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Effects of tumor-specific CAP1 expression
and body constitution on clinical outcomes
in patients with early breast cancer
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Abstract

Background: Obesity induces molecular changes that may favor tumor progression and metastatic spread, leading
to impaired survival outcomes in breast cancer. Adenylate cyclase-associated protein 1 (CAP1), an actin regulatory
protein and functional receptor for the obesity-associated adipokine resistin, has been implicated with inferior
cancer prognosis. Here, the objective was to investigate the interplay between body composition and CAP1 tumor
expression regarding breast cancer outcome through long-term survival analyses.

Methods: Among 718 women with primary invasive breast cancer within the large population-based prospective
Malmö Diet and Cancer Study, tumor-specific CAP1 levels were assessed following thorough antibody validation
and immunohistochemical staining of tumor tissue microarrays. Antibody specificity and functional application
validity were determined by CAP1 gene silencing, qRT-PCR, Western immunoblotting, and cell microarray
immunostaining. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival
differences in terms of breast cancer-specific survival (BCSS) and overall survival (OS) according to body
composition and CAP1 expression.

Results: Study participants were followed for up to 25 years (median 10.9 years), during which 239 deaths were
observed. Patients with low CAP1 tumor expression were older at diagnosis, displayed anthropometric
measurements indicating a higher adiposity status (wider waist and hip, higher body mass index and body fat
percentage), and were more prone to have unfavorable tumor characteristics (higher histological grade, higher Ki67,
and estrogen receptor (ER) negativity). Overall, patients with CAP1-low tumors had impaired BCSS (adjusted hazard
ratio: HRadj = 0.52, 95% CI 0.31–0.88) and OS (HRadj = 0.64, 95% CI 0.44–0.92) compared with patients having high
CAP1 tumor expression. Further, analyses stratified according to different anthropometric measures or ER status
showed that the CAP1-associated survival outcomes were most pronounced among patients with low adiposity
status or ER-positive disease.

Conclusions: Low CAP1 tumor expression was associated with higher body fatness and worse survival outcomes in
breast cancer patients with effect modification by adiposity and ER status. CAP1 could be a novel marker for poorer
survival outcome in leaner or ER-positive breast cancer patients, highlighting the need for considering body
constitution in clinical decision making.
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Introduction
Breast cancer is the most common female malignancy
worldwide with around two million new diagnoses annu-
ally [1]. With the introduction of improved diagnostic and
treatment modalities, survival has improved significantly,
with 5- and 10-year survival rates in Sweden reaching 90%
and 81%, respectively [2]. However, breast cancer is still a
leading cause of cancer-related mortality in women, due
to progressive disease with distant metastases [1].
Obesity is an established risk factor for several types of

cancer and is expected to supersede smoking as the
dominant cause of cancer in the near future [3, 4]. The
steady increasing prevalence of obesity constitutes a glo-
bal health concern associated with an increasing breast
cancer incidence [5, 6]. Breast cancer patients with a
higher body mass index (BMI) are further more likely to
have larger tumor size at diagnosis and to develop
distant metastasis with worse prognosis [7, 8]. Obesity is
frequently linked to metabolic complications, such as in-
sulin resistance and systemic low-grade inflammation,
which may favor a pro-tumorigenic environment [9].
The adipose tissue, now recognized as an endocrine
organ, secretes local and systemic bioactive adipokines
with implications for tumor development [10]. Among
these adipokines, circulating resistin levels have been
reported to be positively correlated with obesity and in-
cidence of postmenopausal breast cancer [11–14]. In line
with this, we previously demonstrated enhanced secre-
tion of resistin by adipocytes during obesity-related con-
ditions in a preclinical study [15]. Clinically, high levels
of resistin in breast cancer tissue have been linked to
more advanced tumor stage with large tumor size and
lymph node involvement, positive estrogen receptor (ER)
status, and poor breast cancer outcome [16].
It was recently discovered that resistin interacts with

adenylate cyclase-associated protein 1 (CAP1), a highly
conserved actin-binding protein involved in cytoskeletal
rearrangements [17, 18]. CAP1 is ubiquitously expressed
in most tissues while its homolog CAP2 appears con-
fined to brain and muscle tissue [19, 20]. CAP1 is a
multi-domain protein that localizes to the dynamic
regions of the cortical actin cytoskeleton where it pro-
motes cofilin-induced actin filament depolymerization
and contributes to rapid actin turnover [21]. Spatial and
temporal actin dynamics are a necessity for cytoskeletal
rearrangements and formation of membrane protrusions
required for tumor cell motility, invasiveness, and meta-
static dissemination [22]. Understanding these biological
processes is vital to prevent breast cancer progression
and metastatic dissemination. Under obese conditions,
the adipocyte secretome has been shown to stimulate
membrane protrusions and motility in CAP1-expressing
breast cancer cells [15]. CAP1 has additionally been re-
ported involved in tumorigenic processes such as cell

cycle regulation, proliferation, and adhesion [23–25].
While high CAP1 gene expression has been linked to
poor tumor characteristics and worse breast cancer
prognosis, associations between CAP1 protein expres-
sion and body constitution and clinical outcome in
breast cancer are is yet unknown.
The aim of this study was to evaluate whether CAP1

tumor expression was associated to body constitution
and clinical outcome in breast cancer. Based on previous
cellular and gene expression studies, our hypotheses
were that an obese body composition would be associ-
ated with high CAP1 expression in tumors and that
breast cancer patients with high CAP1 tumor expression
would have worse prognosis. In order to test this, we
assessed tumor-specific CAP1 protein expression and
anthropometric measures in a cohort of 1016 patients
with incident breast cancer and long-term follow-up
within the prospective population-based Malmö Diet
and Cancer Study (MDCS).

Material and methods
The Malmö Diet and Cancer Study
The MDCS enrolled participants living in Malmö,
Sweden, between 1991 and 1996 with the objective to
explore associations between dietary habits and subse-
quent cancer risk. This prospective population-based
cohort included 17,035 women born 1923–1950,
representing 42.6% of the eligible population [26, 27].
Exclusion criteria were limited to Swedish language
insufficiency and mental disabilities impairing the
respondent’s completion of study questionnaires. At
baseline, the participants answered extensive question-
naires, underwent anthropometric measures including
height, weight, waist and hip circumference, and bioelec-
trical impedance analysis of body fat percentage (BF%)
obtained by trained study nurses, and blood samples
were collected. Of the 17,035 study participants, 576 had
a prevalent breast cancer diagnosis prior to baseline
examination and were thus excluded. Information on in-
cident breast cancer cases and vital status has been re-
trieved annually through record linkage to the Swedish
Cancer Registry, the Southern Swedish Regional Tumor
Registry, and the Swedish Cause of Death Registry [27].
Ethical approval was obtained from the Ethical Commit-
tee at Lund University (Dnr 427/2007) and all study par-
ticipants signed informed consent at enrollment.

Study population
In total, 1016 women were diagnosed with primary
breast cancer prior to January 1, 2011. Patients with car-
cinoma in situ only (n = 68), bilateral cancers (n = 17),
distant metastasis at diagnosis (n = 14), neoadjuvant
treatment (n = 4), breast cancer-related death within 0.3
years from diagnosis (n = 2), and one patient who
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declined treatment for 4 years prior to accepting
surgery (n = 1) were excluded from the study popula-
tion. The remaining study population consisted of
910 patients with incident invasive breast cancer of
whom 718 had tumor tissue available in a prepared
tissue microarray (TMA). A flowchart of the study
population is shown in Fig. 1.

Clinical and pathology information
Information on tumor characteristics and breast cancer
treatments were retrieved from medical records. For pa-
tients diagnosed prior to 2005, histological tumor type
and grade were re-evaluated according to the WHO and
Nottingham classifications [28] by one senior breast
pathologist [29].
Information on tumor markers were retrieved from

medical records and from immunohistochemistry
(IHC) assessments of tumor tissue microarray (TMA)
at the Center for Molecular Pathology, Malmö
University Hospital, Malmö, Sweden, as previously de-
scribed [29, 30]. In brief, estrogen receptor (ER) and
progesterone receptor (PR) status were obtained from

TMA data (1991–2004) and from medical records
(2005 onward). Human epidermal growth factor
receptor 2 (HER2) status was retrieved from TMA
data, medical records, and patient registers (1991–
2004) and medical records and patient registers (2005
onward). Ki67 proliferation index was obtained from
TMA data (1991–2007) and from medical records
(2008 onward).
In accordance with the Swedish clinical guidelines,

ER and PR status were considered positive if > 10% of
cancer cell nuclei were stained. Ki67 positivity was
categorized into three groups (low, intermediate and
high) based on tertile distribution within three assess-
ment periods: 1991–2004, 2005–2007, and 2008–2014
[31]. HER2 was primary classified by in situ
hybridization (ISH) and secondly by IHC. HER2 was
considered positive if ISH showed HER2 amplification
or if IHC was graded 3+. When ISH was negative for
HER2 amplification or IHC was annotated 1+ or less,
the tumor was regarded as HER2-negative. If no ISH
data existed and IHC was graded 2+, HER2 status was
regarded as missing.

Fig. 1 Flowchart of the study population from the Malmö Diet and Cancer Study (MDCS)
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Classification of breast cancer subtypes
Surrogate molecular subtypes were created based on ER,
PR, and HER2 receptor status along with Ki67 positivity
and histologic grade [31, 32]. Tumors were classified
into luminal A-like [ER+ and HER2− tumors with (a)
histologic grade I or (b) histologic grade II and low Ki67
or (c) histologic grade II, intermediate Ki67 and PR+],
luminal B-like [ER+ and HER2− tumors with (a) histo-
logic grade III or (b) histologic grade II and high Ki67 or
(c) histologic grade II, intermediate Ki67 and PR−],
HER2-positive [all HER2+ tumors], or triple-negative [all
ER−, PR−, HER2− tumors].

Cell culture
Antibody validation for IHC assessment of CAP1 was
performed using established breast cancer cell models.
ER-positive T47D and ER-negative MDA-MB-231
human breast cancer cell lines were purchased and vali-
dated by ATCC-LGC Standards. The cells were culti-
vated in Dulbecco’s modified Eagle’s medium (DMEM;
with GlutaMAX™ and HEPES) supplemented with anti-
biotics (100 U/ml penicillin and 100 μg/ml streptomycin)
and 10% fetal bovine serum. The cells were grown in a
humidified 5% CO2 atmosphere at 37 °C, routinely pas-
saged once a week.

siRNA knockdown
Knockdown of CAP1 in breast cancer cells was obtained
using small interfering RNA (siRNA) with reverse trans-
fection. Three different siRNA constructs (Silencer®
Select s20547, s20548, s20579, ThermoFisher Scientific)
were tested alone or in combination for optimal target
knockdown. Briefly, the final siRNA transfection was
performed as follows: 0.55 × 106 of cells in 1.25 ml of
antibiotics-free cell culture medium were added to a
mixture of 25 nM CAP1 siRNA (T47D: s20547 and
s20549; MDA-MB-231: s20549) and 10 μl Lipofectamine
2000 in 1.25 ml OptiMEM in 6-well plates. The Silencer®
Select Negative Control No1 siRNA (ThermoFisher
Scientific) was used as a non-targeting control. Follow-
ing 72 h incubation, the cells were washed and collected
for further analyses.

Quantitative reverse transcription PCR
Total RNA was extracted using QIAGEN RNeasy
(Qiagen, Mississauga, ON, Canada) according to the
manufacturer’s instructions and quantified via Qubit
Fluorometric system (Thermo Scientific, Waltham, MA,
USA). cDNA was synthesized from 1 μg of total RNA
using High Capacity cDNA Reverse Transcription kit
(Thermo Scientific, Waltham, MA, USA). Quantitative
reverse transcription PCR (qRT-PCR) was performed
using TaqMan QuantiTect Probe kit (Qiagen, Missis-
sauga, ON, Canada) with primers specific for CAP1

(Hs02860542_g1 ThermoFisher Scientific, Waltham,
MA, USA). GAPDH (Hs99999905_m1 ThermoFisher
Scientific, Waltham, MA, USA) was used as reference
gene. All transcripts were measured in minimum dupli-
cates and normalized to GAPDH. Relative CAP1 mRNA
expression levels in CAP1 silenced cells compared with
control were determined by 2−ΔΔCt method in three in-
dependent experiments (Additional file 1A).

Western immunoblotting
Breast cancer cell lysates were prepared from CAP1
knockdown or control cells, and proteins were extracted
using radioimmunoprecipitation assay buffer [RIPA; 10
mM Tris-HCl pH 7.4, 50 mM NaCl, 5 mM EDTA, 30
mM sodium pyrophosphate, 50 mM sodium fluoride,
100 μM sodium orthovanadate, 1% Triton X-100]
supplemented with protease and phosphatase inhibitors.
Protein quantifications were performed using Pierce
BCA Protein Assay Kit, according to the manufacturer’s
instructions. Proteins were separated by pre-cast SDS-
PAGE (NuPAGE 10% Bis-Tris, Invitrogen) and
transferred to nitrocellulose membrane. The membrane
was blocked with 5% (w/v) non-fat dry milk in Tris-
buffered saline with Tween-20 and incubated overnight
at 4 °C with primary antibodies to CAP1 (Abcam;
ab133655, 1:10000) or GAPDH (Merck; MAB374, 1:
1000). The blots were subsequently incubated with
horseradish peroxidase-conjugated secondary antibodies
(CAP1, 1:2000; GAPDH, 1:10000) for 1 h and proteins
visualized using SuperSignal West Dura Extended Dur-
ation Substrate (ThermoFisher Scientific) and LI-COR
Biosciences Odyssey Imaging System. Relative protein
levels were quantified by densitometry using ImageJ
software (NIH) and normalized against the GAPDH
housekeeping protein.

Cell microarray and immunocytochemistry of CAP1
knockdown cells
Cell pellets of T47D and MDA-MB-231 breast cancer
cells collected following siRNA exposure were fixed in
4% formalin overnight, stained with hematoxylin, dehy-
drated, and paraffin embedded. A cell microarray was
constructed with multiple 1.0 mm cores from each cell
preparation using a semi-automatic Tissue Arrayer
(Pathology Devices, MD, USA). For immunocytochem-
istry analysis, 3 μm sections were automatically pre-
treated using a pressure cooker (Histolab Products AB)
and stained for CAP1 (Abcam; ab133655, 1:10,000) using
Autostainer Plus (Agilent, DK).

Immunohistochemical staining and CAP1 evaluation
Following antibody validation, immunohistochemical
staining of tumor-specific CAP1 was performed using a
prepared TMA with duplicate 1 mm tissue cores from
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individual tumors of the 718 patients in the study popu-
lation with available tumor tissue (Fig. 1). TMA sections
(4 μm) were automatically deparaffinized and pretreated
for antigen retrieval using a pressure cooker (Histolab
Products AB). IHC was performed and stained for CAP1
(Abcam; ab133655 at 1:10,000 for 30min) using EnVision
FLEX, high pH (Agilent K801021-2) and Autostainer Plus
(Agilent, Denmark) with subsequent hematoxylin counter-
staining (Agilent S2020).
Evaluation of the CAP1 staining intensity was done

twice by one observer (MB), blinded to patient informa-
tion and tumor characteristics, using light microscope
Olympus BX53. The overall CAP1 protein positivity rate
was > 75% in tumor cells, whereby only differences in
CAP1 staining intensity was annotated. Cytoplasmic
CAP1 staining intensity was assessed in five categories:
negative (−), weak (1+), moderate (2+), strong (3+), and
intense (4+), with representative images of staining inten-
sities shown in Fig. 1. Conflicting assessments were low
(4% of the cases), and in cases of discrepancy between the
readings, a third evaluation was made. For remaining in-
consistency, a second observer (AR) was consulted until
consensus. In the event of intra- or inter-duplicate tumor
core heterogeneity, the highest score was applied for
tumors borderline between two scores. Based on the
distribution of CAP1 staining intensities and survival
estimates in relation to the initial five CAP1 categor-
ies (Additional file 2), the CAP1 tumor expression
were subsequently compiled into three groups accord-
ing to the cytoplasmic intensity scores: low [negative
(−)/weak (1+)], moderate [moderate (2+)], and high
[strong (3+)/intense (4+)].

Statistical analysis
The difference in distribution by CAP1 expression across
patient characteristics or clinicopathological parameters
was analyzed by linear-by-linear association chi-square
test for trend for the categorical data and Jonckheere-
Terpstra for the comparisons of medians. Categorical vari-
ables are presented as number (n) and frequency (%) of
patients, continuous variables as medians with interquar-
tile range (IQR). In survival analyses, Kaplan-Meier esti-
mates and LogRank-trend test were used to assess the
association between CAP1 expression and time-to-event
defined as breast cancer-specific survival (BCSS) or overall
survival (OS). The follow-up time was defined as date of
diagnosis to date of death, emigration, or end of follow-up
up until December 31, 2016. Univariable and multivariable
Cox regression models were used to calculate crude and
adjusted hazard ratios (HRs) with 95% confidence inter-
vals (CI) for association between CAP1 tumor expression
and breast cancer outcome. Models were adjusted for
potential confounding factors. Model 1 was unadjusted
(crude), and model 2 was adjusted for age at diagnosis

(continuous), tumor size (≤ 20mm or > 20mm) and any
lymph node involvement (positive or negative). Model 3
was additionally adjusted for histologic grade (1–2 or 3),
Ki67 (low, intermediate or high, HER2 (normal or overex-
pression), and ER (positive or negative). Student’s t test
was applied to test statistical difference between two
groups for experimental in vitro data. Statistical analyses
were performed using IBM SPSS Statistics for Windows v
25.0 (Armonk, NY: IBM Corp.) for clinical data and
GraphPad Prism v 7.03 for experimental data. All tests
were two-tailed, and the P value was considered as
strength of evidence against the null hypothesis. The study
adheres to the REporting recommendations for tumor
MARKer prognostic studies (REMARK) guidelines, to
ensure methodological quality [33].

Results
CAP1 antibody validation
To ensure target specificity and functional application
validity, a thorough antibody validation was performed
prior to IHC staining. The specificity of the antibody
was determined by applying a genetic strategy of siRNA-
mediated CAP1 gene knockdown. qRT-PCR analyses
confirmed an efficient CAP1 knockdown with 6 and 2%
detectable mRNA expression in T47D and MDA-MB-
231 cells, respectively, compared with the non-silencing
controls (all P values < 0.001, Additional file 1A). The
specificity and functional application of the monoclonal
Abcam CAP1 antibody was further determined by
Western immunoblotting and immunocytochemistry of
constructed cell microarray. Equivalent to the mRNA re-
sults, approximately 90% and > 99% reduction of CAP1
protein expression at the expected molecular size (52
kDa) was detected by the Abcam antibody in the CAP1
silenced T47D and MDA-MB-231 cells, respectively (all
P values < 0.001, Additional file 1B). Similar findings
were obtained in the immunocytochemistry analyses
(Additional file 1C), thereby confirming the validity of
the antibody. An independent antibody validation was
performed using an affinity isolated polyclonal CAP1
Prestige antibody (Sigma Aldrich; HPA030124), with
equivalent results (data not shown).

Patient characteristics and tumor-specific CAP1 protein
expression
Among the 718 breast cancer patients with tumor tissue
included in the TMA, CAP1 expression was assessable in
669 tumors (Fig. 1), of which 106 tumors (15.8%) dis-
played a low, 273 (40.8%) moderate, and 290 (43.3%) high
CAP1 expression. Baseline patient characteristics accord-
ing to distribution of CAP1 intensities are presented in
Table 1. Patients with tumors of low to moderate CAP1
expression were more likely to be older at baseline (P <
0.001), have a higher BMI (P = 0.009), larger waist (P =
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0.008), wider hip (P = 0.014), and higher BF% (P = 0.006),
compared to patients with tumors of higher CAP1 expres-
sions. No further associations were found between CAP1
expression and anthropometric measures.

Distribution of clinicopathological characteristics and
CAP1 tumor expression
Patients with low to moderate CAP1-expressing tumors
were older at breast cancer diagnosis (P < 0.001) com-
pared to patients with tumors of high CAP1 expressions
(Table 2). Further, patients with low CAP1-expressing
tumors were more likely to present with high prolifera-
tive (defined as Ki67 high; P < 0.001) and histological
grade III (P < 0.001) tumors and had a higher percentage
of ER-negative tumors than patients with tumors of
higher CAP1 intensities (P = 0.014). Similarly, low CAP1
expression was more frequent among patients with
HER2-positive and triple-negative (P < 0.001) molecular
subtypes. Patients with low CAP1 tumor expression
tended to be more likely to received adjuvant endocrine
treatment compared with patients with moderate to high
CAP1 tumor expression (P = 0.002; Additional file 3).
Other breast cancer treatment modalities were not re-
lated to CAP1 tumor expression.

Clinical outcome by CAP1 tumor expression in relation to
ER status
Patients were followed for up to 25 years, with a median
follow-up time of 10.9 years. The median time between
baseline examination and date of breast cancer diagnosis
were 9.6 years. Of the patients included in the survival
analyses, 239 died during follow-up, and 117 of these
died from breast cancer-related causes. Three patients
had emigrated, and 476 were still alive at end of follow-
up.
Patients with low CAP1 tumor expression had worse

long-term survival, both in terms of BCSS (LogRank
Ptrend= 0.002) and OS (LogRank Ptrend < 0.001; Fig. 2),
compared to the patients with tumors of moderate to
high CAP1 expression. When stratified by ER status, the
same trend was observed for patients with ER-positive
breast cancer (BCSS: LogRank Ptrend = 0.020 and OS:
LogRank Ptrend = 0.002; Fig. 2), whereas a non-linear as-
sociation was found among patients with ER-negative
breast cancer (Fig. 2).

Survival differences by CAP1 expression in relation to
body constitution
In Kaplan-Meier estimates when patients were stratified
on BF%, BMI, waist circumference, or WHR, CAP1
tumor expression was associated with worse BCSS
among patients with low adiposity status across all four
anthropometric measures, BF% (LogRank Ptrend = 0.002;
Fig. 3a), BMI (LogRank Ptrend = 0.003; Fig. 3b), waist

circumference (LogRank Ptrend = 0.001; Fig. 3c), and
WHR (LogRank Ptrend < 0.001; Fig. 3d), compared with
patients with higher CAP1 expression. No association
between CAP1 expression and survival was observed for
patients with the highest adiposity status. Similar results
across anthropometric measures were found for the as-
sociation between CAP1 expression and body fatness re-
garding OS (Additional file 4).

CAP1 tumor expression and survival outcomes in
adjusted models
Univariable Cox analyses demonstrated that low CAP1
tumor expression was a prognostic indicator for inferior
BCSS (HR = 0.46, 95% CI 0.28–0.77; Fig. 4) as well as
poor OS (HR = 0.54, 95% CI 0.38–0.78; Fig. 4) among all
patients. CAP1 remained a marker of poorer BCSS and
OS after adjustments for age at diagnosis, tumor size,
and any axillary lymph node involvement. However, the
association did not remain after adjustments for histo-
logical grade, ER status, HER2, and Ki67. Among pa-
tients with ER-negative tumors and patients with low
adiposity status, low CAP expression remained associ-
ated with poor BCSS after adjustments for age at diagno-
sis, tumor size, and any axillary lymph node involvement
(Figs. 2 and 3). Further adjustment for BMI in the multi-
variable analyses did not significantly alter the results
(data not shown).

Discussion
In this prospective cohort study, the clinical impact of
CAP1 tumor expression was evaluated in relation to
body constitution and long-term survival outcomes in
breast cancer. This assessment was performed following
thorough antibody validation that ensured target specifi-
city and functional application validity through a genetic
strategy with siRNA-mediated CAP1 knockdown. Two
main findings were observed. First, low tumor-specific
CAP1 protein expression was associated with anthropo-
metric measures indicating a higher adiposity status and
with unfavorable tumor characteristics linked to tumor
aggressiveness. Second, patients with low tumor expres-
sion of CAP1 had an adverse breast cancer-specific and
overall clinical outcome, with evidence of a stronger ef-
fect in lean patients.
Previous breast cancer studies have shown high CAP1

gene expression to be associated with poor tumor char-
acteristics and impaired relapse-free and overall survival
[15, 20]. Overexpression of CAP1 has further been
linked to poor prognosis in other types of cancer includ-
ing lung cancer, hepatocellular carcinoma, and epithelial
ovarian cancer [23, 25, 34]. Whereas CAP1 gene overex-
pression consistently appears correlated to reduced can-
cer survival, few studies have reported the prognostic
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Table 2 Distribution of tumor characteristics and CAP1 tumor-specific expression

Patients with tumor in TMA
(n = 718)

Patient characteristics All patients Low CAP1 Moderate CAP1 High CAP1 Ptrend Non-assessable Not included

n (%) or median (IQR) (n = 910) (n = 106) (n = 273) (n = 290) (n = 49) in TMA (n = 192)

Age at diagnosis

Continuous [years] 65.0 (60.0–71.6) 65.4 (60.8–73.3) 66.6 (61.4–72.3) 63.9 (58.8–69.5) < 0.001a 60.7 (55.0–66.4) 65.6 (60.4–71.9)

Tumor size [mm]

≤ 20 637 (71.8) 64 (60.4) 189 (69.5) 205 (71.2) 0.066b 40 (83.3) 139 (80.3)

> 20 250 (28.2) 42 (39.6) 83 (30.5) 83 (28.8) 8 (16.7) 34 (19.7)

Missing 19 0 0 0 0 19

Axillary node involvement

Negative 557 (68.0) 65 (63.7) 168 (63.9) 181 (67.0) 0.453b 36 (80.0) 107 (77.0)

Positive (≥ 1) 262 (32.0) 37 (36.3) 95 (36.1) 89 (33.0) 9 (20.0) 32 (23.0)

Missing 53 0 0 0 0 53

Histological grade

I 227 (27.2) 12 (11.4) 55 (20.6) 99 (34.5) < 0.001b 14 (33.3) 47 (35.1)

II 392 (46.9) 48 (45.7) 128 (47.9) 138 (48.1) 17 (40.5) 61 (45.5)

III 216 (25.9) 45 (42.9) 84 (31.5) 50 (17.4) 11 (26.2) 26 (19.4)

Missing 75 1 6 3 7 58

Ki67 status

Low 258 (40.7) 27 (30.7) 62 (29.2) 118 (54.4) < 0.001b 11 (39.3) 40 (45.5)

Intermediate 196 (31.0) 26 (29.5) 76 (35.8) 65 (30.0) 6 (21.4) 23 (26.1)

High 179 (28.3) 35 (39.8) 74 (34.9) 34 (15.7) 11 (39.3) 25 (28.4)

Missing 277 18 61 73 21 104

ER status

Positive (> 10%) 701 (88.8) 79 (79.0) 235 (90.0) 246 (90.1) 0.014b 31 (81.6) 110 (94.0)

Negative (≤ 10%) 88 (11.2) 21 (21.0) 26 (10.0) 27 (9.9) 7 (18.4) 7 (6.0)

Missing 121 6 12 17 11 75

PR status

Positive (> 10%) 438 (58.2) 47 (49.0) 165 (65.7) 147 (56.5) 0.729b 19 (50.0) 60 (56.1)

Negative (≤ 10%) 314 (41.8) 49 (51.0) 86 (34.3) 113 (43.5) 19 (50.0) 47 (43.9)

Missing 158 10 22 30 11 85

HER2 status

HER2+ 65 (9.2) 14 (16.9) 19 (7.9) 21 (8.3) 0.071b 3 (9.1) 8 (8.1)

HER2− 645 (90.8) 69 (83.1) 223 (92.1) 232 (91.7) 30 (90.9) 91 (91.9)

Missing 200 23 31 37 16 93

Molecular subtypes

Luminal A-like 352 (55.4) 29 (37.2) 110 (49.3) 148 (66.4) < 0.001b 13 (46.4) 52 (62.7)

Luminal B-like 159 (25.0) 21 (26.9) 70 (31.4) 38 (17.0) 9 (32.1) 21 (25.3)

HER2+ 65 (10.2) 14 (17.9) 19 (8.5) 21 (9.4) 3 (10.7) 8 (9.6)

Triple-negative 59 (9.3) 14 (17.9) 24 (10.8) 16 (7.2) 3 (10.7) 2 (2.4)

Missing 275 28 50 67 21 109
aJonckheere-Terpstra test
bLinear-by-linear association test. P value < 0.05 in bold
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relevance for the corresponding protein level in breast
tumor tissue.
In contrast to earlier gene expression studies of CAP1,

low CAP1 tumor expression at the protein level was
more frequent among patients with histologic grade III,
high Ki67, or ER-negative tumors, indicating more ag-
gressive tumors phenotypes. A reduced BCSS and OS
for patients with low tumor-specific CAP1 protein ex-
pression compared with intermediate and high expres-
sion was observed. Low CAP1 remained an indicator of
poor BCSS also in multivariable models adjusted for age
at diagnosis, tumor size, and lymph node involvement.
CAP1 expression was however not an independent prog-
nostic factor for survival in the final multivariable model,
which may partly relate to too small sample size with
potential over adjustment in the fully adjusted model.
Nonetheless, a relationship between lower CAP1 expres-
sion and decreased BCSS and OS remained across
adjustments.
The discordant results regarding prognostic impact of

CAP1 gene expression and CAP1 protein expression

needs to be considered. While gene expression data re-
flect the entire cellular compartment in the tumor tissue,
immunohistochemical evaluations assess tumor cell-
specific expression, which in part may account for con-
flicting results reported. Similar conflicting prognostic
links between gene expression and tumor protein levels
in breast cancer have been reported for the cell cycle
regulator CCND1 gene and corresponding cyclin D1
protein, as well as for PD-L1 gene and protein expres-
sion [35–37].
Two earlier breast cancer studies have assessed tumor

CAP1 protein expression via IHC and report CAP1 posi-
tivity to be associated with unfavorable tumor character-
istics (histologic grade III, ER-negative, lymph node
positive) [38, 39]. High proportion of CAP1 positive
tumor cells (> 30%) was prognostic of shorter OS [38].
The studies were limited by considerably smaller patient
cohorts (n = 100), representing younger patients (median
age approximately 50 years) with a remarkably higher
proportion of ER-negative tumors (nearly 50%), com-
pared with the large MDCS cohort reported herein.

Fig. 2 Predicted breast cancer-specific survival (BCSS) and overall survival (OS) comparing three groups of CAP1 cytoplasmic intensity. BCSS and
OS among all patients and stratified by ER status. Patients at risk, number of events (NoE), LogRank trend test, and adjusted hazard ratios (HRs)
with 95% CI comparing low CAP1 expression to high CAP1 expression are shown. HR adjusted for age at diagnosis (continuous), tumor size (> 20
mm, yes/no), and any axillary lymph node involvement (yes/no)
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Fig. 3 (See legend on next page.)
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Variations in patient populations and analytical validity,
including different antibodies and positivity thresholds
used, likely explain the inconsistent results and impede
direct comparisons.
Translational and posttranslational regulation of CAP1

are largely unknown, although phosphorylation of
CAP1S308/S310 has been demonstrated to regulate its
functional activity and control binding to the cytoskel-
etal proteins cofilin and actin, thus altering the cell mi-
gratory ability [40, 41]. One suggested phosphorylating
agent for S310 is glycogen synthase kinase 3 [40]. CAP1
may further exert cell type-specific functions with a dual
role regarding ER status. A decreased stimulation of
cAMP, PKA, and NF-κB activity by resistin has been ob-
served in CAP1 knockdown cells, indicating CAP1 is an
upstream activator in inflammation, a process that may
promote carcinogenesis [17]. Upon stratification for ER
status, lower CAP1 expression remained associated with
worse prognosis among patients with ER-positive

tumors, while a non-linear trend was observed for ER-
negative tumors. Depletion of CAP1 in experimental
models stimulated proliferation, migration, invasion, and
induction of epithelial-mesenchymal transition markers
ERK and Snail in TNBC cells, while the adverse was ob-
served in ER-positive cell lines [42].
Circulating levels of the adipokine resistin increase

with adiposity and are associated with higher risk and
impaired prognosis of breast cancer [16, 17]. Since
CAP1 is the functional receptor to resistin, an add-
itional aim of this study was to investigate CAP1 in
relation to anthropometric measures. Lower CAP1 ex-
pression was positively associated with higher BMI,
larger waist, wider hip, and higher BF%. These results
indicate a relationship between obesity and lower
CAP1 expression. The prognostic impact of CAP1
however appeared strongest among leaner patients as
low CAP1 tumor expression was associated with re-
duced survival in patients with low adiposity status

(See figure on previous page.)
Fig. 3 Breast cancer-specific survival (BCSS) according to CAP1 score, stratified for a body fat percentage, b BMI, c waist circumference, and d
waist-hip ratio. Patients at risk, number of events (NoE), LogRank trend test, and adjusted hazard ratios (HRs) with 95% CI comparing low CAP1
expression to high CAP1 expression are shown. HR adjusted for age at diagnosis (continuous), tumor size (> 20mm, yes/no), and any axillary
lymph node involvement (yes/no)

Fig. 4 Breast cancer-specific survival (BCSS) and overall survival (OS) according to CAP1 expression. Forrest plot illustrating hazard ratio (HR) with
95% confidence interval (CI) across univariable analysis (model 1) and multivariable analyses (models 2 and 3). Model 2a adjusted for age at
diagnosis (continuous), tumor size (> 20 mm, yes/no) and any axillary lymph node involvement (yes/no). Model 3b adjusted for as in Model 2a

along with histological grade III (yes/no), ER positive (yes/no), HER positive (yes/no) and Ki67 high (yes/no). P-value < 0.05 in bold
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while no differences were found among patients with
higher adiposity status.
There are a number of strengths to our study.

First, this is the largest study of tumor-specific
CAP1 expression of its kind allowing for patient
stratification and multivariable analyses adjusted for
relevant confounders. Second, this well-characterized
prospective cohort with up to 25-year follow-up en-
abled long-term survival analyses relevant to the na-
ture of breast cancer progression with late
recurrences. Third, detailed anthropometric measures
were taken by trained nurses, and not self-reported.
Fourth, a genetic strategy was applied with siRNA-
mediated CAP1 knockdown for thorough antibody
validation to ensure target specificity and functional
application validity. The main limitations are as fol-
lows: the immunohistochemical analyses were done
on TMA, which does not represent a complete
tumor tissue; however, it is an advantageous and
commonly used method when analyzing material
from large cohorts. Patients with no tumor tissue in
the TMA were more likely to be older at baseline
and presented with more favorable tumor character-
istics where their tumors tended to be smaller, of
lower grade, and node negative compared with pa-
tients with tumor tissue in the TMA. These differ-
ences thus indicate a potential selection bias towards
patients with more unfavorable tumors characteris-
tics in the final study population. In addition, breast
cancer subtypes were constructed from surrogate
classification and not intrinsic subtypes; information
on anthropometric measures was collected at study
entry (baseline) and not at time of breast cancer
diagnosis. While this study is the largest to date, the
final multivariate Cox analysis for all patients was
still limited by small sample sizes that may affect the
robustness of the test.

Conclusions
In summary, our results demonstrate that lower
CAP1 protein expression in early breast cancer was
linked to higher adiposity status, more aggressive
disease characteristics, and reduced long-term sur-
vival in women with breast cancer. These results
highlight a contrasting link to earlier gene expression
studies and differential prognostic information pro-
vided according to adiposity and ER status. The as-
sociation of body constitution and breast cancer
outcome is complex, and CAP1 is not working in
isolation. CAP1 could be important as a predictor of
poor prognosis in lean or ER-positive breast cancer
patients, patient subgroups which generally have a
favorable prognosis. This study demonstrates the im-
portance to take body composition into

consideration in clinical decision making. Additional
large-scale studies are needed to fully elucidate the
prognostic role of CAP1 in breast cancer and further
investigate its clinical impact on breast cancer pro-
gression and disease recurrence.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13058-020-01307-5.

Additional file 1. Validation of CAP1 antibody specificity and functional
validity using a genetic approach of siRNA-mediated target knockdown.
(A) Graphs displaying relative CAP1 mRNA expression in T47D and MDA-
MB-231 cells following siRNA-induced CAP1 knockdown or non-silencing
control (B) Quantification of relative CAP1 protein levels and Western im-
munoblotting showing reduction of protein bands detected by Abcam
ab133655 at the expected molecular size (52 kDa) after CAP1 silencing,
(C) Immunocytochemistry images visualizing CAP1 protein abundance in
cell microarray of T47D and MDA-MB-231 in CAP1 knockdown or control
cells. Error bars show standard error of means from three independent
experiments.

Additional file 2. CAP1 protein expression grouped according to
immunohistochemical staining. (A) Distribution over CAP1 scoring, (B)
distribution over CAP1 scoring after grouping, (C) breast cancer-specific
survival (BCSS) of all five different CAP1 scoring, (D) overall survival (OS)
of all five different CAP1 scoring. Patients at risk and number of events
(NoE) are shown.

Additional file 3. Distribution of breast cancer treatment and CAP1
tumor-specific expression.

Additional file 4. Overall survival (OS) according to CAP1 expression,
stratified for (A) body fat percentage (BF%), (B) body mass index (BMI), (C)
waist circumference, and (D) waist-hip ratio (WHR). Patients at risk, num-
ber of events (NoE), LogRank trend test and adjusted hazard ratios (HRs)
with 95% CI comparing low CAP1 expression to high CAP1 expression
are shown. HR adjusted for age at diagnosis (continuous), tumor size (>
20 mm, yes/no) and any axillary lymph node involvement (yes/no).
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