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ABSTRACT Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large
natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have
been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast,
multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously
been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated
polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance
loci. A largely uncharacterized gene, CG70737, has a function in muscles that ameliorates the effects of DDT, while a putative
detoxifying P450, Cyp6w1, shows compelling evidence of positive selection.

KEYWORDS Drosophila Genetic Reference Panel (DGRP); DDT; CG10737; CypbwT; triallele

ANY insights into the genetic basis of adaptation have

been gained by genetic analyses of resistance to man-
made chemicals; whether that be bacteria to antibiotics
(Zhang et al. 2011), weeds to herbicides (Baucom 2016),
fungi to fungicides (Schoustra et al. 2005), or insects to in-
secticides (Crow 1957; McKenzie 1996). Typically, the genet-
ics of such traits are thought to be strongly monogenic and
thus distinct from most other traits whose variation is gov-
erned by the combined effect of multiple loci of small effect
(Lande 1983; Roush and McKenzie 1987; Allen et al. 2010).
This contention is central to the debate over the genetics of
DDT resistance in Drosophila melanogaster. As it is not con-
sidered a pest, this model insect may have never been ex-
posed to the high selection intensities thought necessary for
the evolution of major-gene-based resistance (Macnair 1991;
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McKenzie and Batterham 1994). Despite most genetic inves-
tigations supporting a polygenic architecture (Crow 1954;
King and Sgmme 1958; Dapkus and Merrell 1977; Shepanski
et al. 1977) or more precisely weak polygenicity (Dapkus 1992;
i.e., at most one or two loci per chromosome arm), a gene of
major effect, Cyp6g1, was identified and described as “necessary
and sufficient” for DDT resistance (Daborn et al. 2002). Pro-
posed solutions to this apparent contradiction between “poly-
genic” and “monogenic” schools include delineating a difference
between field and laboratory evolved resistance (Ffrench-
Constant 2013) or suggesting that Cyp6g1 is only inconsis-
tently associated with resistance (Kuruganti et al. 2007).
In the specific case of the long-term DDT-selected strain
91-R, there is a strong argument for the polygenicity of DDT
resistance. 91-R is over 1500 times more resistant to DDT
than another laboratory strain, Canton-S (Strycharz et al.
2013); levels far beyond those attributable to Cyp6g1 alone.
Much of the recent work aimed at identifying polygenes as-
sociated with DDT resistance has focused on contrasting
these resistant and susceptible laboratory strains and has
allowed the generation of transcriptomic (Pedra et al.
2004), proteomic (Festucci-Buselli et al. 2005), physiolog-
ical (Strycharz et al. 2013), and genomic (Steele et al. 2014,
2015) data sets of differentiated factors. These candidates,
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however, remain to be validated, and their contribution to
either the selection response in the laboratory, or to field re-
sistance, have yet to be quantified. Until now Cyp6gl has
remained the only DDT resistance locus with molecularly de-
fined alleles that contribute to DDT-related genetic variation
observed in field populations.

Previously Schmidt et al. (2010) demonstrated that
an allelic series at the Cyp6gI locus is sweeping through
D. melanogaster populations. The resistant Cyp6gl variant
described by Daborn et al. (2002), which harbored a partial
Accord transposable element insertion upstream of the
Cyp6g1 locus, was subsequently found to be invariably asso-
ciated with a duplication of the Cyp6g1 locus (Schmidt et al.
2010). It is still unclear to what extent the upregulation of
Cyp6g1 observed at this allele is due to the Accord element
(Chung et al. 2007) or to the presence of multiple Cyp6g1
copies, or both. However, it is clear that the ancestral Cyp6g1
allele (Cyp6g1-M) is at very low frequencies throughout the
world and has largely been replaced by haplotypes carrying
the duplication and various transposable element insertions.
The Cyp6g1-AA allele (which has two copies of the gene both
bearing the Accord element) and the Cyp6g1-BA allele (where
one of the duplicated copies contains an additional HMS-
Beagle transposable element insertion) both confer resis-
tance to DDT relative to the Cyp6g1-M allele, although they
show only subtle phenotypic differences between one an-
other. A fourth allele, Cyp6g1-BP, is at high frequencies in
populations in northeastern Australia, and provides a further
increase in resistance, in both a set of isochromosomal lines
and in a field population (Schmidt et al. 2010). In the latter,
the Cyp6g1-BP allele accounts for ~16% of the total variation
in the DDT resistance phenotype.

The analysis of field variation at the Cyp6g1 locus provides
two arguments suggesting that other loci contribute to DDT
resistance in the field. First, as Cyp6g1 allelic variation does not
account for all the 20-50% heritability expected for insecticide
resistance (McKenzie 2000), there is much genetic variation
that is not accounted for (20-68%). Second, as a succession of
Cyp6g1 alleles provides a series of adaptive events at one locus,
there has been time and selective pressure for other adaptive
events arising elsewhere in the genome.

DDT affects the nervous system by targeting the voltage-
gated sodium channel resulting in uncontrolled nerve firing.
In D. melanogaster, the a-subunit of the voltage-gated sodium
channel is encoded by para, and target-site resistance to DDT
has been described in para mutants by Pittendrigh et al.
(1997) and Lindsay et al. (2008). However, para variation
affecting DDT resistance has not yet been identified in out-
bred populations of D. melanogaster, nor has it been impli-
cated in the phenotypes of well-studied DDT-resistant
laboratory strains (Dapkus and Merrell 1977; Steele et al.
2014).

DDT-induced mortality is typically preceded by the loss of
peripheral muscle control and manifests as a “knockdown”
phenotype in which the fly lies paralyzed with appendages
twitching, or exhibits uncontrolled flight. Here we use the
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Drosophila Genetic Reference Panel (DGRP; Mackay et al.
2012; Mackay and Huang 2017), a resource for the dissection
of quantitative traits, to characterize the genetic architecture
of both knockdown and mortality caused by DDT exposure
using predominantly field-derived genetic variation from a
single population. This population has shown great phenotypic
diversity for, and furnished genetic associations with, a diverse
range of traits including insecticide resistance (Mackay et al.
2012; Huang et al. 2014; Battlay et al. 2016). We performed
genome-wide association studies (GWAS) on two DDT-related
traits to gain insights into insecticide biology and insecticide-
driven selection using a classic insecticide model.

Materials and Methods
Fly stocks

DGRP lines were obtained from the Bloomington Stock Cen-
ter, and were maintained on corn meal media within a 22-25°
temperature range. For the DDT assays, larval density was
controlled by setting up vials with 10 mated females that
were allowed to lay for 3 days, then transferred to fresh
media for a further 3 days to establish an additional brood
to provide enough progeny for replication. At this stage, two
to three replicates per line were established. Adults were
allowed to eclose for 2-3 days, and females were collected
to food-containing holding vials after brief CO, anesthetiza-
tion. After 2-3 days’ recovery, adult females were assayed,
thus the age range was 4-6 days for flies assayed.

DDT assays

Glass scintillation vials were inoculated with 200 pl of Ace-
tone/DDT solution at a concentration of 0.5 wg/ml, giving a
final contact assay amount of 100 wg of DDT. Cotton wool
moistened with 10% sucrose solution was used to stopper the
scintillation vials. Assays were set up between 7 and 8 awm,
roughly corresponding with the onset of the light phase of the
diurnal cycle. Time of setup was recorded, and each vial was
scored for the presence of flies exhibiting either knockdown
or mortality at ~1-hr intervals. Knockdown here is defined as
either flies permanently seen to be in a prone position with
jolting movement of legs or wings, or a prolonged inability to
right themselves from a prone position after tapping of the
scintillation vial on the laboratory bench. Mortality was de-
termined as the point at which all external movement ceased.
Data were recorded in data sheets with time points as col-
umns and DGRP line number as rows. Assay vials contained
10 females, and there were at least three replicates per DGRP
line. A total of 184 DGRP lines were assayed. In total, the
assay time was 30 hr. Phenotypes were scored through 1-15,
24, and 30 hr.

Estimation of heritability

At least three replicates of ten flies per vial were analyzed per
DGRP line, which allowed the calculation of broad-sense
heritability (H?). Following the method of Clowers et al. (2010),
heritability was estimated from the variance components of a
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linear model of the form: Phenotype = Population mean +
Line effect + error. As these lines are inbred, the components
of the Genetic Variance (e.g., additive or dominant), cannot be
separated, thus these estimates are of broad-sense (H?) heri-
tability,. An ANOVA was performed in Statistics Package in
Social Sciences (SPSS), and the variance components were
estimated as the Mean Sum of Squares. Total phenotypic var-
iance was estimated as Genetic Variance + Environmental
Variance. H was thus estimated as G,/G,+E,. This was calcu-
lated for each discrete time point.

GWAS

Phenotypes were submitted to the Mackay Laboratory DGRP2
website for GWAS (http://dgrp.gnets.ncsu.edu/; Huang et al.
2014). To perform our own GWAS for DDT resistance traits,
we used the PLINK GWAS program (PLINK v1.9, https://
www.cog-genomics.org/plink2; Chang et al. 2015). For ge-
notypes, we initially downloaded the DGRP freeze 1 SNP tables
(http://www.hgsc.bcm.tmc.edu/projects/dgrp/freezel
July 2010/snp_calls/). These tables encoded “haploid”
variant calls, with heterozygous positions encoded with
the relevant ambiguity codes. To make PLINK-compatible
files, we used perl scripts to modify these SNP tables into
diploid genotypes. We were surprised by a large number
of sites that contained more than two alleles. The initial
DGRP freeze 1 GWAS tool removed all such sites, but
assuming that many of these represented low-frequency
sites or errors, we ranked each variant by frequency and
kept the two most frequent ones. The one major differ-
ence between our initial results and that of the DGRP
freeze 1 GWAS tool was the triallelic variant at Cyp6w1.

However, our analyses here are based on the newer DGRP
freeze 2 release. For this we downloaded the dgrp2.bed file
(PLINK format) from the DGRP2 website (http://dgrp2.gnets.
ncsu.edu/data/website/dgrp2.bed). Thus, these genotypes
are identical to those used in the DGRP webtool, except for
choices in variant filtering as indicated in the PLINK command
line below. It should also be noted that now no heterozygous
genotypes are present, and that the two most common variants
at triallelic sites are also present in this bed file.

We used the following base PLINK command to perform
GWAS (linear regression of genotype phenotype association
assuming an additive model of allelic effects) after initially
filtering for SNPs with MAF = 0.05 and at least 70% geno-
typing rate (given that a triallelic site with equal proportions
of all three genotypes would have a rate of ~66% in the
DGRP freeze 2 data):

plink-allow-extra-chr-allow-no-sex-bfile dgrp2—covar
dgrp2 ESTRAT PCA20.txt-linear-map3-no-fid—no-parents—
no-pheno-no-sex-aperm 5 1000000

The “aperm” option was used to generate empirical esti-
mates of the P-value for each SNP. To calculate the family-wise
error rate (FWER) for a given P-value or level of significance,
we generated 5000 random permutations of the 4-hr knock-
down (4 hrkd) and 24-hr mortality (24 hrm) phenotype data

and performed the same linear association model as for
the observed phenotypes. For each permutation we record
the lowest observed P-value. The FWER is then the number
of random permutations that generated a P-value lower
than or equal to that observed for each SNP, i.e., that
chance of at least one false positive at this level of signifi-
cance. After filtering, 1,776,058 SNPs were tested for each
PLINK GWAS.

We performed principal components analysis on the DGRP
data using PLINK after prefiltering genotypes for minor allele
frequency (>0.05), missing rate (<0.70), and linkage disequi-
librium (LD) pruning (* < 0.2) using the indep pairwise com-
mand, with both window and step size of 500 variants. To
control for confounding cryptic relatedness in the DGRP, we used
the first 20 principal components as covariables in all GWAS,
as indicated above with the “~covar dgrp2 ESTRAT PCAZ20.
txt” option in the PLINK command. As inversions and Wolbachia
infection status can also influence the phenotypes of the
DGRP lines, we used the phenotypes adjusted for these fac-
tors outputted from the DGRP2 website. Thus, our results for
the DGRP freeze 1 and DGRP freeze 2 differ due to now
correcting for population structure, adjusting phenotypes
for inversion and Wolbachia infection status, and the removal
of heterozygous genotypes in the DGRP freeze 2. Finally, for
annotating variants we used the annotations made available
on the DGRP2 website (http://dgrp2.gnets.ncsu.edu/data/
website/dgrp.fb557.annot.txt).

To test specific variants at Cyp6g1, we used PCR primers
described in Schmidt et al. (2010) and/or local alignments of
[lumina and 454 reads to determine the Cyp6g1 genotypes.
For Cyp6w1, our DGRP freeze 1 GWAS indicated the presence
of a triallelic site at 2R:6,174,944[V6]. We used the
reprocessed DGRP genotype data from the Drosophila Ge-
nome Nexus (Lack et al. 2015) files to extract genotype
data for this position (described further under the iHS and
nS; tests methods), as the genotypes for the third variant
state are removed from the DGRP freeze 2 data. For both
these genes, the sites of interest are triallelic in the DGRP.
We generated files with the ancestral allele and derived
alleles, both singularly and combined after collapsing to
the same allelic code, included to test for associations with
DDT phenotypes. In the particular case of Cyp6g1, we in-
troduced a variable site to code Cyp6g1-M, Cyp6g1-AA, or
Cyp6g1-BA alleles.

iHS and nS, tests of recent positive selection

We downloaded the haploid FASTA alignments for 205 DGRP2
genomes, described by Lack et al. (2015), that are con-
tained in the Drosophila Genome Nexus (DGN; http://
johnpool.net/genomes.html). We applied the supplied
masking filter for identity by decent (IBD) regions, but
not the masks for admixture. For ease of downstream pro-
cessing, we converted these FASTA alignments into Vari-
ant Call Format (VCF) files using custom bash and perl
scripts. Note, these scripts kept the genotype information
at triallelic sites.
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After IBD masking and the prefiltering of excessively
heterozygous regions in the DGN data (using the scripts
available from http://johnpool.net/genomes.html), the ge-
nomes varied drastically in the proportion of sites with miss-
ing data. We excluded chromosomes with >20% missing
data, leaving us with 134 lines for chromosome 3L. For
other chromosomes, we randomly sampled lines without
replacement to n = 134. In the compilation of VCF files,
we excluded sites with >15% missing genotypes in the
DGRP2. There were of course missing data remaining after
these two steps, still rendering them unsuitable for haplo-
type tests. We filled in missing genotypes by randomly sam-
pling from called genotypes, in proportion to their population
frequency. In the main, this procedure will reduce local LD,
and thus is conservative vis-a-vis LD-based tests of selec-
tion, and is similar to the method employed by Garud et al.
(2015).

We used two tests of selection that both utilize signatures of
LD around a beneficial allele. This LD can be measured by the
extended haplotype homozygosity (EHH) statistic (Sabeti
et al. 2002). EHH summarizes the probability that two chro-
mosomes bearing the beneficial allele are also identical by
state at a nearby neutral variant. Increased LD will thus also
increase the EHH statistic. The integrated haplotype score
(iHS; Voight et al. 2006) extends EHH by calculating the area
under the EHH curve (iHH, and thus integrated) for both the
derived and ancestral variant, and then finding the ratio of
iHHDerived/iHHAncestral. If LD for both the derived and
ancestral allele is approximately the same, this ratio should
be close to 1, whereas large departures could indicate the
action of recent positive selection. As LD is also influenced
by the age of mutations, iHS scores are standardized in bins of
derived allele frequency, as under a neutral model frequency
is indicative of allele age (on average). nS; (number of seg-
regating sites by length; Ferrer-Admetlla et al. 2014) is sim-
ilar in spirit to iHS, but instead of EHH, the base statistic is the
average count of SNPs for which two haplotypes are identi-
cal. We use it here because this statistic may be less biased
toward regions of low recombination and has an increased
ability to detect soft sweeps (i.e., the beneficial allele is seg-
regating on more than one distinct haplotype at the time of
selection).

To calculate both iHS and nS;, we used the versions imple-
mented in selscan with default parameters for each (Szpiech
and Hernandez 2014). We kept biallelic SNPs with 5% <
DAF < 95%. The ancestral state was estimated as the homol-
ogous D. simulans reference genome allele (aligned to
D. melanogaster, also downloaded from http://johnpool.net/
genomes.html). Both statistics were normalized in 1% fre-
quency bins per chromosome, and a P-value per site was cal-
culated from the empirical distribution of normalized scores (|
iHS| |nSp|) per chromosome. Genetic map positions were
estimated using the recombination maps generated by
Comeron et al. (2012).

For the triallelic sites at Cyp6g1 and Cyp6w1, we manually
constructed haplotype files containing the set of one of the
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derived haplotypes and the ancestral haplotypes. These sets
are a subset of those for biallelic sites, and P-values for each of
these were calculated as above.

For the extended haplotype structure for the Cyp6w1_GLY
allele, the EHH curve does not decay below 0.05 within the
default window size, a reflection of both increased haplotype
structure but also a region of increased heterozygosity down-
stream of Cyp6w1, which is filtered out in most DGRP2 indi-
viduals and introduces a gap >200 kb. To compute an iHS
value for this variant we relaxed the default parameters, so
that the max gap is 250 kb. Manual inspection of the EHH
curves (Figure 4) suggests that the high iHS statistic for this
variant is due to haplotype structure and not this gap in the
estimated haplotypes.

CG10737 RNAi

Line CG10737-KK [Vienna Drosophila Resource Centre
(VDRC) ID 106383] that has an upstream activator sequence
(UAS) followed by a hairpin sequence matching CG10737
with no recorded off-targets was obtained from the VRDC.
It was crossed to Mef2-GAL4 (Bloomington ID 27390). Line y,
w([1118]; P(attP,y+,w[3']) (VDRC ID 60100) was used as
control and also crossed to the Mef2-GAL4 driver. The off-
spring of these crosses were evaluated for the DDT resistance
phenotypes, 3hrkd, and 24hrm. The screens for each cross
were performed over a range of DDT concentrations using
replicates of 10 females aged 4-6 days old. For every DDT
concentration, a minimum of 80 females were screened for
3hrkd and a minimum of 50 females were screened for
24hrm. The relationship between the 3hrkd resistance phe-
notypes and DDT concentration was evaluated using XLSTAT
to perform a Probit analysis, a log normal regression of the
knockdown data (Sakuma 1998). Dosage mortality curves
were constructed for the relevant crosses and their controls
and the EDs, the dose that will theoretically knockdown 50%
of the population, was estimated. To ascertain that the gene
had indeed been knocked down, total RNA was extracted from
20 to 30 adult females using the TRIsure-reagent. The extracted
RNA was treated with RNA-free DNase (New England Biolabs,
Ipswich, Massachusetts) and residual genomic DNA contami-
nation was assessed for each sample by attempting to am-
plify a PCR product from the RNA. The samples were
converted to complementary DNA (cDNA) using 1 pg of RNA
in 20 .l reaction with Anchored Oligo (dT)s9 and MulLV Re-
verse Transcriptase (NEB) according to the manufacturer’s
instructions.

Cyp6w1 transgenic overexpression

UAS-Cyp6w1 constructs were designed using the y; cn bw sp;
reference strain Cyp6w]1 coding sequence as a template. Con-
structs containing each state of Cyp6w]1 triallele identified in
the 24 hrm GWAS were created by mutating the VAL370
codon in the reference sequence to ALA370 and GLY370.
All three constructs were manufactured by Biomatik USA
(Wilmington, DE) and were supplied cloned into plasmid
pUASTattB.
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The UAS-Cyp6w1 constructs were transformed into the y?
M{vas-int.Dm}ZH- 2A w*; (EPS) M{36P3-RFP.attP}ZH-86Fb
recipient strain, which has a defined integration site on Chro-
mosome 3, using the attP-attB system and QC31 integrase
(Bischof et al. 2007). To generate heterozygous Cyp6w1/
tubulin-GAL4 or serrate flies, virgin female homozygous UAS-
Cyp6w1 flies were collected on light CO,, stored at 22-25° for
4 days to ensure virginity, and then 10 females per vial were
crossed to tubulin-GAL4/serrate males. At the same time,
vials with either 10 UAS-Cyp6w1 or tubulin- GAL4/serrate
females were established. Adults for all these fly lines were
allowed to eclose for 2-3 days, and females were collected to
food-containing holding vials after brief CO, anesthesia.

Each line was tested on a minimum of five doses of DDT.
A minimum of five replicates of 20 individuals per dose per line
were treated in the bio-assay. Glass scintillation vials were
inoculated with 200 pl of Acetone/DDT solution with con-
centrations ranging from 5 X 1075 to 1.0 wg/pl, giving a final
contact assay range of 0.01-200 wg of DDT. Cotton wool
moistened with 10% sucrose solution was used to stopper
the scintillation vials. Flies were assayed at 25° for 24 hr. Data
for each tested line were individually analyzed using PriPro-
bit (Sakuma 1998) to estimate the LCsq and generate data
for plotting dosage mortality curves and 95% confidence
intervals.

91-R and 91-C genome examination

bam files containing alignments of 91-R and 91-C sequencing
reads to the y; cn bw sp; reference genome were obtained
from the sequence read archive (Leinonen et al. 2011;
SRR1237973; SRR1237974). Alignments at relevant loci
were visualized using IGV software (Thorvaldsdéttir et al.
2013) to determine presence of SNPs and discordant reads
consistent with structural variation.

Data availability

Raw phenotypic data are available in the Supplemental Ma-
terial, File S1.

Results
GWAS

One hundred eighty-four lines of the DGRP were exposed to a
dose of 100 g of DDT and monitored over 30 hr. Two phe-
notypes were recorded; percentage knocked down and per-
centage dead. The median of the 50% knockdown time for
the DGRP lines was 15 hr, while the median of 50% mortality
time was 18 hr.

We chose to focus on 24hr mortality (24hrm), as it is a
standard assay in D. melanogaster insecticide resistance liter-
ature (Daborn et al. 2001; Schmidt et al. 2010). We also
observed minimal zero-dose control mortality and maximal
broad-sense heritability (H? = 0.8) at this time point. Of our
knockdown timepoints, we chose 4 hrkd for further analysis,
as the H? of our assay reached an early peak at this time point
and it thus provides a robust yet contrasting data set to the
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Figure 1 DDT-Knockdown and mortality. (A) The mean percentage 4-hr
knockdown (4hrkd) and 24-hr mortality (24hrm) for each DGRP line
(based on at least 3 replicates of 10 individuals each) with lines ordered
from lowest to highest for each trait. (B) The scatterplot shows the cor-
relation between 24-hr mortality and 4-hr knockdown. Flies that are
knocked down early can recover and exhibit late mortality.

24hrm (Figure 1A and File S1). Based on the number of lines
phenotyped and genotyped (n = 179), the number of repli-
cates (r = 3), and the broad-sense heritability of the trait
(H? = 0.8), the method of Mackay and Huang (2017) was
used to estimate the power to detect variants for a range of
effect sizes. Variants with an effect of 12% of H2 (~0.1 units
of the trait’s SD) would be detected with 50% chance and
variants with an effect of 22% of H? (~0.18 units of the
trait’s SD) with 95% chance, respectively (File S4).

The 4 hour knockdown (4hrkd) phenotype may reveal the
intrinsic variation in insecticide uptake routes and nervous
system sensitivities, while the later 24hrm phenotype may
encompass variation in the physiological response to the
insecticide such as inducible detoxification mechanisms.
Four-hour knockdown and 24hrm show distinctly different
distributions within the DGRP. The population mean for
4 hrkd is 21% with SD of 19%, while 24 hrm has a mean
mortality of 58%, with SD 29%. The genetic correlation be-
tween the two traits was estimated to be 0.42 (Figure 1B).

We performed GWAS on our 4hrkd and 24hrm phenotypes
using both the DGRP2 webtool (Huang et al. 2014) and a
custom implementation using PLINK (version 1.9). We did
not observe a significant (ANOVA P > 0.05) effect on DDT-
induced knockdown or mortality of Wolbacchia infec-
tion (knockdown: r2 = 0.013 and mortality: r2 = 0.010),
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inversions with a frequency >5% (knockdown: r? range =
—0.145-0.176 and mortality: r2 range = —0.264-0.136), or
genome size (knockdown: r?2 = 0.005 and mortality: 12 =
0.004). All four GWAS detected variants with P-values less
than the arbitrary genome-wide significance threshold (1 X
10~5; File S2; Mackay et al. 2012). None of the variants
associated with 24 hrm were also associated with the 4 hrkd
phenotype. Only 24 hrm with the PLINK pipeline showed a
variant with FWER <0.05, in a cytochrome P450 gene
Cyp6wl. Using a less conservative cutoff of P < 1 X 1076,
4hrkd showed eight variants. Of note, one of these is in
CG10737, a gene that has previously been implicated in
DDT resistance.

CG10737

Two SNPs separated by 30 nucleotides occur in the intron of
CG10737 and are highly associated with 4hrkd in both PLINK
and DGRP2 GWAS; they are in complete LD with each other
and have slightly different P-values of association because of
missing data (2R:19,169,399[V6], 2R:19,169,429[V6]; File
S2). CG10737 is predicted to encode a protein with C1 and
C2 domains that are capable of diacylglycerol binding and
calcium-dependent targeting, respectively, and is therefore
postulated to be involved in intracellular signal transduction
(Mitchell et al. 2015; Attrill et al. 2016). A previous study
highlighted that CG10737 is one of five “lipid metabolism”
genes shown to be differentially expressed among two DDT-
resistant lines and a susceptible laboratory line. Specifically,
CG10737 was expressed at significantly lower levels in the
DDT-resistant Wisc-1 line than the susceptible Canton-S line
(Pedra et al. 2004). This led us to hypothesize that a reduc-
tion of CG10737 transcript would lead to increased resistance
to DDT-knockdown. To test this hypothesis, we crossed a
VDRC UAS-CG10737-KK line to knockdown this gene using
a Mef2-GAL4 driver, which targets the muscles. The justifica-
tion for this driver is fourfold: (i) according to the modENCODE
data sets CG10737 is highly expressed in the muscle-associated
tissues (crop, hindgut, heart, carcass, and male accessory
gland) and is considered muscle-enriched in two microarray
analyses (Zhan et al. 2007; Weake et al. 2008); (ii) genes that
are coexpressed with CG10737 are known muscle genes (My-
osin heavy chain, myosin light chain 1 and 2, troponin, and
myosuppressins); (iii) chromatin co-immunoprecipitation
experiments show that MEF2 binds to the CG10737 cis reg-
ulatory region (Sandmann et al. 2006; Cunha et al. 2010); and
(iv) Bonn (2010) demonstrated that antibodies to CG10737
stained less intensely in the somatic and visceral mesoderm
when in a mef2 null background.

The progeny of the Mef2-GAL4 X UAS-CG10737-KK cross
were assayed for DDT-knockdown resistance over a range of
doses. The dose of DDT required to knockdown 50% of flies
(EDsp) was more than twice as high for UAS-CG10737-KK
lines as it was for the control lines (109 pg/vial vs. <47 g/
vial; Figure 2). These findings support the hypothesis that
CG10737 transcript reduction increases resistance to DDT-
knockdown.
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Figure 2 RNAI knockdown confirms that lowering CG70737 transcript
abundance increases DDT resistance and that this effect can be mediated
by manipulating muscle expression. Flies in which CG70737 is knocked
down in muscles using the mef2-GAL4 driver crossed to the VDRC
CG10737-KK line are significantly more resistant to DDT than control
flies, which are the result of substituting the relevant genetic background
line for either mef2-GAL4 (w'"78) or the CG10737-KK line (60100) in the
Cross.

Cypbw1

This gene is the standout candidate as judged by significance
of association with variation in 24hrm. The associated SNP
(2R:6,174,944[V6]) resultsin a coding sequence change in an
enzyme belonging to a family capable of detoxification and
which is most abundantly expressed in the fly fat body, a
known detoxification tissue. It is also expressed in the sper-
matheca, heart, head, and carcass (Chintapalli et al. 2007),
and Pedra et al. (2004) found it to be overexpressed in the
DDT-resistant 91-R line relative to the Canton-S susceptible
line. The variant site associated with DDT 24hrm in Cyp6w1
is particularly interesting as three different allelic states at
this site are observed within the DGRP, and each state en-
codes a different amino acid. Such triallelic sites, which rep-
resent 2.5% of variable sites in the DGRP, get excluded by
many analyses (either explicitly, by excluding sites with more
than two states, or implicitly, because the most abundant two
states combined are not enough to pass abundance thresh-
olds).We surmise that this latter factor is the reason we do
not recover this variant using the Mackay DGRP2 webtool
(Huang et al. 2014; http://dgrp.gnets.ncsu.edu/), as <75%
of lines have a called genotype for this position. In contrast,
we used a lower missing genotype threshold of 60% in our
PLINK GWAS pipeline. We initially identified 2R:6,174,944[V6]
as a biallelic TC transition resulting in a Val370Ala substitu-
tion. By investigating this site in the Drosophila genome DGRP2
data, we found a third state, G, that is at a frequency of 14% in
the DGRP, and results in a Val370Gly substitution. Combining
the effect of the C and G alleles, the P-value for association with
DDT mortality is 7.88 X 10~7. Individually the G allele is in-
significant genome-wide (P = 0.015), but taken together these
results suggest that it too could influence DDT resistance.
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To test what effect the three amino acid states at site 370 of
Cyp6bw1 have on DDT resistance, three transgenic lines were
generated such they that only differed at that single site. The
three lines were crossed to a GAL4 driver line under the
control of tubulin promoter sequence, so that the UAS-
Cyp6w1 isoforms were expressed in a ubiquitous manner.
All three of the Cyp6w]1 transgenes were at least 12 times
more resistant to DDT than their intracross sibs when under
the control of the tubulin-GAL4 driver [Figure 3; LDsq (the
dose predicted to result in 50% mortality) for Cyp6w1 over-
expression lines: Cyp6w1 VAL = 14 pg/vial, Cyp6wl GLY =
12 pg/vial and Cyp6wl ALA = 28 pg/vial]. This indicates
that overexpression of Cyp6w]1 in itself can result in a DDT
resistance. However, an additional effect is seen for the
Ala370 amino acid substitution, as flies overexpressing this
isoform are at least two times more resistant than either
Val370 or Gly370 counterparts (Figure 3). Thus, the Ala370
substitution appears to increase DDT resistance, supporting
the results of our 24hrm GWAS.

As our transgenic analyses showed that Cyp6w1 overex-
pression can yield resistance and Cyp6wl transcripts are
more abundant in Pedra et al. (2004), we examined Cyp6w1
transcription in females from a DGRP transcriptome data set
(Huang et al. 2015). However, there was no strong correla-
tion between Cyp6w]1 transcription level and DDT mortality
or knockdown data, nor between Cyp6w]1 transcription level
and the triallelic states of Cyp6w1. Similarly, we did not find
any of the other eight detoxification or four lipid metabolism
genes that were focused on by Pedra et al. (2004) to have
strong correlations between the DGRP transcription data sets
and either DDT traits we examined (File S3).

Selective sweep tests at DDT-associated loci

To assess whether 4 hrkd- and 24 hrm-associated (P < 1 X
107>) variants from the PLINK GWAS exhibited evidence of
being the targets of selection, we used the integrated Haplo-
type Score (iHS) test (Sabeti et al. 2002; Voight et al. 2006).
We also calculated the related statistic nS;, (number of seg-
regating sites by length; Ferrer-Admetlla et al. 2014), which
defines haplotype lengths via pairwise differences and may
have higher power to detect soft selective sweeps. The only
derived variant yielding a significant iHS or nS; score was the
Glycine allele of Cyp6w1 (|iHS| = 3.82, P-value = 0.00085;
Figure 4; |nSy| = 3.04, P-value = 0.0028). The other derived
variants did not show significant departures from expecta-
tion, including the second derived allele at Cyp6w1 — the
alanine allele that confers increased DDT resistance in our
transgenic experiments.

To ascertain the power of these iHS and nS; approaches
with this data set we also examined Cyp6gI, the genomic
region around which Catania et al. (2004), Schlenke and
Begun (2004), and Garud et al. (2015) noted a reduction
in genetic diversity indicative of a selective sweep. While
there is an allelic series at this locus (Schmidt et al. 2010),
the two predominate alleles in the DGRP are Cyp6g1-AA and
Cyp6g1-BA, and the EHH for both of these alleles and for the
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Figure 3 Toxicology of transgenic lines overexpressing the three allelic
forms of Cyp6w1 (far right) and various controls. All three allelic forms of
Cypbw1 confer DDT resistance relative to controls, and Cyp6w1_ALA
confers a further significant increase in DDT resistance relative to the
other two alleles.

ancestral Cyp6g1-M allele was determined. Clearly both de-
rived Cyp6g1 alleles exhibit large extended haplotypes. Both
of these are significant compared to ancestral Cyp6gl-M
allele (Figure 4; Cyp6gl-AA: |iHS| = 2.45, P-value = 0.018;
InS;| = 2.61, P-value = 0.011; Gyp6gl-BA: |iHS| = 1.96,
P-value = 0.027; |nS.| = 2.47, P-value = 0.012).

Further evidence that insecticide resistance alleles may be
adaptive comes from elevated levels of population differen-
tiation (Taylor et al. 1995). We examined Cyp6w]I allele
frequencies in African, European, Australian, and North
American populations (Pool et al. 2012; Martins et al.
2014; Reinhardt et al. 2014; Bergman and Haddrill 2015;
Table 1); most populations indicate segregation of each of
the triallelic states, except for Portugal, which does not ex-
hibit Ala370. The frequency of the variants, however, shows
marked population differentiation, perhaps indicating geo-
graphical variation in selection intensity by DDT or other
insecticides.

Discussion

The DGRP is a powerful resource for identifying natural
variation contributing to a range of phenotypes (Mackay
and Huang 2017). However, it is of particular interest to
the study of insecticide resistance due to the important role
insecticides have apparently played in the evolutionary his-
tory of this population; two of the strongest peaks of selection
in the DGRP, genome wide, are Ace and Cyp6g1 (Garud et al.
2015).

Ace is the molecular target of organophosphate and car-
bamate insecticides, and within the DGRP segregate three of
the four substitutions in Ace known to confer resistance to
these insecticide classes in D. melanogaster (Menozzi et al.
2004; Battlay et al. 2016). Cyp6g1 has likewise been demon-
strated to provide resistance to insecticides, including the
neonicotinoids imidacloprid and nitenpyram (Daborn et al.
2001, 2007; Joufden et al. 2008) and the organophosphate
azinphos-methyl (Battlay et al. 2016). There is also evidence
that Cyp6gl may contribute to resistance in other organo-
phosphates including malathion, parathion, and diazinon
(Kikkawa 1961; Pyke et al. 2004). But the best studied of
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Figure 4 Extended Haplotype Homozygosity (EHH) plots: (A) around the Cyp6w1 locus using the triallelic second site of codon 370 as the focal variant
and (B) around the Cyp6g1 locus using transposable element insertion sites as the focal variant.

Cyp6g1’s insecticide substrates remains DDT (Daborn et al.
2002, 2007; Joulden et al. 2008; Schmidt et al. 2010); derived
alleles of Cyp6g1 have previously been shown to contribute sig-
nificantly to DDT resistance, with the Cyp6gI-BP allele explain-
ing ~16% of the total variance in DDT resistance in a field
population from Queensland, Australia (Schmidt et al. 2010).

While DDT is not used in much of the world today, DDT
resistance is a trait of interest for two important reasons: first,
it may help to explain the strong and recent sweeps at the
Cyp6g1 locus (Schmidt et al. 2010; Kolaczkowski et al. 2011;
Garud et al. 2015), and second it was the subject of the classic
work by Crow (1956), Sokal and Hunter (1954), and others
on microevolution. We performed GWAS of two DDT resis-
tance phenotypes in the hope of dissecting the quantitative
nature of a selective response to DDT exposure.

Cyp6g1 was not identified in the GWAS

The association of Cyp6g1 allelic variation with either the
4 hrkd or 24 hrm DDT phenotypes is not significant, even
at the genome-wide significance threshold. This is partly

Table 1 Population frequencies of Cyp6w1 codon 370 trialleles

attributable to the Cyp6g1 sweep itself; resistant Cyp6g1-AA
and Cyp6g1-BA alleles are present in all but nine DGRP lines
(all nine were phenotyped in this study), while the Cyp6g1-
BP allele, which confers the most drastic increase in DDT
resistance (Schmidt et al. 2010), is absent from the popula-
tion. Although much of the power to detect the effect of
Cyp6g1 resistance is gone from the DGRP, Battlay et al.
(2016) have previously shown that a haplotype in LD with
the ancestral Cyp6gI1-M allele was strongly associated with
susceptibility to a low dose of the organophosphate insecti-
cide azinphos-methyl in DGRP larvae. One reason Cyp6g]
was associated with the azinphos-methyl phenotype and
not our DDT phenotypes could be the relative contributions
of Cyp6g1 overexpression to these traits: Daborn et al. (2007)
demonstrated a threefold increase in adult DDT LDs, when
Cypbgl was overexpressed using the GAL4-UAS system,
while Battlay et al. (2016) observed a 6.5-fold increase in
larval azinphos-methyl LDsq in the same crosses. It is also
possible that the dose of the DDT used in this study did not
maximize the chances of recovering the Cyp6gl variation

Allele Frequency

Continent Population Data Source Sample Size VAL ALA GLY
Africa Combined Pool et al. (2012) 139 0.9 0.07 0.3
Australia Queensland Reinhardt et al. (2014) 17 0.53 0.03 0.46
Tasmania Reinhardt et al. (2014) 15 1 0 0
Europe France — A Bergman and Haddrill 2015 50 0.78 0.02 0.2
France - B Pool et al. (2012) 8 0.5 0 0.5
Portugal Martins et al. (2014) 12 0.95 0 0.05
North America Maine Reinhardt et al. (2014) 16 0.69 0.25 0.06
North Carolina Mackay et al. (2012) 162 0.54 0.32 0.14
Florida Reinhardt et al. (2014) 16 0.63 0.31 0.06
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present in the DGRP. Steele et al. (2014) also reported an
absence of Cyp6gl signal in their comparison of 91-R and
91-C genome sequences. This is due, however, to Steele
et al. (2014) limiting their study to analysis of open reading
frames. We revisited genome sequence alignments generated
by Steele et al. (2014) and found that evidence of the Accord
LTR insertion into the 5" UTR of Cyp6g1 (Daborn et al. 2002)
as well as copy number variation in both Cyp6g1 and Cyp6g2
(Schmidt et al. 2010), both identifiers of Cyp6g1 resistance
alleles, are present in 91-R but not 91-C.

The two detoxification enzymes implicated in DDT mortal-
ity, Cyp6g1 and Cyp6w1, could interact in parallel or in series.
Epistatic interactions between alleles at the two loci were ex-
amined but, unfortunately, we did not have the power to test
for such interaction in the DGRP because there is only one
DGRP line (Ral-486) that is homozygous for the susceptible
Cyp6g1-M allele and homozygous for the resistant Cyp6w1-Ala
allele. We have, however, assessed pairwise epistatic interac-
tions of the GWAS nominally associated variants listed in the
combined mortality and knockdown lists, and none were sig-
nificantly extreme to pass the Bonferroni correction threshold
(~0.000015) for either the knockdown (lowest value: 0.0002)
or the mortality (lowest value: 0.0015) traits.

Variation at CG10737 contributes to 4-hrkd but
not 24- hrm

The GWAS presented here demonstrate that the two DDT-
associated traits under examination have distinct genetic
architecture, and for each trait we have generated transgenic
evidence to support the involvement of a top candidate in DDT
phenotype variation. CG10737 has previously been impli-
cated as a DDT resistance candidate, being one of 158 genes
shown to be significantly differentially regulated between
DDT-resistant 91-R and a standard susceptible laboratory
stock (Canton-S; Pedra et al. 2004). Moreover, inspection of
the 91-R and 91-C genome sequences generated by Steele
et al. (2014) shows that both CG10737 GWAS SNPs, associ-
ated with increased knockdown susceptibility, are present in
91-C but absent in 91-R. Using a completely independent
approach we have found that these noncoding variants in
CG10737, present in ~10% of the DGRP, are strongly asso-
ciated with 4 hrkd. Our RNAi knockdown of CG10737
increased DDT resistance, consistent with Pedra et al.’s
(2004) observation that the CG10737 transcript was less
abundant in the resistant 91-R line. We note that the signif-
icantly associated GWAS variants also lie in a region that
modENCODE found to bind the Trithorax-like (Trl) GAGA
factor, suggesting an untested mechanism linking the natu-
rally occurring polymorphisms to transcriptional abundance.

An important insight gained through these experiments is
that they demonstrate a role of CG10737 in the muscles of
flies, and a relationship between DDT and muscle biology.
CG10737 knockdown in the muscles resulted in a two- to
fourfold increase in resistance, demonstrating that DDT per-
turbation can be ameliorated by genetic manipulation limited
to the muscles.

The molecular function of CG10737 has not been well
characterized. It is a gene with 14 coding exons and produces
at least 12 alternatively spliced mRNA isoforms. It putatively
encodes a transmembrane protein with C1 and C2 calcium/
lipid-binding domains and it has been annotated as “protein
kinase c-like” although it lacks a catalytic domain. C1 do-
mains have cysteine motifs that form zinc fingers and typi-
cally bind diacylglycerol (Coldn-Gonzalez and Kazanietz
2006), while C2 domains typically bind calcium ions and
are associated with protein—protein and protein-membrane
interactions (Ochoa et al. 2001). Given the important role
that calcium plays in synapse and muscle signaling, perhaps
a decrease in the expression level of CG10737 makes flies less
sensitive to Ca?* ion signaling. It thereby may reduce the
expression of the DDT-knockdown phenotype by mediat-
ing the effect of overstimulation of muscle cells caused by
the uncontrolled firing of nerves due to DDT’s effect on the
voltage-gated sodium channel, Para, rather than influencing
nerve functionality directly.

While CG10737 is associated with DDT-knockdown in the
GWAS, it was not significantly associated with 24hrm GWAS.
Furthermore, a reexamination of the DDT-knockdown phe-
notype for DGRP lines over the initial time course of the
experiment found that variants in this gene were only
strongly associated with knockdown over a narrow time win-
dow (3-5 hr), suggesting that the gene’s role in knockdown
resistance is transient. Additionally, in the RNAi experiments,
the dose that effectively interrogated the temporally defined
knockdown was so high that the flies did not live long enough
to accurately score 24-hrm. This is attributable to genetic
background differences between the lines going into the
RNAIi crosses and the DGRP lines. These issues highlight
the differences in genetic architecture of subtly different
DDT-related traits. While the knockdown trait may give us
insight into the effect of perturbations of DDT on insect phys-
iology, and the function of previously uncharacterized genes,
one has to ask how relevant this variation is to the field
exposure to DDT. We were unable to detect any signa-
ture of selection around variants in this gene, or indeed any
high-frequency derived knockdown-associated variants, that
would indicate microevolutionary change in the recent his-
tory of the Raleigh population of D. melanogaster — the source
of the DGRP. However, this may reflect an issue of power to
detect subtle changes in frequency of preexisting variants
rather than an irrelevance of the phenotype to survivorship
in the field. We also note that in early DDT selection exper-
iments in D. melanogaster by Sokal and Hunter (1954), pu-
pation height was correlated with DDT resistance and that
Riedl et al. (2007) mapped a pupal height QTL to a narrow
region encompassing CG10737.

Triallelic variation at Cyp6w1 separates DDT-resistant
allele from a selective sweep signal

Like CG10737, Cyp6w]1 was previously identified as a DDT
resistance candidate by Pedra et al. (2004), who found it had
high transcriptional abundance in 91-R relative to the susceptible
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Table 2 GWAS resistance variants enriched in 91-R but not 91-C

Phenotype Pipeline Location [V6] P-value Gene Site class 91-C 91-R
24 hrm PLINK 2R:6,174,944 1.72E-09 Cypbw1 Nonsynonymous T @
4 hrkd DGRP2, PLINK 2R:19,169,429 4.28E—07, 7.58E—-07 CG10737 Intron T G
4 hrkd DGRP2 21:14,188,350 1.64E—-06 Smi35A Intron G G/C
4 hrkd PLINK 3L:4,059,748 1.75E-06 — Intergenic T C
4 hrkd PLINK 2L:5,600,056 1.97E-06 — Intergenic C A/C
4 hrkd PLINK 3L:12,404,415 3.00E—-06 CG32103 Synonymous C (@)
4 hrkd DGRP2 3R:30,968,896 3.70E—-06 — Intergenic A ATA
4 hrkd DGRP2, PLINK 2R:19,169,399 5.45E—-06; 7.62E—06 CG10737 Intron T C
24 hrm PLINK 2L:10,546,377 5.68E—06 Trim9 Intron A A/G
4 hrkd DGRP2 3L:7,102,962 6.79E-06 form3 Intron C /T
4 hrkd PLINK 3L:6,935,976 7.88E—06 — Intergenic A A/G
24 hrm PLINK 3L:15,854,279 8.76E—06 pHCI Intron G A
4 hrkd DGRP2 2L:8,232,517 9.49E-06 Pvr Intron C/A @
4 hrkd DGRP2 21.:4,086,206 9.57E-06 ed Intron T G
4 hrkd DGRP2 2L:19,231,491 1.66E—05 — Intergenic A G
4 hrkd DGRP2, PLINK 3L:7,495,781 2.02E-05; 7.38E—-06 Cyp4d8 Intron G T
4 hrkd DGRP2 3R:25,716,964 2.15E-05 LpR2 Intron A C

Canton-S. Again, inspection of the Steele et al. (2014) ge-
nomes revealed that 91-R also carries the DDT resistance-
associated Cyp6wl_ ALA allele, whereas 91-C carries the
Cyp6w] GLY allele. While our transgenic manipulation of
this gene shows that increased expression of three different
alleles of Cyp6w1 can indeed lead to increased resistance to
DDT, it is amino acid variants that appear to explain the
difference in resistance between DGRP lines. The associated
variant is a rare triallelic site where each state encodes a
different amino acid (Valine GTG, Alanine GCG, or Glycine
GGG). No sites are in LD with it that are also significantly
associated with 24hrm, and the sharp and immediate de-
crease in EHH for both the Val370 and Ala370 variants
makes it highly unlikely that this variant is a proxy for an
undetected, linked regulatory change polymorphism.
Amino acid site 370 of Cyp6w1 is predicted to occur in Sub-
strate Recognition Domain SRS5 (Gotoh 1992; Zawaira
et al. 2011), of an enzyme in a gene family frequently asso-
ciated with insecticide resistance. It is therefore completely
credible that it acts to metabolize DDT, perhaps in a similar
way to its paralog Cyp6gl (JouBen et al. 2008; Hoi et al.
2014).

Inspection of CYP6W1 site 370 in related species suggests
that Val370 is the ancestral state of this site; the Ala370 and
Gly370 substitutions are therefore both derived. The Ala370
variant is strongly associated (P = 5 X 10~19) with reduced
24hrm in our GWAS, and this is supported by our transgenic
work, which found overexpression of Cyp6w1_ALA increased
DDT resistance relative to Cyp6wl VAL and Cyp6wl GLY.
Calculation of iHS and nS; did identify a significant signal
of selection at Cyp6w1 ALA, but it was associated with the
other derived allele, Gly370. This allele is not significantly
associated with 24-hrm in our GWAS, and transgenic over-
expression of Cyp6wl GLY does confer resistance to DDT
relative to Cyp6w1_VAL. There is no evidence, therefore, that
DDT is responsible for the selective footprint identified at
Cyp6w1, and we propose that the Gly370 mutation increases
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fitness under a different selective pressure, possibly by in-
creasing the affinity of Cyp6wI to another insecticide. The
extreme population differentiation observed (Table 1) is also
consistent with multiple selective agents acting on this site.

GWAS-associated variants in 91-R and 91-C

Interestingly, resistance-associated variants in CG10737 and
Cyp6w]1 from our GWAS were present in 91-R but not 91-C.
To see if any of our other DGRP resistance candidates were
differentiated between 91-R and 91-C, we manually searched
the genome sequences of these lines generated by Steele et al.
(2014) for each of our GWAS candidates (P < 1 X 10~5; File
S2). Fifty distinct GWAS candidate variants varied between
91-R and 91-C. Of these, 17 (including the two SNPs in
CG10737 and the Cyp6w] triallele) varied in the expected
direction, with the “resistant” allele in 91-R and the “suscep-
tible” allele in 91-C (Table 2). Thus, these variants may have
been segregating in the population used to found 91-R and
91-C and potentially contributed to the strong selection re-
sponse observed in 91-R.

Other DDT resistance genes

Three substitutions in Cyp6a2 increasing its DDT metabolism
capacity have been described in RalDDTR (Amichot et al.
2004), a laboratory strain selected for DDT resistance over
50 generations (Cuany et al. 1990). The first two substitu-
tions (R335S and L336V) are absent from the DGRP, as well
as population samples from Africa Drosophila Population Ge-
nomics Project; (DPGP; Pool et al. 2012), France and Portu-
gal in Europe, Florida and Maine in the USA, and Queensland
and Tasmania in Australia (Pool et al. 2012; Martins et al. 2014;
Reinhardt et al. 2014; Bergman and Haddrill 2015). The third
substitution, V476L, is found in around a quarter of DGRP and
DPGP sequences (24.1% of DGRP, 26.5% of screened DGRP,
32.2% of DPGP), but this variant does not affect DDT metab-
olism by itself (Amichot et al. 2004), and was not associ-
ated with either 4 hrkd or 24 hrm at P < 1 X 107°.
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Similarly, the resistance-linked Cyp6a2 promoter variant de-
scribed by Wan et al. (2014) is present in the DGRP (68.8% of
DGRP, 68.6% of screened DGRP), but was not associated
with either of our phenotypes at P < 1 X 107°.

Another P450, Cyp12d1, is overexpressed in the DDT-
resistant Wisc-1 strain relative to Canton-S (Pedra et al.
2004) and has been shown to increase DDT resistance when
overexpressed transgenically (Daborn et al. 2007), as well as
reducing resistance when knocked down with RNAi (Gellatly
etal. 2015). We did not find associations with Cyp12d1 in any
of our four GWAS, nor did we find strong correlations be-
tween our phenotypes and Cyp12d1 copy number variation
or transcription level (File S3). Steele et al. (2014) likewise
found no differentiation in Cyp12d1 coding regions between
91-R and 91-C, and our inspection of these genomes found no
differentiation in copy number between the two strains.

Cyp12d1 has been shown to be inducible by DDT (Brandt
et al. 2002; Festucci-Buselli et al. 2005; Willoughby et al.
2006), as well as other xenobiotics (Willoughby et al. 2006;
Misra et al. 2011). Our results do not rule out the involve-
ment of this gene in DDT resistance in the DGRP, but show
that genomic variation at Cyp12d1 and its transcription level
without induction do not correlate with the DDT resistance
phenotypes measured in this study (File S5).

In the case of para, neither the kdr nor super-kdr resistance
mutations are present in the DGRP, nor any of the analogous
sites conferring resistance in mutagenized lines characterized
by Pittendrigh et al. (1997) or Lindsay et al. (2008).

Conclusions

There are three main lines of evidence used in the literature to
associate genes with DDT resistance in D. melanogaster: dif-
ferentiation between resistant and susceptible laboratory
strains, association of natural alleles with resistance in out-
bred populations, and transgenic manipulation in a con-
trolled genetic background. Until now, only Cyp6g1 has
bridged the divides between these approaches. With this
study, Cyp6w1 and CG10737 can be added to this list. These
results alone support a polygenic model and are reinforced by
the possibility that other genes from our GWAS, or other
studies, also contribute to DDT resistance but have yet to
be verified. We have focused on two specific DDT-related
traits; 4hrkd and 24hrm, both in adult females with a single
dose of DDT, and they give only partially correlated results.
Which of these has greater relevance in the field, however, is
not clear. Furthermore, there are many alternate parameter
values and indeed parameters (e.g., temperature; Fournier-
Level et al. 2016) that may make laboratory-based DDT as-
says more accurately reflect the variation most relevant to
field survivorship. Perhaps one of the most compelling diag-
nostics for a relevant assay would be if the loci uncovered
showed the molecular signs of selection. Previous studies
have revealed that the major DDT resistance locus of some
populations, Cyp6gl, shows the hallmarks of a selective
sweep. We did not, however, observe signs of selection
around our DGRP GWAS candidates. While we did detect

signs of a sweep at Cyp6w1, it was associated with a second
derived variant, not with the variant associated with DDT
resistance. Given that Cyp6gl is also capable of providing
resistance to other insecticides, the failure to find sweeps at
DDT-specific resistance loci strengthens the possibility that
other insecticides have contributed to driving the Cyp6gl
selective sweeps in field populations of D. melanogaster. Fi-
nally; it is also a possibility that statistics such as iHS and nS;,
are insensitive to the slight changes in allele frequency that
might occur if a trait is largely polygenic.
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