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Summary

Background During the initial phase of the COVID-19 pandemic, the Government of India implemented a nationwide
lockdown, sealing borders across states and districts. The northeastern region of India, surrounded by three
international borders and connected to mainland India by a narrow passage, faced particular isolation. This
isolation resulted in these states forming a relatively closed population. Consequently, the availability of
population-based data from Indian Council of Medical Research, tracked through national identification cards,
offered a distinctive opportunity to understand the spread of the virus among non-vaccinated and non-exposed
populations. This research leverages this dataset to comprehend the repercussions within isolated populations.

Methods The inter-district variability was visualized using geospatial analysis. The patterns do not follow any
established grounded theories on disease spread. Out of 7.1 million total data weekly 0.35 million COVID-19-
positive northeast data was taken from April 2020 to February 2021 including “date, test result, population
density, area, latitude, longitude, district, and state” to identify the spread pattern using a modified reaction-
diffusion model (MRD-Model) and Geographic Information System.

Findings The analysis of the closed population group revealed an initial uneven yet rapidly expanding geographical
spread characterized by a high diffusion rate o approximately 0.4503 and a lower reaction rate f§ approximately 0.0256,
which indicated a slower growth trajectory of case numbers rather than exponential escalation. In the latter stages,
COVID-19 incidence reached zero in numerous districts, while in others, the reported cases did not exceed 100.

Interpretation The MRD-Model effectively captured the disease transmission dynamics in the abovementioned
setting. This enhanced understanding of COVID-19 spread in remote, isolated regions provided by the MRD
modelling framework can guide targeted public health strategies for similar isolated areas.

Funding This study is Funded by Indian Council of Medical Research (ICMR).
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northeast states of India which are connected to the
mainland by an isthmiclike land strip and have
impervious international borders. The dynamics of

Introduction
The severe acute respiratory syndrome caused by coro-
navirus SARS-CoV-2' spread as a pandemic throughout

the globe during the years 2019, 2020, 2021 and 2022.
There were periods when the vaccine was not available
and then a period when majority of the people had been
vaccinated during the different phases of pandemic.
Disease transfer in isolated regions with minimal
floating populations has not been studied in detail to
understand the disease transfer dynamics. The

spread would give an idea on mitigation procedures that
may be employed to contain any new similar viruses
that appear in future. It is a good approach to see how
pandemic proceeds through isolated regions during
lockdown. Intuitively, if disease transmission between
districts resembled a diffusion process, stringent border
closures would likely have curbed its spread more
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Research in context

Evidence before this study

A search was made in the PubMed with following query
“("Geographic Information Systems” [Mesh] OR “Geographic
Mapping” [Mesh]) AND “COVID-19/epidemiology” [Mesh]”
resulting in 138 articles on 25-05-2024. Previous studies on
the epidemiology of COVID-19 in India have primarily relied
on national-level data to model transmission dynamics. While
insightful, such analyses do not capture dynamics in isolated
population groups with limited external connectivity. A few
studies have used spatial modelling approaches to
characterize COVID-19 spread across different regions within
India. However, population-level data from northeastern
states providing an epidemiologically closed setting had not
been utilized to understand natural transmission patterns
before the introduction of vaccines or mass immunity.

Added value of this study

To our knowledge, this is the first study to analyze COVID-19
testing data from the isolated population of northeastern
India spanning April 2020-February 2021, before vaccines

effectively. However, if it followed a Brownian motion
model, then prioritizing contact isolation would have
been crucial. Such studies having a robust model
framework would aid policymakers for informed policy
decisions. Up to March 2022, there have been over 456
million confirmed cases of COVID-19 worldwide,
including over 6 million deaths reported to WHO.? India
has witnessed several waves of COVID-19 infection
since the start of the pandemic.’ These states of India
are bounded by international borders of Bhutan, Nepal,
Bangladesh, and Myanmar. The first reported cases of
COVID-19 in the northeastern states of India occurred
sometime later approximately 3 months later than in
other parts of the country ie., first case in India on
January 27, 2020, and first case in the Northeast was
during April, 2020." Four contiguous lockdowns were
implemented in India from 25th March 2020 to 31 May
2020 which was also implemented by northeast India.
Further, the lockdown was followed by 3 unlock phases
and completely unlocked by 31st July.’ The lag time
form most new are novel viruses are not known in the
start but can be calculated with a range in the early part
of the pandemic as was done for Covid.® The incubation
period was labelled as and still is labelled as 2-14 days
and a median estimate was used as seven days. Our
study revealed that incubation period did have an effect
in the initial spread of sporadic disease but not signifi-
cantly in the later stages of disease where a regional
variation within the area studies.

This study is significant because we identified how
the virus spreads in the absence of vaccination within
closed population. Understanding how the virus spreads
within such a small, closed population offers vital

were widely available. By applying a geographic information
system and modified reaction-diffusion modelling, we were
able to characterize the inter-district spread and temporal
evolution of SARS-CoV-2 in this unique epidemiological
setting. Our analysis provides novel insights on the initial
transmission dynamics and decline of the virus in a non-
vaccinated population with limited external influence.

Implications of all the available evidence

Our findings have important implications for understanding
COVID-19 transmission in isolated regions with minimal
external connectivity. The rapid initial dissemination followed
by slower growth trajectory identified in our models enhances
theoretical frameworks for predicting spread in isolated
settings. The successful application of geospatial and
mathematical modelling approaches also demonstrates their
utility for guiding public health strategies in similar
populations worldwide. Ongoing and future studies
incorporating these elements could further refine response
plans for remote areas during epidemics.

information about the virus’s natural progression. This
study emphasizes how important regional differences are
in determining how the virus spreads, and how these
variations are shaped by things like population density,
regional mobility, and public health infrastructure. It also
emphasizes how crucial it is to take COVID-19’s incu-
bation period into account when analyzing transmission
dynamics since lag-time can facilitate cross-border spread
even in the face of strict lockdown protocols. By analyzing
data over a substantial period, this study offers valuable
observations on the temporal impacts of containment
and mitigation strategies, providing practical recom-
mendations for enhancing public health responses in
isolated and semi-closed populations globally.

Further, it has been observed that sub-national or
state-tailored policies in Northeast India have not been
effectively utilized for regional COVID-19 transmission
control. Public health falls under the ‘state list’ as per
Article 246 of the 7th Schedule of the Indian Constitu-
tion, although, it has been discerned that, since it was a
global pandemic, sub-national policies focused more on
a centralized approach. This centralized approach, sup-
ported by state governments, contrasted with the typi-
cally decentralized nature of public health governance in
India.” Risk-benefit assessments and considerations by
local communities on transmission spread were not
widely considered due to the global nature of the
pandemic, bypassing state-level governance. Notwith-
standing any biases, almost all state governments agreed
to follow nationalized protocols.

On the other hand, population density has been a
critical factor in the transmission dynamics of COVID-
19. The northeastern states have relatively lower
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population density than other states of India. Studies
from various regions, including South-East Asia and
the Western-Pacific, have shown that densely popu-
lated urban areas experienced more rapid spread
compared to rural areas. For instance, research con-
ducted in countries like India and the Philippines
indicated that metropolitan areas saw quicker out-
breaks and higher infection rates due to the concen-
tration of people in small areas.*” In this purview,
achieving critical vaccination thresholds is essential
for controlling the spread of COVID-19, particularly
in high-density regions. In densely populated areas,
the threshold for herd immunity is higher because of
the increased contact rates. Studies in the Western-
Pacific region, such as in Singapore and Japan, have
highlighted the importance of rapid and widespread
vaccination campaigns to achieve these thresholds
and effectively control outbreaks.'*"!

As discussed, the northeastern region of India con-
sists of five international boundaries which had limited
connectivity and movement during the initial phases of
the pandemic due to border closures.”” Previous studies
on COVID-19 spread in India have primarily focused on
modelling transmission dynamics at national and sub-
national levels using large metropolitan datasets.”
However, population-level data from isolated regions
with minimal floating populations and limited external
connectivity could provide novel insights into the natu-
ral transmission dynamics of SARS-CoV-2 in a non-
vaccinated setting. Here, we analyze COVID-19 testing
data from the northeastern states of India spanning
April 2020-February 2021, before the wide availability of
vaccines, to characterize the inter-district spread of
SARS-CoV-2 using a geographic information system
and modified reaction-diffusion modelling approach.

This analysis aims for a better understanding of the
epidemiological characteristics of isolated regions and
ensure more effective containment and mitigation
strategies for similar populations worldwide. Specif-
ically, the analysis will look at the patterns of COVID-19
transmission in the northeastern states, assess the effect
of national-level lockdowns on local transmission rates,
and provide actionable recommendations for modifying
public health interventions to regional contexts.

Methods

Overview

As per the GATHER guidelines' this study looked at the
population densities of the different districts in the 7
contiguous states and a single non-contiguous state
(Sikkim) which falls under the northeast council of In-
dian Government. The Pan-India covid testing data was
pooled in ICMR repositories right from the start of the
pandemic India by government mandate, hence the
ICMR data was acquired. The total population in this
semi-closed population as per 2011 census data are:
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Assam- 3,12,05,576; Tripura- 36,73,917; Meghalaya-
29,66,889; Nagaland- 19,78,502; Manipur- 28,55,794;
Arunachal Pradesh- 13,83,727; Mizoram- 10,97,206; and
Sikkim- 6,10,577. The district population distribution is
given in the supplementary data (Appendix p 236). For
transmission of contagious diseases, the age and sex
details are irrelevant. The time frame studied was 1st
week of March 2020-4th week of February 2021. In
January 2021, the first lot of vaccines™ had arrived and
the transmission after the vaccination not been worked
in this study. The source of data as well as the funding
for this work including machine and software were
provided by the Indian Council of Medical Research
(ICMR) under the Granting head “2021-6393”. The data
was single source ICMR repository, JSON files were
provided through application programming interface
(API). Data were obtained in the JSON format, then
converted to the table m x n format using Microsoft SQL
Server. The data was uniquely identified as individuals
based on Adhaar as a biometric identifier of all indi-
vidual citizens of India. The Adhaar numbers were
masked by ICMR to prevent identification of individuals
by external sources so that individual privacy and
confidentiality are maintained. It was passed as satis-
factory by the institutional ethical committees. All pos-
itive data in the repository were considered for northeast
India based analysis. Further, no exclusions were made,
since it was a repository of all tests, no selection was
made for sample size computation.

The data as a whole can be regarded as unbiased and
representative, given that mandatory and multiple mech-
anisms were implemented to ensure that all tests,
including antigen tests and self-test kits, which were
uploaded to the ICMR database. Mechanisms were
established for states utilizing their own apps for COVID
testing data collection. It is acknowledged that symptom-
atic testing was primarily conducted during the early
phases, owing to limited testing facilities and kits following
the initial guidelines in India. However, starting from
March 2020 onwards i.e., one month before the first case
in northeast India, with the in-house development of
testing kits and the introduction of private labs, testing was
expanded to include a significant number of asymptomatic
individuals as well. While there may be extremely few in-
stances where tests were not uploaded, considering that
the ICMR database served as the foundation for insurance
and other legal procedures, it is presumed to be substan-
tially unbiased and representative.

Data was collected week-wise for the study because
(WU et al. 2022)° determined the incubation period for
COVID-19 to be from 2 days to 22 days in the mean of
6.57 days. The incubation periods of COVID-19 caused
by the Alpha, Beta, Delta, and Omicron variants were
5.00, 4.50, 4.41, and 3.42 days, respectively. Hence, the
mean incubation was 7.43 days i.e., around one week.
The week-wise data collected was then used for geo-
spatial analysis and mathematical analysis. The entire
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workflow diagram of our study is demonstrated in
Fig. 1. The data used for our analysis were Date_Time,
District_Name, State_Name, Final_Test_Result, Total
Population, Population Density, Area, Latitude and
Longitude. The Total Population, Population Density
and Area these data were taken from the Indian official
census website. Latitude and Longitude were generated
using google API services. The software used for this
study included Anaconda, ArcGIS Pro, Microsoft SQL
Server, Microsoft Excel.

Mathematical modeling

As discussed, this study examines the week-wise cu-
mulative data to analyze the spread of the initial COVID-
19 wave across districts during the lockdown phase. The
pattern was visualized using ArcGIS Pro software, and
various models such as Brownian and Diffusion were
tested using Python programming, but none yielded
significant results. Different regression approaches
were also explored, as discussed further in the
“Regression Modelling and Sensitivity Analysis” and
“Spatial Data Analysis” subsections below. However,
one of the other candidate models to which this data was
subjected for pattern of spread included a logistic
growth model,’® but the COVID-19 disease spread

ICMR data

repository Link

JSON SQL Tabulation

Positive test
data filtered

Problem formulated

Sorted places

gitude data colated

Latitude and lon- [ Positive tested data ] [ ArcGIS district shape

linked by google API files created and set

from google earth

Geospatial
data analysis

Equation formation

Analyse

Data Simulation

Fig. 1: This graphical representation shows the different stages of
the workflow.

growth rate predicted by the models was exceptionally
low. Further, we tried to modify and implement
reaction-diffusion model for identifying the Northeast
COVID-19 spread pattern. The reaction-diffusion model
is based on the Fisher-KPP equation, created by Fisher."”
Though it is an early model with many intermittent
modifications, we found this model reasonably matches
with the pattern seen in consecutive visual display in
maps. This Fisher-KPP equation explains how a group
of organisms moves and grows in a particular area. It
shows how they spread out by moving randomly and
reproducing in their local surroundings. This equation
provides a basic theoretical framework for modelling
disease transmission dynamics." The traditional Fisher-
KPP is a basic model and might not consider all the
complexities involved in the real world, making it less
accurate in certain situations like actual disease out-
breaks. To address this, we used the Fishers-KPP
equation with slight modifications as per our data
availability. In (Appendix pp 1 and 2) we have shown a
detailed elaboration of how we modified the Fishers-
KPP equation. After modifying the Fishers-KPP equa-
tion we call it Modified Reaction-Diffusion Model (MRD
Model).

The MRD model is particularly found useful because
it examines COVID-19 transmission dynamics across
isolated regions with limited connectivity in Northeast
India. Specifically, the carrying capacity term used in
our MRD model (1-u/K) allows the growth rate to
saturate as the infected population approaches the
maximum capacity K set by environmental constraints.
By incorporating geographic factors through the diffu-
sion term and accounting for finite carrying capacity,
this MRD model provides a more accurate representa-
tion of disease spread compared to simple compart-
mental models or uncontrolled exponential growth
models. This enhances our ability to interpret the
epidemiological patterns observed in this isolated pop-
ulation. The MRD model is an appropriate and effective
theoretical framework for analyzing the district-level
COVID-19 transmission dynamics in this study
region. It addresses some limitations of basic reaction-
diffusion formulations while retaining their advan-
tages for spatial-temporal modelling of infectious
disease spread.

Data analysis

Initially, the weekly segregated data was encoded as
integer encoding, where each unique category value is
assigned an integer value. Then the encoded data was
used to find a relationship between population density
and positive COVID-19 cases. So, we performed
regression analysis. After performing the regression
analysis, we applied simulation or looping, to simulate
the progression of the disease within a specified region
over time (week-wise). The progression of the disease
was simulated using our derived MRD model.
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The looping method is integral to our analysis for
parameter estimation within the Modified Reaction-
Diffusion (MRD) model. This method was embedded
within the simulation framework to iteratively optimize
the model parameters (a, p, and K) for the best fit to our
observed COVID-19 case data. The simulation begins
with initial guesses for the diffusion rate (), reaction
rate (), and carrying capacity (K). These initial values
were a = 0.1, f = 0.01, and K = 1000.0, chosen based on
preliminary analysis and literature review. The looping
method iterates through each time step (weekly in-
tervals) to calculate the infected population density us-
ing the MRD equation. The equation incorporates both
spatial diffusion and local reaction dynamics. At each
iteration, the infected population density is updated
based on the density from the previous week. This
iterative approach allows the model to simulate the
temporal evolution of the infection across the
geographic area. For each iteration, the negative log-
likelihood is computed to measure the fit between the
simulated infected density and the observed data. This is
crucial for assessing the accuracy of the model at each
time step. The formula used to calculate the negative
log-likelihood is based on the assumption of normally
distributed errors and is given in (Appendix p 2).

After this process the differential evolution function
is used to find the parameters (@, D, K) that minimize
the negative log-likelihood, effectively maximizing the
likelihood of the observed data given the model. The
optimization algorithm explores the parameter space
(within defined bounds) to find the optimal values. The
Differential evolution function performs mutation by
creating a mutant vector V based on three randomly
chosen individuals (A, B, C). Where A, B, and C are
three distinct individuals (sets of parameters) from the
district population. The mutant vector (V) is calculated
for each parameter separately using the formula present
in (Appendix p 2).

After this, a crossover operation combines the orig-
inal values generated by the simulation loop with the
mutant vector to create a trial candidate solution. This is
done for each parameter and follows a binomial cross-
over process. For each parameter it generates a random
number between 0 and 1 if this random number is less
than the crossover probability (a user-defined param-
eter), take the corresponding parameter from the
mutant vector; otherwise, keep the original parameter.
Finally, it performs a selection operation to determine
which candidate solutions survive based on their fitness
(negative log-likelihood). The better-fit solutions are
chosen to be part of the updated population. It also
compares the negative log-likelihood (fitness) of each
trial candidate solution with that of the corresponding
original candidate solution and if the trial candidate
solution has a lower negative log-likelihood (better
fitness), it replaces the original candidate solution. The
mutation, crossover, and selection steps are performed
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for each candidate solution in the population, and the
updated population becomes the values for the next
iteration. This iterative process continues for a certain
number of iterations or until a convergence criterion is
met. The result of the optimization is the set of pa-
rameters («, D, K) that minimize the negative log-
likelihood, giving us the best-fit model for the
observed data.

Spatial data analysis
In this spatial analysis various mapping techniques®
were employed, including Quantile Maps, Normalized
Maps, Bivariate Maps, Spatial Autocorrelation, and
Empirical Bayesian Kriging (EBK), to effectively visu-
alize and interpret the data. Quantile maps were
generated to display the spatial distribution of COVID-
19 cases by categorizing data into quantiles. This al-
lows for the comparison of case numbers across
different districts. Each color on the map represents a
quantile range, making it easier to identify patterns and
disparities in case distribution. Normalized maps were
created to illustrate the concentration of positive
COVID-19 cases relative to the total population across
various districts in Northeastern India. These maps
were created to provide a clear visual representation of
how the number of cases varies in proportion to the
population size, helping to identify areas with higher
relative infection rates. Bivariate maps were employed to
visually represent the distribution of COVID-19 positive
cases in relation to the total population across different
districts in Northeastern India. This method provides a
dual-variable visualization, highlighting critical areas
that require attention and offering insights that can
inform public health policies and response strategies.
We performed spatial autocorrelation® to identify the
Moran’s Index value, z-score, p-value in our weekly
COVID-19 Northeast positive data to visualize if data are
dispersed, clustered or random. The results indicated a
random distribution. Hence, Simultaneous Autore-
gressive Model (SAR), and Conditional Autoregressive
Model (CAR) were excluded from the analysis. We used
our whole Northeast COVID-19 positive data to compute
Empirical Bayesian Kriging. Empirical Bayesian Kriging
(EBK)* is a method used to predict how certain variables
are spread out in space. Unlike traditional methods,
EBK considers the uncertainty in the model used to
describe how data points relate to each other over dis-
tance. It uses Bayesian statistics to create a reliable es-
timate of spatial patterns, making it especially useful for
data that doesn’t follow a consistent pattern or has
varying degrees of similarity between points. The results
generated by the EBK method are attached in appendix
as Supplement 7 (eEBKmaps and results).

Regression modelling and sensitivity analysis
Regression analysis was also considered in this study to
understand how the MRD model may be significant or
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less significant in an isolated population. Different
polynomial and exponential orders to identify the
relationship between the population density and
COVID-19-positive cases was considered initially.
Further, Ordinary Least Squares (OLS) regression* was
considered due to less computational complexity. OSL
analysis is a statistical method used to estimate the
relationship between one or more independent variables
and a dependent variable. In OLS regression analysis,
number of positive COVID-19 cases was considered as
the dependent variable and the population of each dis-
trict as the independent variable. Further, Geographi-
cally Weighted Regression (GWR)*? was considered
which is a spatial analysis technique used to model
spatially varying relationships in data rather than fitting
a single, global regression model to the entire dataset.
GWR creates separate regression equations for each
target feature based on the dependent and explanatory
variables of nearby features within a defined neighbor-
hood. This localized modelling approach allows the re-
lationships between variables to vary across different
locations, resulting in a more detailed and contextual-
ized understanding of the data’s underlying patterns,
particularly when there are significant geographic or
spatial dynamics at work. The equations for both OLS
and GWR are explained in (Appendix p 3).

At last, sensitivity analysis and uncertainty analysis
were performed in this analysis using Sobol’ sensitivity
analysis”* in Modified Reaction-Diffusion (MRD) model.
This approach quantified the impact of input parameter
uncertainties on the model’s predictions, specifically
evaluating how variations in the diffusion rate (a),
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reaction rate (f), and carrying capacity (K) influenced the
forecasted infected population.

Role of the funding source

Indian Council of Medical Research (ICMR) provided
the dataset through a research grant (Project ID 2021-
6393) and financial support for manpower and other
resources. In this specific work, ICMR is solely
responsible for data collection. Sikkim Manipal Insti-
tute of Technology and Jay Prabha Medanta Super
Speciality Hospital are responsible for the study
design, data analysis, data interpretation, or writing of
the report. We consulted ICMR periodically during the
data analysis.

Results

Initially, this study tried to identify the relationship be-
tween COVID-19-positive cases and population density
using regression analysis. Different polynomial and
exponential orders to identify the relationship between
the population density and COVID-19-positive cases
were considered. No relationship was observed between
these two factors as shown in Fig. 2.

Ordinary Least Squares (OLS) regression model was
implemented against weekly Northeast COVID-19 data.
The model included population as an explanatory vari-
able for the number of COVID-19 infections (INFEC-
TED_P). The results indicate that the model did not
effectively explain the variability in infection rates at the
initial months of COVID-19 spread. The model’s
explanatory power was low, the overall model was not
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e A A
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P e OIS B, ~ 1 iRl T R
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Fig. 2: This figure shows the monthly first week polynomial relationship between the population density and the COVID-19 positive
cases. The rest of the weekly charts are available in Supplement 1 (ePlots).
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statistically significant, as indicated by the Joint F-Sta-
tistic and the Joint Wald Statistic at the initial COVID-19
spread period. The results of OLS are provided in ap-
pendix (Appendix pp 234). The Geographically
Weighted Regression (GWR) model was also imple-
mented on the same northeast data. During the initial
period of COVID-19 spread, the R” values were found to
be very low in the early weeks of April 2020 and May
2020. The corresponding Adjusted R® values
were —0.0266 and —0.0252, respectively. These negative
Adjusted R? values suggest that the model performed
poorly in explaining the spatial variability of COVID-19
cases, indicating a random disease pattern initially.
GWR analysis results are available in appendix
(Appendix pp 234). Since, initial regression analysis
didn’t yield any results, Spatial autocorrelation was
considered to assess whether the distribution of
COVID-19 cases was random, dispersed, or clustered
across Northeastern India. This analysis involved
calculating the Moran’s Index value, z-score, and p-value
to determine the spatial patterns in the data. The results
indicated a random distribution of cases as shown in
Fig. 3.

After regression analysis and spatial autocorrelation
analysis were performed, the MRD Model was
employed to identify the spread of COVID-19 cases in
Northeastern India. It was observed that the MRD
model proved to be highly effective in understanding
the spatial distribution and temporal dynamics of in-
fectious diseases. During the analysis, it was found that
the diffusion rate («) was approximately 0.4503. This
parameter signifies the speed at which the virus spreads
spatially within the region. A higher « indicates a more
rapid geographic expansion of the infection, while a
lower value suggests a slower spread, possibly influ-
enced by factors such as geographical barriers or
containment measures.

Furthermore, the reaction rate parameter (B) was
determined to be around 0.0256. f plays a crucial role in
modeling the growth of the infected population. A
higher B signifies a faster increase in the number of
cases, assuming no constraints, while a lower p value
implies slower growth, possibly due to factors such as
public health interventions.

The modified reaction-diffusion model was then
implemented, allowing the creation of a 3D plot, as
shown in Fig. 7. These figures illustrate the weekly
increase in COVID-19 cases, with the x and y axes rep-
resenting longitude and latitude, respectively, and the
z-axis indicating the weeks of a given month. Within the
figure, overlapping four-color point surfaces are
observed, reflecting the spread of COVID-19 in a spe-
cific week and indicating which latitude and longitude
values experienced the greatest COVID-19 spread. On
the right side of each graph, a color bar labeled “infected
density” illustrates the density value, with higher values
indicating greater spread in specific latitude and
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longitude coordinates. Additional 3D graphs are avail-
able in Supplement 6 (e3D-Charts).

It was observed in weekly COVID-19 spread maps
that the spread was not rapid during the initial weeks of
April and May 2020, as depicted in Fig. 4. These pat-
terns of uneven spread are consistent with the o and
B values predicted by MRD-model. Quantile maps are
created to visualize these spread patterns as shown in
Fig. 4. Each color on the map represents a specific
quantile range, making it easier to identify patterns and
disparities in case distribution. The legends in these
maps indicate the range of positive cases, with white
indicating zero cases or very lower cases and other
shades representing varying levels of infection. The
spatial distribution of COVID-19 cases for every first
week from April 2020 to February 2021 is shown in
Figs. 5 and 6. In Fig. 5, normalized map has illustrated
the concentration of positive COVID-19 cases relative to
the total population across various districts in North-
eastern India. The color legends represent the concen-
tration of cases; darker the shade, higher is the
concentration of cases. This weekly analysis provides
valuable insights for health authorities to prioritize areas
for resource deployment and to implement targeted
containment measures. The distinct color-coded repre-
sentation facilitates quick identification of hotspots,
thereby aiding efficient decision-making in public
health management. In Fig. 6, bivariate maps visually
represent the distribution of COVID-19 positive cases in
relation to the total population across various districts in
the northeastern region of India. The x-axis of the color
legend represents the number of COVID-19 positive
cases (Positive), ranging from lighter shade of pink to
darker shade for COVID-19 positive case occurrence
intensity. The y-axis represents the total population
(Total_P), ranging from low (light blue) to high (dark
blue). This bivariate map is convenient for visualizing
and analyzing the relationship between COVID-19
positive cases and the total population in northeastern
India. It highlights critical areas requiring attention and
provides insights that can inform public health policies
and response strategies. Weekly normalized maps and
bivariate maps from April 2020 to February 2021, are
available in Supplement 3 (eNormalizedMaps) and
Supplement 4 (eBivariateMaps).

To understand the MRD model analysis, both un-
certainty and sensitivity parameters were estimated. The
sensitivity analysis of the reaction-diffusion model pro-
vided both first-order and total-order sensitivity indices
for the parameters a, B, and K. The first-order sensitivity
indices were —1.5438 for o, —1.2607 for B, and -1.5386
for K. These values suggest that each parameter has a
moderate inverse relationship with the model output,
meaning that increases in these parameters lead to a
decrease in the model output. The total-order sensitivity
indices were 2.1026 for o, 1.8423 for B, and 2.0426 for K.
These indices indicate that each parameter, along with
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April Week 12020

Moran's Index -0.023916 Critcal Value
-seore - (z-score)
2-score -0.329393 () (e
p-value 0741859 58

Given the z-score of -0.329393, the pattern does not appear to be significantly ifferent than
random.

July Week 12020
Moran's Index 0.012437
2-score 1.335393 £
p-value 0.181748

Criical Value
re)

Given the 2-score of 1.335393, the pattern does not appear to be significantly different than
random.
October Week 12020
Moran's Index 0105945
2-score 1605348
prvalue 0108417

Given the z-score of 1.605348, the pattern does not appear to be significantly different than
random.

January Week 1 2021

Moran's Tndex -0.021991 Soncnce o
2-score -0.136583 () (o)

p-value 0891360

Significant

Given the z-score of -0.136583, the pattern does not appear to be significantly different than
random.

May Week 12020

Significance Level

Moran's Index -0.025200 Critical Valve
2-score -0.821591 T
p-value 0.411310

Given the z-score of -0.821591, the pattern does not appear to be significantly different than
random.
August Week 12020
Moran's Index 0.187852
2-score 2.673919
p-value 0007497

Significant

Significant

Given the z-score of 2.673919, there s a less than 1% likelihood that this clustered pattern
could be the result of random chance.

November Week 1 2020

Moran's Index -0.078703
2-score -0.819243 £
prvalue 0.412648

Criical Value
(z-score)

Given the z-score of -0.819243, the pattern does not appear to be significantly different than
random.

February Week 1 2021
Moran's Index 0.010577

2-score 0.297411 £
prvalue 0766153

,}J

Random

Given the z-score of 0.297411, the pattern does not appear to be significantly different than
random.

June Week 12020

Significance Level Critcal Value

Moran's Index 0.102623
2-score 1.319499 £

prvalue 0.187002

Given the z-score of 1.319499, the pattern does not appear to be significantly different than
random.

September Week 1 2020
Moran's Index 0.011416 Significance Level
pval

Critical Value
2-score 0.354846 () (o)

001 <238
prvalue 0.722705 005 EB 238--19
010 03 -196--165
- OO 1es- 163
010 E3 165-196
005 196238

co1 mm 5238

r—— [r—

Significant.

Given the z-score of 0.354846, the pattem does not appear to be significantly different than
random.

December Week 1 2020

Moran's Index -0.013868 — s
2-score -0.025852 £ (pvalue) Gwore)
p-value 0979376 > 3

= 136--1
.05 196 - 238
. 1 [pr—
Songicond Significant

Given the z-score of -0.025852, the pattem does not appear to be significantly different than
random.

Fig. 3: This figure shows the monthly first week spatial autocorrelation relationship of COVID-19 positive cases. The rest of the weekly
results are available in Supplement 2 (eSpatialPlots).
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Fig. 4: This figure contains the monthly first week quantile maps of COVID-19 positive cases. The rest of the weekly results are available

in Supplement 3 (eQuantileMaps).

its interactions with other parameters, significantly in-
fluences the model output variance.

Uncertainty analysis was also done using Sobol’
sensitivity analysis to see how variations in input pa-
rameters affect the model’s predictions. The results
showed that the combined effects of the parameters and
their interactions are significant, as seen in the high
total-order indices. Even though the first-order indices
were negative, the high total-order indices mean that the
parameters and their interactions greatly influence the
model. This means the model is very sensitive to

www.thelancet.com Vol 28 September, 2024

changes in the parameters, especially when considering
their interactions. Understanding this is important for
accurately adjusting parameter estimates to improve the
model’s accuracy and reliability.

Discussion

During the COVID-19 pandemic, the Government of
India implemented a strict nationwide lockdown,*
which included sealing state and district borders. The
northeastern states of India, with their impervious
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Fig. 5: This figure contains the monthly first week normalized maps with district wise population of COVID-19 positive cases. The rest of
the weekly results are available in Supplement 4 (eNormalizedMaps).

international borders and limited connectivity to main-
land India, provide a unique opportunity to study the
spread of the virus in isolated regions during a lock-
down. In India, many research articles were published
related to the spread of COVID-19. All the articles used
open-source data available on the Internet. In literatures,
the disease spread analysis in India was done using
various machine learning and Al models however no
authors presented any mathematical basis for disease
spread in a closed population which was a major
research gap. Wang et al. proposed an analysis of the
COVID-19 epidemic in India® using machine learning

and they have used COVID-19 data from several sour-
ces. In a recent study,” the authors used a Machine
learning model with different combinations of input
features, in which the Transformer is proven to be the
most precise one. In another study,” recurrent neural
networks such as long short-term memory (LSTM),
bidirectional LSTM, and encoder-decoder LSTM models
for multi-step (short-term) COVID-19 infection fore-
casting were used to capture the COVID-19 hotspots of
the first wave and the second wave in India. Similar to
the above study, performances of deep learning
methods,” including the hybrid convolutional neural

www.thelancet.com Vol 28 September, 2024


http://www.thelancet.com

Articles

April 2020 Week-1 Bivariate Maps

wi‘/lay 5020 VVeektl Bivariate

mJune IZOZOwWeeII—I Bi\;;ariate

TH) Total_p = Total Population

Ak itive
P Tolp=Tomal

Postive/Positiva_Count= Postive/Posiive_Coun.
wation L = Total Population

July 5020 ;\Ieekll Biv: riatemMaps~~

te Maps

»‘Septembel:~ 2026wWee“|;»1 Bivariate Mass -
SH>

Count=
Tota_P = Total Population

ount= 1 ive/Positive_Count COvic
wation Total_P = Total Population

: C

Postive/Posi
Tota P = Total

October 2020 Week-1 Bivariate Maps ariate Maps December 2020 Week-1 Bivariate
g <
., o, I 7]
ST i ey ;/ o =4
L . - 3 ™ - | i ] g P - o3
Y ¥ i éi”‘ Dﬂf:i“g
. Sl ) ‘ o
A Tl I & N
2 e X - __—
\ B ]
| e
e 1 i e T i
|
Populaton W,»:m?fwmm Tor b = To Population

Bivariate Maps

\E'“?(—- Total_P = Total Population
.|

Postive/Positve_Count=
| TotalP = Total population

Fig. 6: This figure contains the monthly first week bivariate maps with total population and positive cases of northeast India. The rest of

the weekly results are available in Supplement 5 (eBivariateMaps).

networks short-term memory (LSTM-CNN), the hybrid
gated recurrent unit-convolutional neural networks
(GAN-GRU), GAN, CNN, LSTM, and Restricted Boltz-
mann Machine (RBM), as well as baseline machine
learning methods, namely logistic regression (LR) were
used for COVID-19 transmission forecasting. Machine
learning has provided valuable insights in both the
quantified demographic and medical data, however,
quantified demographic data like population density still
lags proper research at large.

Few studies have used population density to under-
stand the disease spread in various regions.

www.thelancet.com Vol 28 September, 2024

Ganasegeran et al. (2021)* conducted an ecological
study in Malaysia, utilizing spatial analytics to create
choropleth maps and hierarchical cluster analysis to
identify potential clusters based on population density.
They found a strong correlation between high popula-
tion density and increased COVID-19 cases, especially
in urban areas (r = 0.912).” Such methods can be rele-
vant for studying similar patterns in Northeastern India.
Ganasegeran et al. (2024) further examined the impact
of vaccinations on pandemic indicators using
geographic visualizations and regression models. The
study confirmed the effectiveness of vaccinations in
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Fig. 7: In this figure it contains the MRD-Model 3D plot of weekly spread analysis based with latitude, longitude and time.

reducing infection rates and other indicators across
different regions.” These techniques and the approach
used in this study can be adapted to analyze regional
variations in COVID-19 spread in India, considering its
diverse population density. An important aspect while
considering population density, is herd immunity. It is
critical in understanding and managing the spread of
infectious diseases, including COVID-19. Herd immu-
nity occurs when a sufficient proportion of the popula-
tion becomes immune to an infection, either through
vaccination or previous infections, thereby reducing the
likelihood of disease spread. Several models and
algorithms have been developed to estimate the critical
ratio of vaccination needed to achieve herd immunity.*
Achieving herd immunity is crucial for controlling the
spread of infectious diseases like COVID-19. The critical
ratio of vaccination required to reach herd immunity
can be estimated using the reproduction number (Rt),
which reflects the average number of secondary in-
fections caused by an infected individual at a given time.
The formula Py = 1- %, adjusted for vaccine efficacy,
provides a robust estimator for the required vaccination
coverage. This method is consistent with prior studies
such as Ganasegeran et al. (2021), which allows for
dynamic assessment based on real-time data.
Meanwhile in this present study we have developed a
modified reaction-diffusion mathematical model to

predict the initial spread of the COVID-19 virus in iso-
lated populations, using the Indian Council of Medical
Research data utilizing quantified demographic data.
This MRD model was chosen rather than traditional
machine learning algorithms or other approaches dis-
cussed above due to its specific advantages in capturing
the dynamics of disease transmission in isolated regions
with limited connectivity. The analysis of the data
revealed interesting patterns of disease spread that did
not align with established grounded theories. Out of the
total 7.1 million weekly data collected from April 2020 to
February 2021, including information such as date, test
result, population density, area, latitude, longitude, dis-
trict, and state, the spread pattern was identified using
the modified reaction-diffusion model and Geographic
Information System (GIS).These data allowed us to un-
derstand the truth behind the spread of the COVID-19
virus in Northeastern states of India. The simulation
approach has been overlooked in India; hence, this study
developed a novel approach by integrating Geographic
Information Science and a Modified Reaction-Diffusion
System to simulate the initial disease pattern. The
model predicts a higher rate of COVID-19 spread across
different regions of Northeastern states of India and a
lower number of COVID-19 cases in a particular region.
Along with it, this study will also lay the foundation for
the studies that try to understand the grounded theories
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related to this pandemic or any future pandemic/
epidemic in isolated regions. The simulation results
based on the MRD model showed the spatial spread of
COVID-19 over time and inferred how the infected
population density evolved within the simulated region.
This makes this study particularly important compared to
other studies by those who employed Machine Learning
or GIS-based approaches. The modified reaction-
diffusion model effectively captured the dynamics of
disease transmission in this unique setting.

It is important to note that this study was funded by
the Indian Council of Medical Research (ICMR), which
monitored serological testing in India and compiled the
data in their servers. The utilization of population-based
data, individualized by national identification cards,
further strengthens the insights gained from this study.
The implications of these findings are significant. Un-
derstanding COVID-19 transmission in isolated regions
with limited external connectivity is crucial for devel-
oping effective public health strategies. The rapid initial
dissemination followed by a slower growth trajectory
observed in this study can inform theoretical frame-
works for predicting the spread of the virus in isolated
settings. Additionally, the successful application of
geospatial analysis and mathematical modelling ap-
proaches demonstrates their utility in guiding public
health strategies in similar populations worldwide. In
conclusion, this study provides valuable insights to the
spread of COVID-19 in isolated regions during lock-
down. The analysis of the data using geospatial analysis
and a modified reaction-diffusion model has enhanced
our understanding of the transmission dynamics in
these settings. The findings from this study have signif-
icant implications for public health policy and pandemic
control strategies in India and other regions with similar
demographic and geographic characteristics. The MRD
model’s ability to incorporate geographic factors and
carrying capacity constraints makes it particularly suited
for predicting disease spread in regions with limited
connectivity and varying population densities. This allows
for a more adaptive approach to public health strategies,
for instance, areas identified as potential hotspots can be
prioritized for vaccination drives, testing, and resource
allocation, reducing the overall burden on healthcare
systems. Also, the identification of uneven spread pat-
terns, particularly during the initial weeks of the
pandemic, underscores the importance of early detection
and localized containment measures. Public health pol-
icies can thus be designed to implement rapid response
teams in districts showing early signs of increased
transmission, thereby preventing wider outbreaks. The
predictive accuracy of the MRD model also supports the
deployment of preemptive measures in regions predicted
to experience future spikes in cases. This aids the poli-
cymakers to enhance their preparedness and response
capabilities, ultimately mitigating the impact of COVID-
19 and future pandemics.
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This study has a few limitations such as in-
consistencies in data reporting during certain periods
might introduce biases. It also lacked detailed data on
population movements within and between districts,
which could impact the understanding of how human
mobility influenced the spread of COVID-19. The ac-
curacy of geographic coordinates varied, potentially
leading to slight inaccuracies in spatial representations.
The parameters estimated by the MRD model, such as
diffusion rate, reaction rate, and carrying capacity,
involve uncertainties. The uncertainty analysis using
Sobol’ sensitivity analysis revealed that variations and
interactions in these parameters significantly influence
the model’s predictions. These parameters might not
capture all complexities of disease spread, highlighting
the importance of accurately calibrating them to
improve the model’s reliability.

The coronavirus (COVID-19) started infecting the
Indian population in early March 2020 and it spread
across the nation very quickly. The study conducted on
the spread of COVID-19 in Northeastern India employs
a Modified Reaction-Diffusion (MRD) model to under-
stand the spatial and temporal dynamics of the disease
within this geographically isolated region. Utilizing data
provided by the Indian Council of Medical Research
(ICMR) from April 2020 to February 2021, the study
incorporates geospatial mapping and Geographic
Information System (GIS) analysis to visualize the inter-
district variability and the spread patterns of COVID-19.
The MRD model revealed an initial rapid geographical
spread with a high diffusion rate and lower reaction
rate, indicating a slower growth trajectory of case
numbers. Sensitivity and uncertainty analyses using
Sobol’” sensitivity method were conducted to quantify
the impact of input parameter. The uncertainties on
model predictions showed significant combined effects
of the parameters on the model’s output variance.
Geospatial analyses, including quantile maps, normal-
ized maps, bivariate mapping, and Empirical Bayesian
Kriging, were employed. This analysis provided a
detailed spatial representation of COVID-19 spread,
highlighting areas with higher infection rates relative to
the population size. The study’s findings underscore the
importance of MRD modelling and geospatial analysis
in developing effective public health strategies and
targeted interventions. Analysis like this can aid in
managing disease spread in isolated regions with min-
imal external connectivity. Limitations include potential
biases from data inconsistencies and lack of detailed
population movement data, but overall, the insights
gained are critical for improving pandemic response
and policy decisions in similar settings. Hence, this
study provides a detailed geospatial analysis of COVID-19
spread in closed, non-vaccinated districts of Northeast
Indian states, highlighting the effectiveness of lock-
downs in preventing intra-cluster transmission. These
findings have significant implications for pandemic

13


http://www.thelancet.com

Articles

14

preparedness and response strategies. Future research
should focus on developing robust surveillance systems
that integrate geospatial data and real-time Rt estima-
tions for early outbreak detection. Along with it a focus
can be made on optimizing region-specific vaccination
strategies to ensure equitable distribution and evalu-
ating the impact of non-pharmaceutical interventions
across different regions to create adaptable frameworks.
Fostering multidisciplinary approaches that include
public health, data science, and social sciences, and
translating scientific insights into actionable policies,
will enhance global health security. Further, by aligning
our findings with the global expert consensus on
research priorities, this study contributes to the collec-
tive effort to manage current outbreaks and proactively
respond to future pandemics.
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