalous Hall insulators.

An AIII class topological insulator is a one-dimensional
system that respects a chiral symmetry and supports fermionic
end states19,29. A simple AIII class Hamiltonian, which can be
topologically non-trivial in the basis of (ckm, ckk), can be written as29

HAIIIðkÞ¼ ðGz � 2ts cos kÞsz þ 2tso sin ksy: ð1Þ

Here ckm (ckk) denotes a spin up (down) fermionic operator, ts is the
hopping amplitude, Gz is the Zeeman term and tso is the hopping
amplitude with spin flip. For simplicity and without loss of
generality, we assume ts, tso and Gz to be positive real numbers. Since
the Hamiltonian contains only the sy and sz terms, H(k) respects
the chiral symmetry sxH(k)sx ¼ �H(k) and H(k) belongs to
AIII class according to symmetry classifications18. In the regime
where |Gz| o2ts, H(k) is topologically non-trivial. For a topo-
logically non-trivial AIII class wire with open boundaries, the wire
supports a single fermionic end state at each end of the wire29 as
depicted in Fig. 1a.

Interestingly, the AIII class topological insulator becomes a
BDI class topological superconductor when superconducting
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Figure 1 | From a AIII class topological insulator to a BDI topological superconductor. (a) AIII topological insulator with fermionic end states C1 and C2

located at the ends of the wire. (b) By inducing superconductivity on the AIII class topological insulator, each fermionic end state becomes two MFs

and the system becomes a BDI class topological superconductor in the NBDI¼ 2 phase. As the pairing strength D increases, one of the Majorana fermions

at each end merges into the bulk. (c) After the bulk gap is closed by increasing D, only one MF end state is left at each end and we have the NBDI¼ 1 phase.

(d) Phase diagram of the BDI class topological superconductor characterized by the topological invariant NBDI as functions of the pairing strength

D and Gz� 2tso.
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s-wave pairing terms D0ckmc� kk þ H.c. are added. On the

Nambu basis (ckm, ckk, cy� k"; cy� k#), the Hamiltonian is:

HBDIðkÞ ¼ Gz � 2ts cos kð Þsz þ 2tso sin ksy
� �

tz þDsyty ð2Þ

where si and ti are Pauli matrices acting on spin and particle-

hole space, respectively.
In the presence of the pairing terms, the symmetry class of the

Hamiltonian is changed from AIII to BDI. In particular, we note
that the Hamiltonian satisfies a time-reversal-like symmetry
T HBDIðkÞT � 1¼HBDIð� kÞ and a particle-hole symmetry
PHBDIðkÞP¼�HBDIð� kÞ, where T ¼sxtxK, P¼s0txK and K
is the complex conjugate operator. Since T 2¼ 1, there is no
Kramer’s degeneracy associated with T . As a result of T and P
symmetries, we have CHBDIðkÞC� 1¼�HBDIðkÞ, where
C¼T P¼sxt0. Therefore, HBDI(k) is in the BDI class18,19. It has
been shown that a BDI class topological superconductor is
classified by an integer topological invariant NBDI

18,19,26–28,
which denotes the number of topologically protected MF end
states at each end of the superconducting wire.

The topological invariant NBDI can be easily evaluated27 and
the phase diagram of HBDI, as functions of Gz� 2ts and D, is
depicted in Fig. 1d. It is evident that there are two topological
phases with NBDI¼ 2 and NBDI¼ 1, respectively. The phase
boundaries are the two lines Gz� 2ts¼±D, on which the energy
gap of HBDI closes.

For a semi-infinite BDI class wire occupying the space
with yZ0, the zero energy end states in the topological
regime can be found in the continuum limit by solving
HBDI(k -� iqy)g(y)¼ 0. In the regime with NBDI¼ 2 where
2ts�Gz4D, there are two solutions g1(y)¼ [1, 1, 1, 1]
ðe� l1þ y � e� l1� yÞ and g2(y)¼ i[1, 1, � 1, � 1]

ðe� l2þ y � e� l2� yÞ. Here ll±¼
tso �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsoð Þ2 þ ts G� 2ts þ � 1ð ÞlDð Þ

p
ts

. Note

that the zero energy solutions satisfy the conditions gi ¼ gyi , so
that the end states are MFs. Moreover, under the time-reversal
symmetry like operation T , we have T giT � 1¼ gi. As a result, the
coupling between the two MF end states, which can be written as
ig1g2, breaks the T symmetry. This term is not allowed so long as
T is respected. Therefore, the two MF end states do not couple to
each other, which is a feature of the BDI class topological
superconductor. This is in sharp contrast to D class topological
superconductors where an even number of MFs can couple to
each other and the MFs are lifted to finite energy.

It is interesting to note that as we approach the phase boundary
between the NBDI¼ 2 and NBDI¼ 1 phases, where Gz� 2ts

¼ �D, we have l2�- 0 and g2 is no longer localized at the
end of the wire. The process of approaching the phase boundary
is depicted in Fig. 1b,c. In the regime where NBDI¼ 1, only one
MF end state g1 remains. In the regime where NBDI¼ 0, there are
no zero energy end state solutions.

For a long wire with length L and neglecting the coupling
between the left and right MFs, there are two more MF solutions
g3(y)¼ i[1, � 1, � 1, 1] el3þ y� Lð Þ � el3� y� Lð Þ� �

and g4(y)¼
[1, � 1, 1, � 1] el4þ y� Lð Þ � el4� y� Lð Þ� �

as depicted in Fig. 1b. It
is worthwhile to note that the forms of the MF wavefunctions are
important for determining the transport properties of the
superconductor as shown below. Moreover, we note that besides
the set of symmetries discussed above, the Hamiltonian HBDI(k)
respects another time-reversal-like symmetry T 0¼K such that
T 0HBDIðkÞT 0� 1¼HBDI(� k). The four MF end states transform
under T 0 as T 0g1=4T 0� 1¼ g1/4 and T 0g2=3T 0� 1¼ � g2/3. On the
other hand, when the wire is finite, the MFs from the two ends of
the wire can couple to each other. While the interaction terms

ig1g4 and ig2g3 break the T 0 symmetry and are not allowed, the
coupling terms ig1g3 and ig2g4 are allowed.

Local Andreev Reflections. It has been shown in previous
studies22,23 that a single MF end state induces resonant local ARs
at a normal lead/topological superconductor junction where an
incoming electron is reflected as a hole in the same lead with
probability of unity. The resonant local ARs result in zero bias
conductance (ZBC) peaks of height 2e2/h in transport
measurements at zero temperature. It has also been shown that
1D DIII class topological superconductors, which respect time-
reversal symmetry and particle-hole symmetry, support two MF
end states at one end of the wire19,27,30–33. The two MF end states
can induce a ZBC peak of height 4e2/h27. Therefore, one may
expect that the BDI class topological superconductor in the
phases with NBDI¼ 1 and NBDI¼ 2 can both induce ZBC peaks in
tunnelling experiments. Surprisingly, we find that, while the
single MF end state in the NBDI¼ 1 phase can induce ZBC peaks,
the two MFs in the NBDI¼ 2 phase completely suppress local ARs
at zero bias and cause a conductance dip at low voltages.

The experimental setup for the BDI topological superconduc-
tor attached to a normal lead is depicted in Fig. 2a. To calculate
the tunnelling spectroscopy of the BDI topological super-
conductor at different phases, we first write down a real space
tight-binding model, which corresponds to HBDI(k) as described
in the Methods section. A semi-infinite normal metal lead is
attached to the left end of the topological superconductor. The
zero temperature conductance of the normal metal/topological
superconductor junction can be calculated from the reflection
matrix Rhe of the junction:

G¼ 2e2

h
Tr RheR

y
he

� �
; ð3Þ

where Rhe(E)ij denotes the local AR amplitude of an electron with
energy E at channel j to be reflected as a hole in channel i, which is
calculated using the recursive Green’s function approach25,34–36.

The ZBC as a function of D and Gz is shown in Fig 2b. As
expected, in the phase with NBDI¼ 0, the ZBC is strongly
suppressed. When NBDI¼ 1, the ZBC is quantized at 2e2=h due to
the MF-induced resonant ARs22,23. Surprisingly, in the NBDI¼ 2
phase, the ZBC is zero even though there are two zero energy MFs
at the end of the topological superconductor. The conductance at
finite voltages are shown in Fig. 2c–e. It is evident from Fig. 2e that
there is a ZBC dip at the NBDI¼ 2 phase instead of a ZBC peak. In
the following, we construct an effective Hamiltonian of the normal
lead/topological superconductor junction and show that the ZBC
dip at NBDI¼ 2 is due to destructive inference between the local
AR amplitudes caused by the two MFs.

For voltage bias smaller than the pairing gap, we expect the
transport properties of the junction to be described by an effective
Hamiltonian

H1eff ¼ HLþHLM

HL ¼ ivF
Rþ1
�1

cy!ðyÞ@yc!ðyÞdy

HLM ¼ o1g1½c!ð0Þ�cy!ð0Þ� þ io2g2½c!ð0Þþcy!ð0Þ�:

ð4Þ

Here HL is the effective Hamiltonian for the left lead and vF is the
Fermi velocity of the lead. We note that, in general, one should
consider a metal lead with electrons carrying spin pointing to the
positive x direction c! and electrons carrying spin pointing to
the negative x direction c . However, it can be shown that using
the form of the wavefunctions of g1 and g2 that only c! electrons
can couple to the MF end states and c are decoupled from the
superconductor. The form of the effective coupling term HLM is
crucial for the study of the transport properties. The coupling
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between the left lead and the two MF end states of the topological
superconductor is described by HLM and oi are the coupling
amplitudes.

With H1eff, the scattering matrix can be easily calculated using
the equation of motion approach22. It can be shown that the local
AR amplitudes for an incoming electron with energy E is
Rhe¼ �o2

1=B1þo2
2=B2, where z1,2�o2

1;2þ iEvF/2. Therefore, at
E¼ 0, Rhe(E¼ 0)¼ 0 as the two local AR amplitudes caused by
the two MFs have opposite signs and they cancel each other out,
as long as both o1 and o2 are finite. In other words, the
suppression of the local ARs at zero bias is caused by the
destructive interference of AR amplitudes caused by the two MF
end states. This is in sharp contrast to the resonant ARs caused by
a single MF end state in the D class case.

From the wavefunctions of the end states studied in Section
IIA, we note that as D increases, g1 remains localized at the end
and g2 merges into the bulk gradually. Then o2 reduces to zero as
D approaches the phase transition line Gz� 2ts¼ �D. Further
increasing D would change the phase from NBDI¼ 2 to the
NBDI¼ 1 phase. When o2¼ 0 in the NBDI¼ 1 phase, we have
|Rhe(E¼ 0)| ¼ 1 and the resulting ZBC is 2e2/h according to
equation (3) as expected22,23.

To understand the transport properties at finite voltages, we
note that when o2ooo1, the local AR amplitudes become
significant when the energy of the incoming electrons reaches
|E|E2 o2

2

		 		/vF. As a result, the width of the ZBC dip becomes
narrower as D increases, as shown in Fig. 2e, and the ZBC dip
disappears when o2 goes to zero.

Resonant-crossed ARs. In the above sections, it is shown that
local AR processes are suppressed at a normal lead/topological
superconductor junction for the NBDI¼ 2 phase. Owing to the
suppression of the local AR amplitudes and the conservation of
probability, we expect that other tunnelling processes can become
more important. In this section, we show that the two MF end
states in the NBDI¼ 2 phase can strongly enhance the crossed AR

processes in a normal lead/topological superconductor/normal
lead junction, provided that the length of the superconducting
wire is comparable to the localization lengths of the MF end states
such that the MFs from the two ends can couple to each other. In
a crossed AR process, an electron from one lead is reflected as a
hole in the other lead. As a result, two electrons from the two
leads form a Cooper pair and get injected into the super-
conductor, as depicted in Fig. 3a.

To calculate the transport properties of the superconductor, we
attach two normal leads to the superconductor as depicted in
Fig. 3a. The superconductor is described by a tight-binding model
presented in the Methods section. The length of the super-
conductor is L¼ 20a, which is comparable to the localization
length of the MF end states. Here a is the lattice constant of the
tight-binding model and the parameters of the model is given in
the Methods section. Focusing on the transport properties of the
left normal lead, the local AR amplitudes, the crossed AR
amplitudes, the elastic electron co-tunnelling amplitudes and the
electron normal reflection amplitudes for the three different
phases at zero bias are shown in Fig. 3. It is surprising that, in the
NBDI¼ 2 phase, there are parameter regimes where the crossed
AR amplitude is unity. When this happens, all other tunnelling
amplitudes for the c electrons, including the elastic co-
tunnelling amplitudes for which electrons tunnel directly from
the left lead to the right lead, vanish.

On the other hand, crossed AR amplitudes in the NBDI¼ 1
phase have similar properties as the cases of D class topological
superconductors24,25. In this phase, there are regimes where local
AR processes are suppressed and the crossed AR processes
dominate. However, crossed AR amplitudes are always equal to
the elastic co-tunnelling processes in the NBDI¼ 1 phase24,25.
Therefore, the crossed AR cannot reach unity. As shown in
Fig. 3e, the maximal crossed AR amplitude is in general much
smaller than unity in the NBDI¼ 1 phase. Therefore, the
possibility of inducing resonant-crossed ARs is a unique
signature of the NBDI¼ 2 phase.
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Figure 2 | Transport properties of a normal lead/BDI class topological superconductor junction. (a) A normal lead is attached to one end of a

semi-infinitely long BDI class topological superconductor in the NBDI¼ 2 phase. At zero voltage bias, the electrons are totally reflected due to the

destructive interference of the AR amplitudes induced by the two MF end states. (b) ZBC of the setup depicted in (a) as functions of D and Gz. It is evident

that the ZBC is quantized at 2e2/h in the NBDI¼ 1 phase and zero otherwise. The details of the tight-binding model used is given in the Methods section.

(c–e) The conductance as a function of voltages at points A1, A2, B1, B2, C1 and C2 denoted in a, respectively. The conductance peaks at high

voltages are due to bulk states and they appear only when the voltage bias is larger than the energy gap of the superconductor.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4232

4 NATURE COMMUNICATIONS | 5:3232 | DOI: 10.1038/ncomms4232 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


To understand the numerical results, we expect the transport
properties for voltage bias smaller than the superconducting
pairing gap to be well described by an effective Hamiltonian,
which includes the coupling between the MFs with the two leads
as well as the coupling among the four MF end states. The
Hamiltonian reads:

H2eff ¼ HLþHR þHMþHLMþHRM

HR ¼ ivF
Rþ1
�1

cy ðyÞ@yc ðyÞdy

HM ¼ iE13g1g3þ iE24g2g4

HRM ¼ io3g3½c ð0Þþcy ð0Þ�þo4g4½c ð0Þ�cy ð0Þ�:

ð5Þ

The Hamiltonian of the left lead HL and the coupling between
the left lead and the MFs HLM have been discussed above.
Here HR describes the right normal lead and c denotes an
annihilation operator of an electron with spin pointing to the
negative x direction. It is important to note that for the right
lead, only electrons that are spin-polarized along the negative
x direction are coupled to the MFs due to the form of the
MF wavefunctions g3 and g4. HRM describes the coupling
between the right lead and the MFs. The coupling between
the four MF end states is described by HM, where E13 and E24

are real numbers denoting the coupling strength between the
MFs from the opposite ends of the wire. As discussed above,
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into the superconductor to form a Cooper pair. For our setup, all the electrons on the left (right) lead have spin pointing to the positive (negative)

x direction. (b) In a Cooper pair splitting process, a Cooper pair is split into two electrons with opposite spins. One electron is injected into each lead.

(c) Local AR for a short wire with length L¼ 20a. In this case, the local ARs are still strongly suppressed but they can deviate from zero. (d) Crossed AR

amplitudes at zero bias of the wire. The crossed AR amplitudes can be close to one in the NBDI¼ 2 phase for a large phase space. (e) Elastic co-tunnelling

amplitudes at zero bias. (f) Normal reflection amplitudes at zero bias. It is important to note that the normal reflection amplitudes have a minimal

value of one. This is due to the fact that one of the spin channels of the normal lead is completely decoupled from the superconductor and all the electrons

of that spin channel are reflected. (g) The ZBC (blue line) and the crossed AR amplitude (green line) as functions of Gz for parameters denoted

by the horizontal dashed line in d. The vertical red dashed lines separate the three phases with different NBDI.
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the coupling terms such as ig1g4 and ig2g3 are not allowed by
symmetry.

For the effective Hamiltonian H2eff, the scattering matrix
can be found and the crossed AR amplitudes from one lead to
another lead at E¼ 0 is �o1o3E13vF/ E2

13u
2
F þo2

1o
2
3

� �
�

o2o4E24vF/ðE2
24u

2
Fþo2

2o
2
4Þ. Crossed AR processes are depicted

in Fig. 3a. When both the conditions E13/vF¼o1o3 and
E24/vF¼o2o4 are satisfied, the crossed AR amplitude is unity
and all other tunnelling amplitudes are zero. We call this
phenomenon resonant-crossed ARs. As shown in Fig. 3d, there is
a sizeable phase space in which the crossed AR amplitudes
are close to one. The oscillating behaviour of the tunnelling
amplitudes in the phases with MFs is due to the fact that
the coupling strengths of the MFs oscillate as a function of
D and Gz

25.
As depicted in Fig 3b, the reverse processes of the crossed

ARs are the Cooper pair splitting processes. When a current is
driven from the superconductor to the two leads, a Cooper
pair from the superconductor can be split into two spatially
separated but correlated electrons and one electron is injected
into each of the two leads. In the language of scattering
matrix, the Cooper pair splitting amplitude is equivalent to
the amplitude for an incoming hole from the left lead to be
reflected as an electron in the right lead. One can show that
the Cooper pair splitting amplitude equals the crossed AR
amplitude. As a result, when a current is driven from the
superconductor to the leads, we can have resonant Cooper pair
splitting.

Remarkably, for the left lead, only electrons with spin
pointing to the positive x direction are coupled to the super-
conductor and for the right lead, only electrons with spin
pointing to the negative x direction are coupled to the
superconductor due to symmetry constraints. Therefore, the
current of the left (right) lead is spin-polarized to the positive
(negative) x direction. Moreover, due to the resonant-crossed
ARs, the conductance of each normal lead is G ¼ 2e2/h and the
current is spin-polarized. The ZBC of the left lead, with
parameters corresponding to the horizontal dashed line in
Fig. 3d, is shown in Fig. 3g.

In Fig. 3g, the ZBC is denoted by the blue line and the crossed
AR amplitudes are denoted by the green line. As D is fixed and Gz

increases, all the three phases with NBDI¼ 2, 1 and 0 can be
reached. In the NBDI¼ 2 phase, it is clear that the conductance is
almost solely determined by the crossed AR amplitude as the local
AR amplitudes are strongly suppressed as shown in Fig. 3c. When
the crossed AR amplitude approaches unity, the ZBC approaches
2e2/h. In the NBDI¼ 1 phase, the conductance can reach 2e2/h due
to local ARs. In the NBDI¼ 0 phase, the ZBC goes to zero. Since
the currents out of the left and right leads are spin-polarized,
and the fact that there are no spin-orbit coupling in the normal
lead, the normal lead can sustain a spin current. Therefore, the
BDI class topological superconductor in the NBDI¼ 2 phase can
be a novel source of conserved spin currents for spintronic
applications.

Realistic Cooper pair splitters. In this section, we point out that
the anomalous transport properties of BDI class topological
superconductor discussed above can be experimentally realized
using anomalous Hall insulators in proximity to an s-wave
superconductor.

A quantum anomalous Hall insulator (QAHI) is an insulator
with gapless chiral fermionic edge states in the absence of an
external magnetic field, which has been experimentally discovered
recently37. Interestingly, it was shown by Qi et al.38 that in
proximity with an s-wave superconductor, a QAHI can be turned

into a topological superconductor, which supports one or two
branches of chiral MF edge states, as depicted in Fig. 4a. The
topological superconducting phases can be classified by Chern
numbers NChern with NChern denoting the number of branches of
MF edge states. The Hamiltonian of a QAHI in the presence
of superconducting pairing and in the Nambu basis {fkm, fkk,

fy� k";f
y
� k#} can be written as:

HQAHIþ SðkÞ ¼½G0z � 2t0sðcos kx þ cos kyÞ�tzsz

þ 2t0so sin kxt0sx þ sin kytzsy
� �

þDtysy:
ð6Þ

Here, G0z; t0s and t0so are real numbers characterizing the
model38. For general momentum k, the Hamiltonian is in the D
class that respects only the particle-hole symmetry. The time-
reversal-like symmetries T and T 0 are broken by the sinkxt0sx

term. However, for kx¼ 0, HQAHIþ S is equivalent to HBDI in

�1 �3�2 �4

NChern= 2

NL
NLX

y
e

e
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Figure 4 | Transport properties of a QAHI in proximity to an s-wave

superconductor. (a) In the NChern¼ 2 phase of a QAHI in proximity to an

s-wave superconductor, there are two branches of MF edge states localized

at the edge of the system. The MF edge states are denoted by gi. (b) Two

normal leads are attached to the edges of a QAHI. A Cooper pair is

split into two electrons. The electrons injected to the left lead and the right

lead have definite spin polarizations. This results in spin-polarized currents

leaving the normal leads. (c) The momentum-resolved conductance from

the normal lead to a wide strip of superconducting QAHI in the NChern¼ 1

phase. The tight-binding model used is described in the Methods section.

The width of the QAHI is Ly¼ 200a. Periodic boundary conditions in x

direction is assumed. The strong local AR amplitudes at energy within the

gap of the superconducting QAHI is due to the chiral MF edge state.

(d) The local AR amplitudes in the NChern¼ 2 phase with Ly¼ 200a. The

local AR amplitudes are strongly suppressed at low voltages even in the

presence of two chiral MF edge states as depicted in a. (e) The momentum-

resolved local AR amplitudes in the NChern¼ 2 phase for a narrow

strip of superconducting QAHI with Ly¼ 20a. The distance between the two

edges in the y direction is comparable to the localization length of the chiral

edge states. (f) The momentum-resolved crossed AR amplitudes of a

narrow strip of superconducting QAHI in the NChern¼ 2 phase with

Ly¼ 20a. The crossed AR amplitudes can be close to one at low voltages

near kx¼0.
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equation (2). As a result, the kx¼ 0 component of HQAHIþ S is a
BDI class topological superconductor. Moreover, the NChern¼ 1
(NChern¼ 2) phase in the quantum Anomalous Hall system
corresponds to the NBDI¼ 1 (NBDI¼ 2) phase of the BDI class
topological superconductor.

A strip of QAHI in proximity to a superconductor and
attached to two metal leads is depicted in Fig. 4b. The tight-
binding model used to describe HQAHIþ S is presented in the
Methods section. The momentum-resolved local AR amplitudes
from the left normal lead to the QAHI in the NChern¼ 1 and
NChern¼ 2 phases are shown in Fig. 4c,d, respectively. The width
of the QAHI in this case is Ly¼ 200a, which is much longer than
the localization length of the MF edge states. Focusing on the
transport properties at kx¼ 0, we note that the local AR resonates
at zero bias for the NChern¼ 1 phase but is suppressed for the
NChern¼ 2 phase. Similar results were obtained by Ii et al.39 while
the reasons of the transport anomalies were not given. By
establishing the correspondence between BDI class topological
superconductor and HQAHIþ S, we have shown with the effective
tunnelling Hamiltonian approach that the suppression of the
local AR at the NChern¼ 2 phase is a consequence of the
destructive interference of the AR amplitudes induced by the two
MFs with kx¼ 0 at the edge of the QAHI.

Owing to the strong suppression of the local AR amplitudes
near kx¼ 0 in the NChern¼ 2 phase, we expect that the crossed AR
amplitudes can be enhanced near kx¼ 0 when the width of the
QAHI is reduced. The local AR and the crossed AR amplitudes
for a narrow strip of QAHI with width Ly¼ 20a is presented in
Fig. 4e,f, respectively. From Fig. 4f, it is shown that the crossed
AR amplitudes can reach almost unity for kxE0 at low voltage
bias. At the same time, the local AR amplitudes in the NChern¼ 2
phase is strongly suppressed for this narrow strip of QAHI. As a
result, similar to the case of the BDI topological superconductor
in the NBDI¼ 2 phase, when a current is driven from the
superconductor to the lead, the QAHI can split the Cooper pairs
effectively and result in correlated spin-polarized currents leaving
the two normal leads.

Discussion
In this work, we show that the BDI class topological super-
conductor in the NBDI¼ 2 phase can be used as an efficient
Cooper pair splitter, whereby the Cooper pairs can be split into
two streams of spin-polarized currents. Two important results are
used to reach these conclusions, namely, the suppression of local
ARs and the fact that the MF end states only couple to electrons
with fixed spin polarizations of the leads. In this section, we argue
that these results can be understood easily in the regime with
small paring amplitudes.

First, since the local ARs compete with crossed ARs due to
conservation of probability, the MFs should not induce strong
local ARs, as in the case of D class topological superconductors.
Otherwise, the crossed AR amplitudes would be small. For a BDI
class topological superconductor in the NBDI¼ 2 phase obtained
by inducing superconductivity on a AIII class topological
insulator with fermionic end states, the suppression of local
ARs at zero bias is indeed quite natural.

Suppose that the AIII class topological insulator is in the non-
trivial phase with a fermionic end state, adding a small
superconducting pairing term does not close the energy gap
and there is no topological phase transition. In this case, the
fermionic end state can be regarded as two MF end states.
Therefore, we have a BDI class topological superconductor with
NBDI¼ 2. However, when the pairing terms are zero, there cannot
be any local ARs since the system is simply an insulator.
Consequently, one may expect that the local AR amplitudes are

strongly suppressed when the pairing amplitudes are small. The
suppression of the local AR amplitudes opens up the possibility
for the crossed AR amplitudes to be enhanced in the presence of
finite D.

It is important to note that the suppression of local ARs in the
NBDI¼ 2 phase does not contradict the results of Diez et al.40 who
predicted that the conductance at zero bias should be NBDI

2e2

h at a
normal lead/BDI topological superconductor junction. The
reason is that the results obtained in Diez et al.40 would apply
only if NBDI is calculated using the chiral symmetry C0¼T 0P
where P is the particle-hole symmetry operator and T 0¼K and K
is the complex conjugate operator. This chiral symmetry C0 is
respected by HBDI of equation (2). Using this set of symmetries,
one would find that the topological invariant N 0BDI equals to zero
in the parameter regimes where NBDI¼ 2 and NBDI¼ 0.
Moreover, N 0BDI¼ 1 in the regime where NBDI¼ 1. Therefore,
the ZBC should be zero in both the NBDI¼ 0 and NBDI¼ 2
phases. This is consistent with the results by Diez et al.40.
However, the symmetry arguments alone are not enough to
understand the conductance at finite voltages. In short, the
NBDI¼ 2 topological phase in this work is different from the
N 0BDI¼ 2 phases found in previous works26,27 as a different set of
symmetry operators were used to calculate the topological
invariants. The suppression of local ARs caused by usual
fermionic Andreev bound states was also studied by Ioselevich
and Feigelman41. However, resonant-crossed ARs cannot happen
in trivial superconductors due to the lack of symmetry constraints
to restrict the form of the interactions among different Andreev
bound states.

Second, by definition, a AIII class topological insulator respects
a chiral symmetry. As a result, a non-degenerate zero energy
fermionic end state at one end of the system has to be an
eigenstate of the chiral symmetry operator. For the AIII class
model used in equation (1), the chiral operator is sx. Therefore,
the two end states at opposite ends of the wire are eigenstates of
sx with opposite eigenvalues29. If there are no spin flip terms in
the leads, the end states can only couple to electrons that have the
same spin as the end states. Using the form of the MF
wavefunctions, one can show that this is true even in the
presence of the pairing terms. As a result, in the effective
Hamiltonian H2eff, one can regard the left and the right normal
leads as having opposite spin. This result is important for
obtaining spin-polarized currents in the leads by splitting Cooper
pairs.

Moreover, experiments on the efficient splitting of Cooper
pairs using Coulomb blockade effect42 have been reported43,44.
However, the currents leaving the superconductors are not spin-
polarized and it is not known whether the electrons on different
leads are correlated45. Therefore, being able to generate correlated
spin currents by splitting Cooper pairs is a very unique property
of the BDI class topological superconductor.

Finally, we discuss the stability of the topological phases that
support two zero energy Majorana modes on each edge of
the system. As discussed above, the NBDI¼ 2 phase of the BDI
class topological superconductor is protected by the chiral
symmetry C¼sxt0. Therefore, terms such as sxtz can break the
chiral symmetry and make the superconductor topo-
logically trivial. However, the NChern¼ 2 phase of the super-
conducting QAHI is in the D class18 and the zero energy
Majorana modes on the edge are robust against perturbations
as long as the bulk gap is not closed. Therefore, one can always
extract an effective 1D Hamiltonian from the two dimensional
(2D) superconducting QAHI, which supports two Majorana
modes at each edge. The coupling of this 1D Hamiltonian
with normal leads can be described by equation (4). Therefore,
the suppression of local ARs and the appearance of almost
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resonant-crossed ARs in the QAHI case are robust against
perturbations.

Methods
Tight-binding models. For the calculations of the momentum-resolved transport
properties of the QAHI with superconducting pairing terms, we apply periodic
boundary conditions in the x direction and open boundary conditions in the y
direction. Spinful normal leads are attached to the two edges parallel to the x
directions. The tight-binding model for a strip of QAHI with superconducting
pairing terms can be written as:

HQAHIþ SðkxÞ ¼
X

i

½ � t0sðc
y
i;kx ;"ciþ 1;kx ;" � c

y
i;kx ;#ciþ 1;kx ;#Þ

þ t0soðc
y
i;kx ;"ciþ 1;kx ;# � c

y
i;kx ;"ci� 1;kx ;#Þ� þ h:c:

þ
X

i

½ðG0z � 2t0s cos kxÞðcyi;kx ;"ci;kx ;" � cyi;kx ;#ci;kx ;#

þ 2t0so sin kxðcyi;kx ;"ci;kx ;# þ c
y
i;kx ;#ci;kx ;"Þ

þDðcyi;kx ;"c
y
i;� kx ;# þ h:c:Þ�:

Here ci:kx ;" ci;kx ;#
� �

denotes an electron operator at site i along the y direction
and has momentum quantum number kx along the x direction and spin up (spin
down) with respect to the z direction. In all the figures in Fig. 4, the parameters are:
t0so¼ 1, t0s¼ 10. For Fig. 4c,e, G0z ¼ 40 and D¼ 1 so that the system is in the
NChern¼ 1 phase. In Fig. 4d,f, G0z ¼ 36.4 and D¼ 1 so that the system is in the
NChern¼ 2 phase.

The same tight-binding model HQAHIþ S(kx), with kx¼ 0, can be used to
describe the BDI class topological superconductor HBDI(k) of equation (2) with
parameters t0so ¼ tso, t0s¼ ts and G0z ¼Gzþ 2ts. In Figs 2 and 3, ts ¼ 10 and the
number of sites in the y direction is L¼ 200a and L¼ 20a, respectively, where a is
the lattice constant.
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