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Abstract. Polyclonat antisera have been raised against 
purified Acanthamoeba myosin II and to a synthetic 26 
amino acid peptide that corresponds in sequence to 
the phosphorylation site of Acanthamoeba myosin IC. 
These antisera are specific for their respective antigens 
as determined by immunoblotting after SDS-PAGE of 
total cell lysates. By using the antisera, localization 
studies were performed by indirect immunofluores- 
cence and by immunogold electron microscopy. Myo- 
sin II occurred in the cell cytoplasm and appeared to 
be concentrated in the cortex. Immunogold cytochem- 

istry revealed at high resolution that myosin II is orga- 
nized into rodlike filaments ,',,200 nm long. The anti- 
body raised against the myosin IC synthetic peptide 
recognized both the plasma membrane and the mem- 
brane of the contractile vacuole. The plasma mem- 
brane staining was labile to treatment with saponin 
suggesting an intimate association of the myosin IC 
with membrane phospholipids. Immunogold cyto- 
chemistry with the antimyosin IC synthetic peptide 
showed that the myosin IC is closely associated with 
the membrane bilayer. 

least two distinct classes of myosin are contained in 
Acanthamoeba castellanii (see Korn et al., 1988, for 
review). Conventional myosin, also termed myosin 

II, consists of two identical heavy chains (175 kD) and two 
pairs of light chains (17.5 and 17 kD). The carboxyl-terminal 
halves of the heavy chains are associated to form a rodlike 
a-helical coiled-coil and the amino-terminal portions form 
two globular head domains. Assembly of myosin II into 
bipolar filaments is a property of the tail region of the mole- 
cule; the actin-activated Mg-ATPase activity is attributable 
to the globular head domains and is inhibited when three ser- 
ine residues on each heavy chain are phosphorylated. Myo- 
sin I was first isolated from Acanthamoeba in 1973 (Pollard 
and Korn, 1973) and two isoforms of this enzyme were de- 
scribed in 1979 (Maruta et al., 1979). Myosins of class I dis- 
play actin-activated Mg-ATPase activity which is dependent 
on the phosphorylation of a single serine (myosin IB) or 
threonine (myosin IA), located near the center of the sub- 
fragment l-like domain of the molecule (Brzeska et al., 
1989). Myosins I are monomeric, globular proteins that lack 
the o~-helical tail present in myosins II and that can not self- 
assemble to form any higher oligomers under physiological 
conditions (Albanesi et al., 1985). 

Myosin IA (140-kD heavy chain; 17-kD light chain) and 
IB (125-kD heavy chain; 27-kD light chain) have been local- 
ized in Acanthamoeba and compared to the distribution of 
myosin II (Gadasi and Korn, 1980; Hagen et al., 1986). My- 
osins I were found to be preferentially distributed near the 
plasma membrane while myosin II was located in the cyto- 
plasm. The plasma membrane association of Acanthamoeba 

myosins I has been further characterized in two recent stud- 
ies. Adams and Pollard (1989) showed that myosin I will bind 
to NaOH-extracted membranes isolated from Acanthamoeba 
and to pure lipids with an affinity sufficient for extensive 
binding in the cell. Miyata et al. (1989) have shown that myo- 
sin I copurifies with plasma membrane from Acanthamoeba 
and that this association can not be accounted for by binding 
of the myosin I to membrane-bound actin. Fukui et al. (1989) 
have localized myosin I, myosin II, and F-actin in Dictyo- 
stelium by indirect immunofluorescence. Myosin I was found 
at the leading edge of cells during directed chemotaxis and 
phagocytosis and of cells undergoing cytokinesis, while 
myosin II was localized in the posterior region of the cell 
cytoplasm of locomoting cells and in the contractile ring of 
dividing cells. 

A third isoform of myosin I has recently been purified from 
Acanthamoeba and characterized (Lynch et al., 1989). Myo- 
sin IC has a single 130-kD heavy chain and a pair of 14-kD 
light chains. The myosin IC gene has been sequenced (Jung 
et al., 1987; misidentified in the original paper as the gene 
sequence for myosin IB, see Brzeska et al., 1989) and the 
phosphorylation site identified (Brzeska et al., 1989). The 
present study is concerned with the localization of myosin IC 
and comparison of its distribution with that of myosin II. To 
this end, an antibody has been raised against a synthetic 26 
amino acid peptide that corresponds in sequence to the phos- 
phorylation site of myosin IC: Tyr-Arg-Thr-Ile-Thr-Thr-Gly- 
Glu-Gln-Gly-Arg-Gly-Arg-Ser-Ser*-Val-Tyr-Ser-Cys-Pro- 
Gln-Asp-Pro-Leu-Gly-Ala, where Ser* is the phosphorylat- 
able residue (Brzeska et al., 1989). Localization of myosin 
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IC and myosin I1 has been performed at both the level of the 
light microscope by indirect immunofluorescence and at the 
level of the electron microscope by immunogold cytochemis- 
try. This is the first report of high resolution immunogold lo- 
calization of myosin 11 in Acanthamoeba and of any myosin 1 
in any cell. 

Materials and Methods 

Acanthamoeba castellanii (Neff strain) was grown in l-liter culture flasks 
to a density of 106 cells ml -t ,  as described by Pollard and Korn (1973). Al- 
ternatively, cells were grown on a plastic substrate in 750-ml culture flasks 
(Falcon Plastics, Cockeysville, MD) or on a glass substrate in 8-chamber 
Lab-Tek tissue culture slides (Nunc, Inc., Naperville, IL). Cells grown in 
contact with a substrate were observed to be much flatter than cells grown 
in suspension thus improving the resolution obtainable by immunofluores- 
cence studies. 

Two rabbit polyclonal antisera (C27073 and C27452) were raised against 
purified Acanthamoeba myosin II (purified by the method of Collins and 
Korn, 1981) and a rabbit polyclonal antiserum was raised against a synthetic 
26 amino acid peptide corresponding to the phosphorylation site of myosin 
IC (Brzeska et al., 1989). The synthetic peptide was coupled to keyhole lim- 
pet hemocyanin (Calbiochem-Behring Corp., San Diego, CA) by a two-step 
glutaraldehyde coupling protocol (Harlow and Lane, 1988) and the con- 
jugated protein-peptide was mixed 1:1 with Freund's complete adjuvant be- 
fore immunization. Purified myosin II was subjected to SDS-PAGE, the heavy 
chain was excised from the gel after visualization in 4 M sodium acetate 
(Harlow and Lane, 1988) and homogenized into Freund's complete adjuvant 
(Difco Laboratories Inc., Detroit, MI). Female New Zealand white rabbits 
were primed at the age of 6 mo and received a minimum of two boosts with 
at least a 4-wk interval between injections. Antisera were collected 10-12 d 
after the final immunization. Affinity purifications of antisera were per- 
formed by adsorption to and elution from antigen bound to nitrocellulose 
strips (Smith and Fisher, 1984). 

SDS-PAGE was performed by the method of Laemmli (1970) and immu- 
noblot analyses were performed according to Towbin et al. (1979). FITC- 
conjugated goat anti-rabbit IgG and horseradish peroxidase-conjugated 
goat anti-rabbit IgG were obtained from Boehringer Mannheim Biochemi- 
cals (Indianapolis, IN). Goat anti-rabbit IgG antibodies conjugated to gold 
particles were obtained from Janssen Life Sciences Products (Beerse, Bel- 
gium). Myosins IA, IB, and IC were purified according to Lynch et al. 
(1990). All other chemicals were reagent grade. 

Immunolocalization of Myosin IC and Myosin H 

Immunolocalization was performed both at the level of resolution provided 
by the light microscope and the electron microscope. Identical fixation and 
permeabilization protocols were used for indirect immunofluorescence and 
preembedding immunogold electron microscopy. Fixation was with 3% 
formaldehyde and 0.25 % glutaraldehyde in Acanthamoeba growth medium 
for 45 rain at room temperature. Permeabilization was either with 0.1% 
saponin (Sigma Chemical Co., St. Louis, MO) for 10 min at room tempera- 
ture (light permeabilization), 0.2 % saponin for 15 min at room temperature 
(intermediate permeabilization), or 0.5% saponin for 45 rain at room tem- 
perature (extensive permeabilization). Alternatively, simultaneous fixation 
and permeabilization was performed using 0.05% saponin, 0.05% 
glutaraldehyde (Electron Microscopy Sciences, Fort Washington, PA), and 
1.0% formaldehyde (Fisher Scientific Co., Fair Lawn, N J) for 5 min at room 
temperature, followed by further fixation in 0.05 % glutaraldehyde and 1.0 % 
formaldehyde for 30 rain. As a control for saponin permeabilization, cells 
were also permeabilized using 100 % acetone at -20°C for 3 rain after alde- 
hyde fixation. Cells were washed twice in PBS, pH 7.4, between fixation 
and permeabilization, and after permeabilization. To reduce free aldehydes, 
cells were treated with sodium borohydride, 1 mg-ml -l in PBS, for 10 rain. 
After washing the cells twice in PBS, they were incubated in a buffer (block- 
ing buffer: 1.0% BSA and 50 mM L-lysine in PBS, pH 7.4) designed to ~ k  
nonspecific binding of antibodies. Incubations with primary antibodies 
(diluted MOO in blocking buffer to give a final concentration of 0.35 
mg.ml -l rabbit serum proteins) and with secondary FITC-conjugated anti- 
bodies (diluted 1:100 in blocking buffer to a final irnmunoglobulin protein 
concentration of 10 #g.mi-1) were for 1 h at 37°C. Incubations with the 
secondary gold-conjugated antibodies were either for 2 h at 37°C or over- 

night at 4°C. The cells were washed five times in PBS between antibody 
incubations and after the second antibody incubation. 

For indirect immunofluorescence, cells were mounted in 50% glycerol 
in PBS and viewed with a Zeiss ICM 405 microscope equipped with phase- 
contrast and epifluorescence optics. For immunogold electron microscopy, 
cells were fixed in 2.5% glutaraldehyde, postfixed in 1% osmium tetroxide, 
dehydrated through an alcohol series, and embedded in epon 812 (Electron 
Microscopy Sciences). Both fixatives were in 0.1 M phosphate buffer, pH 
6.8. Gold or silver sections were cut with a diamond knife (Delaware Dia- 
mond Knives, Inc., Wilmington, DE) on an ultramierotome (model MT 
5000; Sorvall Instruments, Newton, CT) and viewed with a Philips LS410 
electron microscope. 

Results 

Antibodies 

The rabbit polyclonal antiserum raised against the 26 amino 
acid synthetic peptide corresponding to the phosphorylation 
site of Acanthamoeba myosin IC was clearly specific for my- 
osin IC. Only myosin IC was recognized by the antiserum 
when the three native myosin I isoforms were dot-blotted 
onto nitrocellulose strips (Fig. 1 A), and only myosin IC 
reacted with the antiserum after SDS-PAGE and immuno- 
blotting of the purified myosin I isoforms (Fig. 1 A). Mar- 
ginal cross-reactivity of the antiserum with myosin IB was 
sometimes observed. In whole cell extracts analyzed by 
SDS-PAGE and immunoblotting, only a single protein band, 
which comigrated with purified myosin IC, was detected by 
the antibody (Fig. 1 A). Specific recognition of myosin 1C 
in whole cell lysates could be observed after a 1:2,000 di- 
lution of the polyclonal antiserum, which corresponds to 
a final protein concentration of 17.5 #g.m1-1. Preimmune 
serum, at dilutions of 1:100-1:800 (0.35 mg.m1-1 to 44 
#g.ml-l), did not recognize any proteins in an Acan- 
thamoeba whole cell lysate (data not shown). A single pro- 
tein was also recognized by the antiserum when plasma 
membranes prepared by the method of Clarke et al. (1988) 
were analyzed by SDS-PAGE and immunoblotting (data not 
shown). Affinity purification of the antiserum with purified 
myosin IC did not affect the apparent specificity of the anti- 
body as determined by SDS-PAGE and immunoblotting 
(data not shown). 

Two rabbit polyclonal antisera have been raised against 
Acanthamoeba myosin II heavy chain. In whole cell extracts, 
both antisera recognized single protein bands that comigrated 
with purified myosin 1I heavy chain when analyzed by SDS- 
PAGE and immunoblotting (Fig. 1 B). Both specifically de- 
tected the heavy chain of myosin II even after a 1:4,000 dilu- 
tion (8.75 #g.ml-0 of the antisera. Preimmune serum, at 
dilutions of 1:100-1:800 (0.35 mg.m1-1 to 44/,g.ml-0, did 
not recognize any proteins in an Acanthamoeba whole cell 
lysate. 

Indirect Immunofluorescence Localization of 
Myosin IC 

Indirect immunofluorescence localization of myosin IC in 
cells after light saponin perrneabilization clearly revealed 
fluorescent staining of the plasma membrane of at least 50% 
of the cells (Fig. 2 D). However, as shown by the phase- 
contrast image of the same field (Fig. 2 C), some cells were 
not fluorescent when light saponin permeabilization was 
used. Immunofluorescence staining after extensive saponin 
permeabilization showed an apparent redistribution of the 
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fluorescence to a single large vacuole or vesicle in the 
cytoplasm (Fig. 2 F). By careful study of phase-contrast im- 
ages, the labeled vacuole was identified as the contractile 
vacuole (e.g., see Fig. 2, G and H);  this was confirmed by 
electron microscopy (see later). The extent of permeabiliza- 
tion provided by saponin treatment could be controlled to 
yield intermediate states where the transition from exclu- 
sively plasma membrane staining to staining of the contrac- 
tile vacuole could be observed (Fig. 2 E). 

Cells that had not been treated with saponin, and were thus 
not permeable to the antibody, did not show any fluorescence 
above background (Fig. 2 B). Controls, in which the cells 
had been incubated in the presence of preimmune serum 
(Fig. 2 J ) ,  or in which the primary incubation with the an- 
timyosin IC had been omitted (data not shown), also did not 
show any staining above background. To determine whether 
the observed fluorescence distribution was an artifact of the 
treatment with saponin, cells that had been made permeable 
by treatment with acetone at -20°C were stained with an- 
timyosin IC. Cells permeabilized in this manner clearly 
showed fluorescence associated with the contractile vacuole 
but showed little or no staining of the plasma membrane 
(Fig. 2 H).  

Immunogold  Localization o f  Myosin I C  

The localization of myosin IC by indirect immunofluores- 
cence was confirmed and refined by immunogold cytochem- 
istry. After light saponin permeabilization, gold particles 
were observed only in association with the plasma mem- 
brane (Fig. 3 A). The cytoplasm and contractile vacuoles of 
lightly permeabilized cells were not labeled with gold. The 
plasma membrane appeared to be labeled predominantly on 
its extracellular surface. However, the antigen recognized by 
the antimyosin IC can not normally be exposed on the exter- 
nal surface of the membrane since nonpermeabilized cells 
were never stained by the antibody (Fig. 2 B; data not shown 
for immunogold staining of nonpermeabilized cells). 

Immunogold cytochemistry of intermediately permeabi- 
lized cells clearly demonstrated gold labeling of the con- 
tractile vacuole (Fig. 3, F and G). Labeling of the plasma 
membrane could also be observed in intermediately permea- 
bilized cells with labeled contractile vacuoles (Fig. 3, B and 
C). It should be noted that although the plasma membrane 
labeling often occurred on the extracellular surface of the 
bilayer, it appeared to be associated with some extruded ma- 
terial (Fig. 3, B and C, arrowheads), which gave the mem- 
brane a wavy appearance and was most likely a result of 

Figure L Analysis by SDS-PAGE and immunoblotting of purified myosins I, myosin II, and Acanthamoeba whole cell lysate with antibodies 
raised a t, ainq the myosin II2 synthetic poptide (A) and against the myosin II heavy chain (B). (A) Lanes a-e, SDS-PAGE gel stained with 
Coomassie blue; (a) molecular mass markers in kilodaltons (top to bottom: muscle myosin heavy chain, ~galactosidase, phosphorylase 
b, bovine serum albumin, ovalbumin, carbonic anhydrase); (b) purified myosin IA (2 #g); (c) purified myosin IB (2 #g); (d) purified myosin 
IC (2 #g); (e) ~ b a  total cell protein (100 #g). Lanes f-i, immunoblots stained with antimyosin IC synthetic peptide; (f) purified 
myosin IC; (g) purified myosin IB; (h) purified myosin IA; (i) total cell protein. Below the SDS-PAGE gel tracks of purified myosin I 
are the corresponding dot-blots, showing that only purified myosin IC is recognized by the antibody after dot-blotting the native myosin I 
isozymes (1 t~g each) onto nitrocellulose. (B) Lanes a and b, SDS-PAGE of (a) total cell protein, and (b) molecular mass standards in 
kilodaltons (top to bottom: muscle myosin heavy chain, ~-galactosidase, phosphorylase b, bovine serum albumin, ovalbumin), stained 
with Ccomassie blue. Lane c, immunoblot of total cell proteins stained with polyclonal anti-myosin II antiserum C27073; lane d, immuno- 
blot of total cell proteins stained with polyclonal antimyosin II antiserum C27452. M, the position of the Acanthamoeba myosin II heavy 
chain. 
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saponin permeabilization (see Discussion). Labeling was 
also observed on the cytoplasmic side of the plasma mem- 
brane (Fig. 3, B and C, arrows). 

In some cells, the contractile vacuole consisted of several 
compartments. When the contractile vacuole was divided 
into two large vacuoles, both were labeled by the anti- 
body-gold complex. The spongiome, consisting of the nu- 
merous small vesicles that surround the vacuoles (see Patter- 
son, 1980, for review), was not labeled by the antibody (Fig. 
3 G). There was no gold labeling of phagocytic or pinocytic 
vacuoles, cytoplasmic vesicles, mitochondria, nuclei, or the 
cytoplasm. 

In control experiments, preimmune serum was substituted 
in place of the antimyosin IC serum; although background 
staining of the cytoplasm was observed in this instance, no 
specific labeling of the plasma membrane or contractile 
vacuole occurred (Fig. 3 D). Quantification of the distribu- 
tion of the myosin IC gold label and comparison with the dis- 
tribution of gold label after treatment with pre-immune se- 
rum are shown in Table I. The quantitation clearly shows a 
reduction in the amount of gold label associated with the 
plasma membrane after increased saponin permeabilization 
(5.3 particles/gm vs. 1.2 particles/#m). The amount of gold 
label associated with the membrane of the contractile vacu- 
ole (3.0 particles/#m) was of the same order as that as- 
sociated with the plasma membrane. To compare the quan- 
tity of gold label associated with the cell membranes with the 
quantity of gold in the cytoplasm, the data for the mem- 
branes were recalculated as the number of particles per unit 
area, taking the width of the plasma membrane as 10 nm. 
Thus the plasma membrane had 530 particles/#m 2 after 
light permeabilization and 120 particles/#m 2 after inter- 
mediate permeabilization, and the membrane of the contrac- 
tile vacuole had 300 particles/#m 2 after intermediate per- 
meabilization. There was no association of gold particles 
with either the plasma membrane or the contractile vacuole 
membrane after treatment with preimmune serum. The 
number of gold particles in the cytoplasm was essentially the 
same for both immune and preimmune sera (5.9 parti- 
cles/#m 2 vs. 5.4 particles/#m2). It should be noted that 
,o50% of the gold particles occurred in clusters of more than 
four particles. These clusters represented specific binding of 
the antibody about the antigenic site since no clusters of gold 
particles could be observed after treatment with preimmune 
serum. 

Localization of Myosin H 

Indirect immunofluorescence and immunogold cytochemis- 
try were also used to localize myosin II in Acanthamoeba. 
Identical results were obtained with the two polyclonal an- 

tisera C27073 and C27452. Indirect immunofluorescence re- 
vealed a distribution of myosin II similar to that observed in 
previous studies (Gadasi and Korn, 1980; Hagen et al., 
1986). Myosin II occurred throughout the cell but appeared 
to be concentrated in the cell cortex (Fig. 4). Cells exhibiting 
mitotic figures showed myosin II in the cleavage furrow (Fig. 
4, arrowheads). Immunogold cytochemistry confirmed the 
localization of myosin II at high resolution (Fig. 5). Interest- 
ingly, the gold label appeared to be distributed in the form 
of filamentous, or rodlike structures (Fig. 5, arrows). These 
have a length of "o 200 nm (most clearly illustrated in Fig. 
5 B) and are consistent with myosin U in Acanthamoeba be- 
ing present in the form of the octameric minifilaments as 
characterized in vitro (Sinard and Pollard, 1989; Sinard et 
al., 1989). Myosin II was not observed to be associated with 
the plasma membrane (Fig. 5), cytoplasmic vesicles, or the 
nucleus. Myosin II was not present in close apposition to the 
contractile vacuole membrane (Fig. 5 C). Quantification of 
the myosin II gold label (Table II) documents the absence 
of significant labeling of membranes and reveals that 87% 
of the gold particles in the cytoplasm were associated to form 
clusters consisting of more than eight particles. These 
clusters were not observed after treatment with preimmune 
serum. 

Discussion 

The immunofluorescence and immunogold localization data 
presented here show that myosin IC is associated with the 
plasma membrane, as has been previously reported for myo- 
sins IA and IB (Gadasi and Korn, 1980). Two further obser- 
vations, however, were unexpected: firstly, the apparent as- 
sociation of myosin IC with the membrane of the contractile 
vacuole; secondly, the apparent distribution of the myosin IC 
on the external surface of both the plasma membrane and the 
membrane of the contractile vacuole. Also, the dependency 
of the contractile vacuole staining on the extent of saponin 
permeabilization and the loss of plasma membrane staining 
after extensive saponin treatment require explanation. 

The latter observations can be accounted for by considera- 
tion of the properties of saponin as a detergent. Extensive 
permeabilization of the cell will allow better penetration of 
the antibody (thus resulting in staining of the contractile 
vacuole), but will also extract phospholipids from the plasma 
membrane. If myosin I were closely associated with the lipid 
bilayer (Miyata et al., 1989; Adams and Pollard, 1989), ex- 
traction of the plasma membrane lipids by extensive saponin 
permeabilization could result in a concomitant loss of myo- 
sin IC. A very light saponin permeabilization, on the other 
hand, could be optimal for staining of plasma membrane- 

Figure 2. Indirect immunofluorescence with antimyosin IC synthetic peptide and FITC-linked goat anti-rabbit Ig. (A and B) Nonpermeabi- 
lized cells treated with 0.35 mg'ml -t antimyosin IC. (A) Phase contrast, (B) immunofluorescence. (C and D) Lightly permeabilized cells 
(0.1% saponin for 10 min) treated with 0.35 mg-ml -t antimyosin IC. (C) Phase contrast, (D) immunofluorescence. Not all the cells ob- 
served by phase contrast were stained by the antibody; those that were stained are indicated by arrowheads. (E) Cells treated with 0.35 
mg-ml -~ antimyosin IC after intermediate permeabilization (0.2% saponin for 15 rain). (F) Cells treated with 0.35 mg'ml -~ antimyosin 
IC after extensive permeabilization (0.5% saponin for 45 min). (G and H) Cells permeabilized by 100% acetone and treated with 0.35 
mg.ml -~ antimyosin IC. (G) Phase contrast, (H) immunofluorescence. (I and J) Cells treated with 0.35 mg.ml -~ preimmune serum after 
intermediate permeabilization. (I) Phase contrast, (J) immunofluorescence. CV, contractile vacuole. 
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Table L lrnmunoelectron Microscopic Localization of  Acanthamoeba Myosin IC 

In clusters 
of more than On Total Total 

Particles/#m Particles/#m 2 four particles inner face particles area 

• ~tn 2 

Light permeabilization 
Plasma membrane 

Immune 5.2 + 0.8 530 54.5 + 17 
Preimmune 0.001 0.1 0 

Intermediate perm. 
Plasma membrane 

Immune 1.2 + 0.3 120 43.6 4- 8 
Preimmune 0 0 0 

Contractile vacuole 
Immune 3.0 + 0.4 300 60.2 4- 12 
Preimmune 0 0 0 

Cytoplasm 
Immune 6.3 + 5.1 0 
Preimmune 5.5 + 1.7 0 

35.3 + 16 689 1.3 
0 1 9.4 

29.2 4- 11 1,885 15.3 
0 0 10.3 

25.4 + 7 1,022 3.4 
0 0 3.1 

377 60 
748 136 

These data were derived from measurements performed on a minimum of 10 cells from 3 different sample preparations. For statistical analysis, each cell was 
treated as a single sample and a mean was calculated for each. The numbers given in the table represent a mean of means + o~j. The area ~m 2) of the mem- 
brane compartments included gold particles contained in a zone 10 nm on either side of the membrane. Membrane area was calculated by membrane length x 
10 nm. 

associated myosin IC but insufficient to allow penetration of  
the antibody to the cell interior. It should be noted that Acan- 
thamoeba plasma membranes have a high ratio of  sterol to 
phospholipid (0.98 mol/mol) (Korn and Olivecrona, 1971). 
Since saponin permeabilizes cells through an interaction 
with membrane sterols, their high sterol content should 
make Acanthamoeba plasma membranes particularly sus- 
ceptible to saponin permeabilization. Although saponin is 
thought to interact with membrane sterols to form globular 
micelles, each with a central pore, the pores are unlikely to 
be the route of  antibody entry into the cell since they are only 
•8 nm in diameter (Lucy and Glauert, 1964; Seeman, 
1974). Instead, it is likely that antibody entry occurs where 
saponin-sterol micelles disorganize and disrupt the bilayer 
(Ohtsuki et al., 1978). 

For accurate localization studies, the antibodies must be 
able to permeate the cytoplasm freely once past the plasma 
membrane. Aldehyde fixation, however, cross-links proteins 
in the cytoplasm forming a matrix that may prevent the free 
passage of  macromolecules (Ohtsuki et al., 1978). Thus, 
free penetration of  macromolecules through the cytoplasm 
after aldehyde fixation probably depends on removal of  a 
portion of  the cytoplasmic constituents (Ohtsuki et al., 1978). 
It is likely that light saponin permeabilization is sufficient to 
allow the antibodies to pass through the plasma membrane 

but insufficient to allow further penetration that is prevented 
by cross-linked proteins in the cortical region of  the cell. Ex- 
tensive saponin permeabilization, however, would extract a 
large enough proportion of  detergent-soluble cytoplasmic 
proteins to allow penetration of  the antibodies throughout the 
cell. 

Previous localization (Gadasi and Korn, 1980; Miyata et 
al., 1989; Hagen et al., 1986) of  myosin IA and 113 did not 
reveal any association of  these isozymes with the contractile 
vacuole. It should be noted that fluorescence staining of the 
contractile vacuole was observed in the present study using 
identical conditions to those described in the previous local- 
ization studies. Thus, myosin IC and myosins IA and IB may 
be differentially localized in Acanthamoeba. 

The contractile vacuole is a membrane-bound organelle 
responsible for the maintenance of a constant cytoplasmic 
water potential (see Patterson, 1980, for review). It fills (dur- 
ing diastole) passively and then expels water (during systole) 
by active contraction. Recent proposals for the function of  
myosins I (Fukui et al., 1989; Adams and Pollard, 1989) 
suggest a role in membrane dynamics, for example, at the 
leading edge of a motile cell. Vacuolar contraction involves 
dynamic movements of the membrane and thus the contractile 
vacuole may also be an appropriate location for a myosin I. 

The possibility must also be considered, however, that the 

Figure 3. Immunogold staining of saponin permeabilized cells with antimyosin IC synthetic peptide and goat anti-rabbit IgG coupled to 
5- or 10-nm gold. (A) A lightly permeabilized cell treated wi~ 0.35 mg.ml -] antimyosin IC and 10-nm gold. Only the plasma membrane 
was labeled by the antibody (arrows). (B and C) A cell treated with 0.35 mg'ml -~ antimyosin IC and 5-nm gold, after intermediate per- 
meabilization. Gold labeling occurred both on the external (arrowheads) and internal (arrows) faces of the plasma membrane. The disrup- 
tion of the plasma membrane by saponin can be observed in C. (D) A cell treated with 0.35 mg.m1-1 preimmune serum after intermediate 
permeabilization. Neither the plasma membrane nor the membrane of the contractile vacuole were recognized by the serum; occasional 
gold particles were observed in the cytoplasm (arrows). (E-G) A cell treated with 0.35 mg'ml -t antimyosin IC after intermediate permea- 
bilization showing the entire cell (E) and the contractile vacuole at higher magnifications (F and G). Gold labeling occurred on both the 
external (arrowheads) and internal (arrows) faces of the membrane. 
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Figure 4. Indirect immunofluorescence with antimyosin II (C27073) 
and FITC-linked goat anti-rabbit Ig. The myosin II was concen- 
trated in the cell cortex of vegetative cells and in the contractile ring 
of dividing cells (arrowheads). 

contractile vacuole staining was due to a cross-reaction of 
the antimyosin IC antibody with shared epitopes on another 
protein. Three lines of evidence argue against this. (a) The 
antibody recognizes only a single band of the correct molec- 
ular mass for myosin IC heavy chain on immunoblots of 
whole cells and plasma membrane preparations. It is un- 
likely that the antibody cross-reacts with a protein in the na- 
tive state but does not recognize the same protein after SDS 
denaturation as the antibody was raised against a synthetic 
peptide that would be expected to have minimal tertiary 
structure. (b) A monoclonal antibody raised against native 
myosin I recognizes the contractile vacuole (Yonemura, S., 
and T. D. Pollard, personal communication). (c) The distri- 
bution of gold particles after staining with antimyosin IC is 
identical on the membrane of the contractile vacuole and the 
plasma membrane. An attempt was made in the course of this 
study to purify contractile vacuole membranes and look for 
the association of myosin IC with the purified membranes. 
Although myosin IC did copurify with the contractile vacu- 
ole membranes, no preparation was obtained that was suffi- 
ciently free from plasma membrane contamination to allow 
differential analysis. 

The observed bias of immunogold staining for the external 
surface of the plasma and contractile vacuole membranes re- 
quires discussion. The quantified data (see Table I) indicate 
that 65-75 % of the gold particles associated with the plasma 
membrane or the membrane of the contractile vacuole were 
located on the external (noncytoplasmic) face of the mem- 
brane. If  myosin IC interacts with actin, as seems most 
likely, it presumably does so at the cytoplasmic surface of 
the membrane. Also, the antibody used in these experiments 
recognizes the phosphorylation site of myosin IC. The myo- 
sin I heavy chain kinase is presumably located within the cell 
and thus the phosphorylation site on the myosin I heavy chain 
would be expected to be at the cytoplasmic surface of the 
membrane. Finally, it should be emphasized that the antigen 
recognized by the antimyosin IC is not normally exposed on 
the cell surface since nonpermeabilized cells are not stained 
by the antibody (Fig. 2 B). For these reasons, we believe that 
the apparent predominant external location of myosin IC is 
an artifact of the saponin permeabilization. In a study of the 

Table II. lmmunoelectron Microscopic Localization of Acanthamoeba Myosin II 

In clusters 
of more than Total Total 

Particles//~m Particles/gm 2 eight particles particles area 

Plasma membrane 
Immune 
Preimmune 

Contractile vacuole 
Immune 
Preimmune 

Cytoplasm 
Immune 
Preimmune 

0.1 + 0.1 10 0 145 15.2 
0.01 1.0 0 14 10.8 

0.01 1.2 0 15 12.5 
0.01 0.7 0 7 9.9 

251 + 52 89.6 4,454 18 
4.5 + 1.7 0 433 96 

Data derived as for Table I. 
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Figure 5. Immunogold staining of an extensively permeabilized cell (0.05%, saponin at the same time as fixation, see Materials and 
Methods) with 0.35 mg'ml -I antimyosin II heavy chain (A and C, C27073; B, C27452) and goat anti-rabbit IgG coupled to 5-nm gold. 
Myosin II appeared to be organized into rodlike filaments present throughout the cytoplasm (A and B, arrows) but absent from the plasma 
membrane (A), vesicle membranes (B), and membrane of the contractile vacuole (C). 



entry of macromolecular tracers into cells after aldehyde 
fixation and saponin permeabilization, Ohtsuki et al. (1978) 
noted that saponin induced membrane extrusions which 
were probably caused by local expansions of the phospho- 
lipid bilayer. Similar extrusions were observed in the present 
study and were often the site of antimyosin IC immunogold 
labeling (Fig. 3 C); these protrusions were not labeled in 
cells incubated with preimmune serum (data not shown) or 
antibody to myosin II (Fig. 5). Thus, we conclude that myo- 
sin IC is very closely associated with the membrane of the 
contractile vacuole and the plasma membrane, and is highly 
labile to treatment with detergent. 

The localization of myosin II observed in the present study 
is in agreement with previous studies (Gadasi and Korn, 
1980; Hagen et al., 1986). Additionally, the high resolution 
immunogold localization of myosin II reveals an organiza- 
tion into rodlike filaments ,o200 nm long. This is compatible 
with recent data showing that in the ionic conditions ex- 
pected to be present in the Acanthamoeba cytoplasm, myosin 
II self-associates in vitro into octameric minifilaments of that 
size (Sinard and Pollard, 1989; Sinard et al., 1989). 
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