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Abstract
How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use
searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different
levels of the hierarchically organized temporo-frontal pathways for speech perception.We asked participants to listen to spoken
syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using
noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We
found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in
somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primaryauditory cortex
showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity
and the surface acoustic form of speech. Regions of somatomotor cortex associatedwith encoding syllable identity in perception
were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical
account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds.
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Introduction
How do listeners perceive highly variable speech signals? No two
naturally produced syllables are exactly alike since their precise
acoustic realization varies both within and between speakers.
Despite this variability, listeners are typically able to understand
speech rapidly and accurately evenwhen it has been significantly
degraded (Remez et al. 1981; Shannon et al. 1995; Dupoux and
Green 1997; Brungart 2001). These observations suggest that no
single acoustic cue is necessary for correct perception of speech
sounds. Historically, the absence of reliable acoustic cues to
speech sound identification led researchers to suggest that
speech is understood by reference to the intendedmotor gestures
of the speaker (Studdert-Kennedy et al. 1970; Liberman and

Whalen 2000). Recent demonstrations thatmotor cortex responds
to clear and degraded speech (Wilson et al. 2004; Pulvermüller
et al. 2006; Hervais-Adelman et al. 2012) and that transcranial
magnetic stimulation (TMS) of motor regions disrupts speech
perception (Meister et al. 2007; Möttönen and Watkins 2009) are
consistent with a functional role of motor cortex in perception.
Yet, the nature of motor contributions to speech perception re-
mains controversial (Lotto et al. 2009; Scott et al. 2009), and the
neural mechanisms by which motor representations are ac-
cessed from speech remain underspecified.

Here, we examine the representational content of neural re-
sponses to speech in auditory and motor cortex. We test the
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proposal that motor regions sit at the peak of the hierarchically
organized temporo-frontal processing pathways that respond to
speech. We show that motor regions represent speech in a way
that is more fully abstracted from the surface acoustic form
than representations in auditory regions.We situate these obser-
vations in the context of two long-standing debates in the cortical
organization of speech processing: 1) the role of motor represen-
tations in speech perception and 2) the hierarchical organization
of auditory and speech pathways.

Motor Representations of Heard Speech

Functional magnetic resonance imaging (fMRI) and TMS studies
are consistent with a role for motor cortex in the perception of
clear and degraded speech (Wilson et al. 2004; Pulvermüller
et al. 2006; Meister et al. 2007; D’Ausilio et al. 2009; Möttönen
and Watkins 2009). However, these findings are controversial
for methodological reasons (e.g., the lack of subtractions from
non-speech baselines [Scott et al. (2009)]) and arguments that ac-
tivity only arises fromworking memory and other task demands
that are not specific to speech (Lotto et al. 2009; McGettigan et al.
2010). Indeed similar findings are not always obtained in more
natural speech comprehension tasks (Krieger-Redwood et al.
2013) or when the response to speech is comparedwith acoustic-
ally complex non-speech baselines (Scott et al. 2000, 2006). Thus,
it is still argued that motor cortex activity is not necessary for
everyday speech perception (Hickok et al. 2011).

However, there is fMRI evidence for motor cortex recruitment
during comprehension of degraded speech, when compared with
clear speech, even when simple auditory detection tasks are
used (Osnes et al. 2011; Hervais-Adelman et al. 2012). These find-
ings argue against the proposal that motor responses are only ob-
served during tasks that require maintenance of speech sounds in
working memory or categorical judgments of segment identity.
However, the nature of the representations that are activated in
motor regions remains unclear, and overlapwith regions activated
during speech production has not been unambiguously shown.
Activation in more inferior regions of frontal cortex has also been
shown in response tobothsinewave (SW) (Dehaene et al. 2005) and
noise-vocoded speech (Eisner et al. 2010) andhas often been attrib-
uted to working memory, control, and decision processes (Binder
et al. 2004;Myers et al. 2009; Eisner et al. 2010). It is possible that ex-
isting demonstrations ofmotor activity can be explained as arising
from similar processes.While functional imaging data cannot pro-
vide causal evidence that motor activity is necessary for speech
perception, the spatial resolutionof fMRI combinedwithmultivari-
ate analysismethods allowsus toassess thenature of the informa-
tion that is encoded within neural regions. Here, we use these
methods to assesswhethermotor regions activated during speech
production represent the identity of clear and degraded syllables
during a simple repetition detection task.

Hierarchical Organization of Auditory and
Speech Pathways

Existing studies provide evidence for a graded hierarchy of re-
sponses to sounds in superior and lateral regions of the temporal
lobe. Hierarchical organization of auditory fields in primates is
well established in anatomical and electrophysiological studies
(Rauschecker 1998; Kaas and Hackett 2000). Similar hierarchical
organization has been suggested in the context of human func-
tional imaging. Primary auditory cortex (PAC) responds to pure
tones, whereas surrounding auditory regions in lateral Heschl’s

gyrus and planum temporale respond to more complex band-
passed noises (Binder et al. 2000; Wessinger et al. 2001).

Within this hierarchy, speech-specific responses to isolated
syllables are only observed in later stages of processing, primarily
in the superior temporal sulcus (Liebenthal et al. 2005; Uppenkamp
et al. 2006; Heinrich et al. 2008).While some of these findingsmight
reflect acoustic differences between speech and non-speech stim-
uli, studies with SW speech have demonstrated that acoustically
identical stimuli evoke additional responses in the posterior STS
when they are perceived as speech (Dehaene et al. 2005; Möttönen
et al. 2006; Desai et al. 2008). Similar regions of posterior STS (and
adjacent inferior parietal cortex) are activated for categorical per-
ception of syllables, for example, showing an additional response
to sequences that include categorical changes, compared with
repetition or within-category changes (Jacquemot et al. 2003;
Zevin and McCandliss 2004; Joanisse et al. 2007; Raizada and
Poldrack 2007). However, studies with non-speech analogs have
also demonstrated additional activity in these regions when lis-
teners are trained to perceive non-speech sounds categorically
(Leech et al. 2009). Thus, it might be that posterior STS regions
are activated for any kind of categorically perceived sound rather
than representing speech content per se.

Multivariate pattern analysis (MVPA) methods have a unique
role to play in establishing the nature of the neural representa-
tions in auditory and lateral temporal regions (Haynes and Rees
2006; Kriegeskorte et al. 2008; Mur et al. 2009). MVPA analysis of
fMRI responses to speech has shown that neural responses in
both anterior and posterior STS can distinguish intelligible and
unintelligible sentences irrespective of their acoustic form
(Okada et al. 2010; Evans, Kyong et al. 2014). This profile suggests
a functional distinction between anterior and posterior temporal
cortex and regions closer to PAC which distinguish stimuli that
differ in their surface acoustic structure better than they distin-
guish stimuli which differ in intelligibility (Okada et al. 2010).
However, these studies examined responses to sentence length
materials that were either intelligible or unintelligible. Hence, dif-
ferential responses may be associated with lexical and syntactic
processing of speech as well as lower level perceptual processes.

In order to focus on purely perceptual processes, studies of
speech processing using MVPA have assessed the categorical
content of isolated syllables rather than sentences (Formisano
et al. 2008; Kilian-Hutten et al. 2011). One keymethod for demon-
strating abstract, non-acoustic representations of speech is to
show that decoding of multivariate patterns generalizes across
different acoustic tokens (e.g., from one speaker to another).
These studies have typically shown abstract encoding of syllable
identity in peri-auditory areas of the superior temporal gyrus
(STG) (Formisano et al. 2008; Chang et al. 2010; Kilian-Hutten
et al. 2011). These findings might suggest that abstract represen-
tations of speech sounds can also be found in early auditory re-
gions, thereby challenging hierarchical accounts. However,
since these studies did not examine responses outside the tem-
poral lobe or compare encoding of acoustic vs. abstract speech
representations, the results do not speak to hierarchical organ-
ization of speech perception networks in lateral temporal re-
gions. Recent MVPA studies have shown that neural responses
in inferior frontal and motor regions discriminate ambiguous
(Lee et al. 2012) or noisy syllables (Du et al. 2014). However, in
these studies, the degree of abstraction demonstrated remains
unclear.

Here, we used whole-brain searchlight representational simi-
larity analysis (RSA) (Kriegeskorte et al. 2006, 2008) to assess
neural coding of isolated syllables. Participants heard 1 of 6 sylla-
bles, spoken by 2 speakers and presented in 3 different acoustic
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forms. Using these methods, we can assess whether neural re-
presentations in auditory, lateral temporal, and motor regions
code for the surface acoustic form or underlying identity of iso-
lated syllables. In this way, we can test for acoustic sensitivity
at different levels of the speech processing hierarchy, with the
goal of localizing the stages by which variable acoustic signals
are transformed into more abstract representations of syllable
identity. Furthermore, by assessing similarity between pairs of
non-identical syllables that share phonetic features, phonemic
units or syllabic structure, we can also assess the nature of syl-
lable representations at different processing stages.

Method
Participants

Eighteen right-handed native speakers of British English aged
between 18 and 40 (mean age: 27, 6males) were scanned. All par-
ticipants reported beingwithout any hearing or language impair-
ment and gave informed consent to take part in the study that
was approved by the Cambridge Psychology Research Ethics
Committee. Participants were paid a nominal fee to participate.
One participants’ fMRI data were shown to contain a “ghosting”
artifact and was removed from analysis. The final data set
included 17 participants.

Stimuli

Six speech tokens: /ba/, /da/, /ma/, /na/, /ab/, /ad/, were recorded
using 16-bit quantization and a 44.1-kHz sampling rate, in a
sound-isolated booth by amale and a female speaker of southern
British English. The syllables were of a similar duration (mean =
550 ms, min = 485 ms, max = 612 ms). They were produced in iso-
lation, for example, not in the context of a longer spoken utter-
ance, explaining their relatively long duration. The natural
speech tokens were further processed to generate 3 conditions:
clear (CL), 3 formant SW, and noise-vocoded (NV) speech. This
generated 36 unique stimuli: 3 acoustic forms (CL, SW, NV) × 2
speakers (male/female) × 6 syllable identities (/ba/, /da/, /ma/,
/na/, /ab/, /ad/). Both consonant vowel (CV) and VC contexts
were included to increase acoustic variability.

Noise vocodingwas conducted using the technique described
by Shannon et al. (1995) using custom scripts written in Matlab.
The syllables were filtered into 16 logarithmically spaced fre-
quency bands from 94 to 4525 Hz (Greenwood 1990) with each
pass band 3 dB down with a 16 dB/octave roll off. In each band,
amplitude envelopes were extracted using half wave rectifica-
tion, and pitch synchronous oscillations above 30 Hz were re-
moved with a second-order Butterworth filter. The resulting
envelopes were multiplied with a broadband noise, band-pass-
filtered in the same frequency ranges as the source, and
recombined.

Three-formant SW speech (Remez et al. 1981) was created
using linear predictive coding (LPC) to estimate the frequency
and amplitude of SWs tracking the formants of speech. This
was achieved using Matlab scripts written by Dan Ellis, available
at: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/, last
accessed June 15, 2015. Previous work has shown that hand cor-
rection of formant tracks significantly improves the intelligibility
of SW speech (Remez et al. 2011). Hence, the original frequency-
amplitude estimates derived from the LPC analysis and smoothed
estimates, in which high-frequency noise had been removed,
were overlaid on a spectrogram to guide hand correction. Form-
ant frequency and amplitude estimates were hand-corrected

using custom Matlab scripts that allowed values to be edited
using an interactive display. The stimuli were then resynthe-
sized. Note that SW resynthesis removes pitch cues that would
aid speaker identification and voice-based gender judgments; it
does however preserve other aspects of speaker information
such as formant dispersion (e.g., the average spacing between
formants).

Clear speech tokens were low-pass-filtered at 6 kHz to mimic
the band limit applied by the noise-vocoding routine and to
equate the distribution of spectral energy with the SW speech,
which lacked spectral energy of >6 kHz. All stimuli were then
root-mean-square-equalized to equate their intensity. Please
refer to Figure 1A to see example spectrograms of the stimuli.

PreScanning Training

Each participant was trained to understand the NV and SW
speech in the week prior to the fMRI scanning session. The aim
of this training was to make the degraded speech conditions as
intelligible as possible prior to scanning (at least 85% correct re-
port for both conditions). The training session varied in duration
depending on the performance of each participant, for most par-
ticipants, it lasted between 60 and 90 min. Two participants re-
quired further training to reach high levels of accuracy and
were therefore asked to return on a different day for a further
training session lasting an additional 30 min.

Training was conducted separately for NV and SW speech.
The order inwhich these conditionswere trainedwas counterba-
lanced across participants. Trainingwas presented in blocks last-
ing ∼3 min. In the first block of each degradation type, the
participant heard each degraded syllable from each speaker
once (12 trials in total), then in subsequent blocks, each token
was presented twice (24 trials in total) in random order. After
each stimulus was presented, participants were required to per-
form a 6-alternative forced-choice syllable identification task by
using amouse to click a button on which the identity of each syl-
lablewaswritten. Participants were allowed to hear the degraded
speech token again if they wished before making their response.
After every response, the participants received visual feedback
and heard the syllable in its clear and then its degraded form
(a procedure previously shown to enhance learning of degraded
speech [Davis et al. 2005]). After each block, participants were
given feedback on their overall accuracy in the preceding trials
and shown the syllable confusions that they had made. They
were then presented with both the clear and degraded versions
of the syllables they had confused andwere given an opportunity
to replay any other additional sounds they wished. This process
continued until each participant scored >90% (22 of 24 trials cor-
rect) on 3 consecutive blocks or until 45 min of training had
elapsed (in the instance that the previous condition had not
beenmet). They were then tested with 10 repetitions of each syl-
lable (120 trials in total), without corrective feedback, to obtain a
final measure of their performance after training. If their accur-
acy for either degradation typewas shown to be <85% (<21/24 cor-
rect), the participant was asked to return for an additional
training session.

Scanning

On the dayof scanning, each participantwas re-familiarizedwith
the SW and NV syllables using the same training procedure de-
scribed in the section above. The fMRI scanning session com-
prised a speech production task (10 min), a speech perception
task (4 scanning runs totaling 60 min), and a structural scan
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(5 min), presented in that order. Prior to scanning, participants
were briefed on the tasks that they were required to perform in
the scanner and completed practice trials. After the end of the
scanning session, each participant’s perception of the degraded
syllables was tested again using the testing procedure described
previously (except for one participant who was unable to com-
plete testing due to time constraints).

MRI data were acquired on a 3-Tesla Siemens Tim Trio scan-
ner using a 32-channel head coil. A T1-weighted structural scan
was acquired for each subject using a three-dimensionalMPRAGE
sequence (TR: 2250 ms, TE: 2.99 ms, flip angle: 98°, field of view:
256 × 240 × 160 mm,matrix size: 256 × 240 × 160 mm, spatial reso-
lution, 1 × 1 × 1 mm).

Speech Production Task

For each participant, 281 echo planar imaging (EPI) volumes com-
prising thirty-two 3-mm-thick slices were acquired using a con-
tinuous, descending acquisition sequence (TR = 2000 ms,
TA = 2000 ms, TE = 30 ms, FA = 78°, matrix size: 64 × 64, in-plane
resolution: 3 × 3 mm, interslice gap = 25%). We used transverse-
oblique acquisition, with slices angled away from the eyeballs
to avoid ghosting artifacts from eye movements. The FOV was
chosen to include as much of the frontal and temporal cortex
as possible, at the expense of superior parietal cortex. All experi-
mental tasks within the scanner were presented using E-Prime.
Participants were asked to read aloud (“Loud”) or covertly

(“Self”) in blocks of trials lasting 18 s in which all 6 syllables
were produced twice in a random order. These 2 conditions alter-
nated with a short period of silent rest. The scanning run con-
tained 10 repetitions of each active block and 20 rest blocks. In
these “active” trials, the instruction, “Loud” or “Self”, above a cen-
tral fixation crosswas presented on a screen for 0.5 s. The fixation
cross was then replaced by a written syllable that was presented
for a further 1 s. Each syllablewas repeated twice in a randomized
order in each block. The rest blocks lasted for 9 s, during which
time the participants saw the word “Rest” with a fixation cross
below it. Participants spoke into a microphone attached to the
head coil. The audio of each session was monitored to ensure
that participants engaged appropriately in the task.

Speech Perception Task

For each participant, 1464 EPI volumes, each comprising 26 × 3
mm-thick slices, were acquired with a fast sparse protocol such
that speech stimuli could be presented in the 800-ms silent gap
between volume acquisitions (TR = 2500 ms, TA= 1700 ms, TE = 30
ms, FA = 78°, matrix size: 64 × 64, in-plane resolution: 3 × 3 mm,
slice gap = 25%). The FOV used in the speech production task was
copied over to the speechperception task, but centered on themid-
dle slice such that whole-brain coverage was achieved except for
themost superior portion of the parietal lobe and anterior, inferior
portions of the temporal lobe. On each trial, a single syllable was
played in the 800-ms silent interval between volume acquisitions

Figure 1. (A) Spectrograms of /ba/ syllables presented as clear speech (CL), NV speech (NV), and SW resynthesized (SW). (B) Behavioral data i) one-back repetition detection

accuracy during scanning and ii) proportion correct identification of degraded syllables after scanning (horizontal line shows chance level of 0.16). (C) Block structure

showing trial sequences during an example scanning run. Red =NV syllables, blue = SW syllables, green = CL syllables, grey = null trials. Dark coloring =male speaker,

light coloring = female speaker. Grey outer shading plus button icon indicates repetition trials. (D) Single-trial structure showing the timing of stimulus presentation

and MR volume acquisition. (E) Experiment structure showing odd- and even-numbered experimental blocks in each scanning run.
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(Fig. 1D). During the scanning session, participants performed a
one-back detection task to ensure attention to the speech stimuli.
Participants pressed a buttonheld in their left handwhenever they
heard 2 consecutive presentations of the same syllable in the same
acoustic form (e.g., 2 consecutive NV /ba/ syllables produced by a
male speaker). The randomization of the syllableswas constrained
so that for repetition trials, consecutive syllables spoken by differ-
ent speakers in the same acoustic form were not presented, to en-
sure that participants could respond correctly by monitoring for
either acoustic or phonemic identity. Participants’ target detection
responses were coded as hits, misses, false alarms, and correct re-
jections for signal-detection analyses.

Therewere 4 runs of the speech perception task, with each run
lasting 15 minwith short periods of rest between scanning runs. In
each run, stimuli were presented in 35-s blocks grouped by acous-
tic form (clear, NV, SW) inwhich each syllablewas presented once
by each speaker, along with 2 additional events (chosen quasi-
randomly) which constituted either a) 2 additional silent trials/
TRs, b) 1 silent trial/TR and 1 repetition trial, or c) 2 repetition trials
(see Fig. 1C). Following each block, therewas 1 silent trial/TR (2.5 s)
such that each block started 37.5 s (15 scans) after the start of the
last block. There were 8 blocks of each acoustic form (clear, NV,
SW) within a run, and hence a total of 24 blocks per run lasting a
total of 15 min (see Fig. 1E). The order of the acoustic form blocks
was randomized in triplets so that at maximum there could be no
more than 2 consecutive blocks of the same acoustic form. The
order inwhich the acoustic formswere played out was counterba-
lanced across subjects. Due to unexpected buffering delays in
audio playback in E-Prime, stimulus timings occasionally drifted
out of synchrony with scanner acquisitions, this occurred in 1 of
the 4 runs for 4 of the participants. For these participants, the
data associated with these runs were not analyzed.

Univariate Analysis

Data were analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/
spm, last accessed June 15, 2015). Preprocessing and statistical

analyses were conducted separately for the speech production
and perception tasks. For both tasks, the first 6 volumes of each
run were removed to allow for T1 equilibrium effects. Scans
were realigned to the first EPI image. The structural image was
co-registered to the mean functional image, and the parameters
from the segmentation of the structural image were used to nor-
malize the functional images that were resampled to 2 × 2 × 2
mm. The realigned normalized images were then smoothed
with aGaussian kernel of 8-mm full-width halfmaximum to con-
form to the assumptions of randomfield theoryand improve sen-
sitivity for group analyses. Data were analyzed using general
linear models as described later with a 128-s high-pass filter and
AR1 correction for auto-correlation.

For the speech production model, the visual onset of each of
the 6 syllables was modeled with a canonical hemodynamic re-
sponse function as an event-related response separately for cov-
ert and overt naming trials, in addition to 6movement regressors
of no interest and the session mean. The rest condition provided
an implicit baseline. Contrast images from the first-level model
(the average of all syllable types for covert and overt reading
trials, and the difference between covert and overt trials) were
taken forward to second-level group analyses and entered into
one-sample t-tests using the summary statistic approach.

For the speech perception model, auditory events were mod-
eled with a canonical hemodynamic response function as an
event-related response with each of the 36 unique stimulus
types modeled separately. Additional columns were added to
model hits, misses, and false alarms for the repetition detection
task. Items entered into hit and miss events were excluded from
the 36 stimulus conditions, but false alarms were specified as a
stimulus condition event and an inadvertent button press. This
ensured that the same number of events was specified for each
of the 36 stimulus conditions and removed neural activity asso-
ciated with the button press. In addition to these 39 conditions
in each run, 6 movement parameters and the means of each
run were added as regressors of no interest. Contrast images
from the first-level model were entered into one-sample t-tests

Table 1 Description of activation in MNI coordinate system

Location X Y Z Extent Z-value

Univariate effect of degradation [((NV + SW)/2) > CL]
Left inferior frontal gyrus (p. Opercularis) −54 10 20 555 3.92
Left precentral gyrus −52 8 30 3.86
Left precentral gyrus −46 2 28 3.80

Multivariate acoustic form coding
Left posterior STG −63 −33 15 392 4.94
Left mid-STG −57 −12 4 4.62
Left mid-anterior STG −54 −6 −4 4.37

Right posterior STG 54 −42 15 254 4.13
Right anterior STG 57 12 −8 3.99
Right supramarginal Gyrus 54 −36 26 3.83

Multivariate syllable identity coding
Left mid-posterior left STG −63 −24 8 303 4.59
Left mid-STG −48 −15 0 4.38
Left posterior STS −57 −39 8 4.21

Right posterior STG 69 −30 11 172 4.44
Right posterior STG 57 −27 8 4.19
Right mid-STG 63 −18 0 3.99

Left precentral gyrus −51 0 41 83 4.39
Left postcentral gyrus −60 −3 38 3.97

Note: multivariate coordinates are reported at the voxel size of acquisition (3 × 3 × 3.75 mm) and rounded to the nearest millimeter.
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for group analyses. All statistical parametric maps and statistics
reported in tables are thresholded at voxelwise level of P<0.001,
with q < 0.05 false discovery rate (FDR) correction at the cluster
level (Table 1).

Multivariate Analysis

Multivariate analyses were conducted on data following realign-
ment, but without normalization or smoothing, generating stat-
istical maps in each participants’ native space. The structural
image was co-registered to the mean of the EPI images, and the
parameters from the segmentation of the T1 image were esti-
mated in order to calculate the transformation from native to
MNI space for each participant for use in groupanalyses. Eachun-
ique stimulus condition was modeled with a separate regressor
for events occurring within odd and even blocks within each
run (36 stimulus types in even-numbered blocks, and 36 stimulus
types in odd numbered blocks, plus hits,misses, and false alarms
as before). By comparing events in even and odd blocks, we can
assess the similarity between responses to the same or different
stimulus without differences in the delay between these replica-
tions, thereby reducing the influence of physiological noise on
neural similarity measures. In all other respects, the design ma-
trices were the same as used for the univariate analysis, includ-
ing events for hits, misses, and false alarms, 6 movement
parameters, and themean for each scanning run. This generated
82 regressors per run and 328 regressors in total for the experi-
ment. T-statistic maps were generated for the contrast of each
stimulus condition (relative to un-modeled, silent periods) for
odd and even blocks, creating 72 statistical maps. As T-maps
combine the effect size weighted by error variance for a modeled
response, they provide high-classification accuracy in multivari-
ate analyses since results are not unduly influenced by large, but
highly variable response estimates (Misaki et al. 2010).

These T-statistic images were then submitted to RSA
(Kriegeskorte et al. 2008) using the RSA toolbox (Nili et al. 2014).
In RSA, the observed similarity of neural patterns associated
with different stimulus conditions is compared with a hypothet-
ical model of how those conditions are related to one another.
This allows us to test competing accounts of how information
might be represented in the brain. At a practical level, it involves
constructing a neural representational matrix in which each cell
contains a similarity value (in this case, a correlation coefficient)
reflecting the similarity between the neural pattern associated
with one condition and every other. The degree of similarity
between the neural representational matrix and amatrix expres-
sing a hypothetical model is then calculated. RSA can be con-
ducted within a region of interest (ROI) or using a searchlight
approach (Kriegeskorte et al. 2006). In an ROI analysis, the neural
representational matrix is calculated from a circumscribed ana-
tomical or functional region. In a searchlight analysis, the neural
patterns are extracted in turn from each voxel and its surround-
ing neighborhood, with this repeated across thewhole brain. The
similarity between the model and the neural data within each
searchlight is then returned to the voxel at the center of the
searchlight for further analysis.

In searchlight RSA, data were extracted from native space
T-statistic maps by masking each map with a whole-brain mask
generated during the model estimation step to restrict the ana-
lysis to voxels within the brain (mean number of voxels = 34 898).
Spherical searchlights with a radius of 8 mm (65 voxels of 3 × 3 ×
3.75, 2194 mm3) were extracted from the brain volume in search-
lights with 2 or more voxels. At each searchlight location, the
data from the 72 conditions were Pearson product-moment

correlated with every other condition to generate amatrix of cor-
relation coefficients reflecting the between-condition similarity
of neural responses. These values were then Spearman-rank cor-
related with a set of models reflecting different predictions for
the similarity structure of neural responses in different condi-
tions. Thesemodels were expressed as a set ofmatrices, with va-
lues of +1 expressing increased similarity between particular
conditions, and values of −1 expressing relative dissimilarity.
Some elements of the model matrices were excluded from con-
tributing to the correlation as they were not relevant to the hy-
pothesis being tested (N/A values in Figs 3 and 5). The
resulting correlation coefficient reflecting the correlation be-
tween predicted and observed similarity patterns was con-
verted to a z-value using a Fisher transform so as to conform
to statistical assumptions (normality) required for second-
level parametric statistical tests on the resulting images.
These Fisher transformed whole-brain maps were normalized
to MNI space using the parameters estimated from segmenta-
tion. Each Fisher transformed map was then submitted to a se-
cond-level one-sample t-test to identify voxels in which the
correlation between predicted and observed similarity values
was >0. All group statistical maps from multivariate analyses
were thresholded at an uncorrected peak level P < 0.001, with
a q of <0.05 FDR correction at the cluster level.

Additional follow-up RSA analyses were conducted within
anatomically or functionally defined ROIs. These ROIs were de-
fined in MNI space and inverse-normalized into the native
space of each participant using the parameters derived from seg-
mentation. ROIs for bilateral PAC were determined using the
cyto-architectonically defined regions TE1.0, 1.1, 1.2 (Morosan
et al. 2001; available via the SPM Anatomy toolbox). Functionally
defined ROIs were constructed either 1) using the independent
motor localizer task or 2) using regions identified by leave-
one-subject-out RSA searchlight maps to avoid statistical bias
(Esterman et al. 2010).

Results
Behavioral Responses

A repeated-measures one-way ANOVAwith 3 levels (CL, NV, and
SW) was conducted on the d′ scores for one-back detection per-
formance in the scanner. This showed that there was a signifi-
cant difference in detection accuracy as a function of stimulus
type (F2,32 = 22.484, P < 0.001, η2 = 0.584) (see Fig. 1Bi). Follow-up
repeated-measures t-tests using a SIDAK correction showed
that d′ scores were higher for monitoring repetitions of CL
(mean = 3.48) as compared with NV (mean = 2.95, P < 0.001) and
SW speech (mean = 2.82, P < 0.001), but there was no significant
difference in monitoring accuracy between the degraded condi-
tions (P = 0.619).

A paired t-test conducted on the post-scanning syllable iden-
tification scores after conversion to rationalized arcsine units
(Studebaker 1985) showed there to be a small but significant dif-
ference in the intelligibility of the 2 degradation types (t16 = 3.635,
P = 0.002), with NV (mean proportion correct = 0.95) shown to be
more intelligible than SW speech (mean = 0.88) (Fig. 1Bii).

Univariate fMRI Analysis

Speech Perception Task
Contrasting the response to hearing syllables with the response
to silent rest periods revealed bilateral activation clusters in the
STG, middle temporal gyrus (MTG), the cerebellum and the
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pre- and post-central gyrus, and left lateralized activation in the
inferior temporal gyrus, inferior parietal andmore ventral frontal
cortex (including the inferior frontal gyrus) (Fig. 2A). A cluster re-
sponding more to degraded than to clear speech [((NV + SW)/2)) -
CL] was found that extended across the left inferior frontal (pars
Opercularis) and precentral gyrus (Fig. 2C). Analysis with a se-
cond-level covariate showed that activity in a cluster within the
right inferior parietal lobule (peak centered at [40−44 46], r2 = 0.692,
P< 0.001, extent = 477 voxels) extending into the post-central gyrus
correlated with individual differences in participant accuracy on
the one-back detection task for the degraded conditions (the aver-
age d’ for NV and SW) at a whole-brain level (Fig. 2D). We also con-
ductedacorrelationanalysis onbetavalues extracted fromthepeak
of the inferior frontal and precentral gyrus cluster associated with
degraded speech perception: activity within this cluster was corre-
lated with individual differences in detection of repeated degraded
syllables (r2 = 0.527, P = 0.001).

Speech Production Task
In order to identify brain regions selectively engaged by the
somatosensory and motor processes involved in producing
speech, we contrasted the activity associated with producing
syllables out loud with producing the same syllables covertly
(overt > covert speech production). This identified widespread
activation within bilateral prefrontal regions extending to the
pre- and post-central gyri (the left hemisphere peak was
found at −50 −12 36, Z = 5.89), as well as parietal and temporal
cortex presumably associated with monitoring speech output
(cf. Guenther et al. 2006 and Hickok et al. 2011, the frontal oper-
culum, insulae, and cerebellum (Fig. 2B). Activation in these so-
matomotor regions overlapped with many of the regions that
responded during perception (the conjunction null: [speech
perception > rest] ∩ [overt > covert production]; Nichols et al.
2005); direct overlap was found in temporal and frontal cortex
(including the pre and post central gyrus) and the cerebellum.

Overlap is also observed between brain regions activated during
speech production and the precentral gyrus region activated
during perception of degraded compared with clear syllables
(as depicted in Fig. 4Ai, this consists of 90 2-mm isotropic voxels
with a center of mass at [-46 0 32]).

Multivariate fMRI Analysis

Syllable Identity and Acoustic Form Representations
TwoRSAmodelswere initially examined. The firstmodel (Acous-
tic Form) tested for responses in which similarity was driven by
the surface acoustic form of the syllables (Fig. 3, left). Hence,
this model tests for regions in which similarity was increased
for syllables of the same acoustic form (CL to CL, or NV-NV,
SW-SW, red elements indicating greater predicted similarity)
and decreased for syllables of a different form (CL to NV, CL-
SW, SW-NV, blue elements indicating reduced predicted similar-
ity). In this model, we removed the possibility that similarity
could be driven by responses to the underlying identity of the syl-
lable by excluding identical underlying syllables from each of the
comparisons (green elements). Using a whole-brain searchlight
analysis, we identified several clusters of spotlight locations in
which pattern similarity was sensitive to acoustic form inde-
pendent of syllable identity (Fig. 3, red rendering). Clusters were
located in the left and right STG, extending into PAC and the
supramarginal gyrus. Within the STG clusters, in the left he-
misphere, 6.5% of the cluster was found in TE 1.2, and in the
right hemisphere, 7.9% and 4.1% were found in TE 1.0 and 1.2,
respectively.

The second model (Syllable Identity) examined responses in
which similarity was driven by the identity of the syllables
(Fig. 3, right). Thismodel tested for regions inwhich the response
to syllables with the same underlying phonological identity (e.g.,
a /ba/ most similar to /ba/) was more similar (red elements) than
for syllables with a different phonological identity (e.g., /ba/ to

Figure 2. (A) Speechperceptionnetwork: [Syllable listening > Null events] rendered onto a canonical brain image. (B) Speech productionnetwork: [Overt > Covert]. (C) Effect

of degradation: [((NV + SW)/2) > CL]. Response plot shows parameter estimates from the peak voxel in the LIFG and premotor cluster with error bars suitable for repeated-

measures comparisons (Loftus and Masson 1994), and a scatter plot of the correlation between the BOLD response from the peak voxel and the d′ scores for the

identification of repetitions of degraded syllables. (D) Whole-brain correlation relating d′ scores for degraded syllables and brain activity for degraded speech, with a

scatter plot of the data within the Inferior Parietal Lobe region showing a significant correlation (for purpose of illustration not for effect size inference). All results

presented at P < 0.001 peak level uncorrected, q < 0.05 cluster-level FDR corrected.
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/da/, /ma/, /na/, /ab/ or /ad/) (blue tiles), irrespective of the surface
acoustic formof those syllables (i.e., we predict increased similar-
ity for /ba/ to /ba/ even if these 2 syllables were produced by a dif-
ferent speaker and presented in a different acoustic form). Using
awhole-brain searchlight analysis, we found clusters of spotlight
locations in which pattern similarity was greater for syllables of
the same identity than for syllables with different identities
(Fig. 3, blue rendering). These clusters were foundwithin bilateral
mid-posterior STG and MTG extending into the STS and the PAC.
In the left hemisphere, 4.9% and 2.7% of the cluster extended into
TE1.0 and 1.2, and in the right hemisphere, 0.7% of the cluster ex-
tended into TE1.1. Most striking, though, was a significant cluster
in the pre- and post-central gyrus that showed significantly
greater similarity for syllables of the same identity.

Overlapping the statistical maps for syllable identity coding
with regions activated by degraded speech and by speech produc-
tion in theunivariate analyses showedneural convergencewithin
left somatomotor cortex (Fig. 4). This reflected a direct voxel-by-
voxel overlap between regions associated with syllable identity
coding and speech production (Fig. 4Aii). This consisted of 73
voxels (2-mm isotropic since multivariate maps were resampled
in order to quantify voxel overlap with univariate maps at the
same resolution) in the left precentral gyrus (center of mass:
[−54 −4 36], rounded to the nearest integer coordinate), 355 voxels
in the left temporal cortex (center of mass: [−56 −22 2]), and 141
voxels in the right temporal cortex (center of mass: [58 −24 4]).
Unlike the overlap between speech production and degraded

speech perception (reported previously, and depicted in Fig. 4Ai),
there was no direct voxel-by-voxel overlap within somatomotor
cortex between spotlight locations showing significant syllable
identity coding and brain regions activated by the perception of
degraded compared with clear speech. However, these 2 signifi-
cant clusters were located in very close proximity to each other
(Fig. 4Aiii)—with degraded speech perception activating an infer-
ior frontal and precentral gyrus region slightly more rostral to the
somatomotor regions that show syllable identity coding.

We then conducted similarity analyses using the same acous-
tic form and syllable identitymodels within ROIs in anatomically
defined bilateral PAC and within the region of left somatomotor
cortex activated by speech production in the localizer task (ROI
shown in Fig. 4B). Comparison of neural similarity measures in
these ROIs allows us to compare representations of heard speech
in brain regions associated with speech production and in pri-
mary auditory regions. The speech production ROI was defined
by thresholding the statistical map for [Overt > Covert] speech
production with a stringent P < 0.005 voxel wise FWE correction
to restrict the cluster to primary somatosensory and motor cor-
tex. The peak of this cluster was at [−50 −12 36] and consisted
of 144 voxels (at 2 × 2 × 2 mm voxel size) spanning both the pre-
and post-central gyrus. This region significantly overlapped
with the cluster in the precentral gyrus that coded syllable
identity in our study and with somatomotor regions previously
implicated in speech perception (Wilson et al. 2004; Pulvermüller
et al. 2006).

Figure 3. Similarity of multivariate patterns for the acoustic form (left) and syllable identity (right) representational similarity analysis models. RSA models express

expected differences in voxel pattern similarity between neural responses to different syllables presented in different acoustic forms in odd and even blocks of trials.

Red tiles indicating increased similarity between pairs of neural patterns, blue tiles indicating decreased similarity, green tiles indicating comparisons that were

removed from analysis as not applicable (N/A). Results of searchlight RSA for these 2 models are shown rendered onto a canonical brain image. All results presented

at P < 0.001 peak level uncorrected, q < 0.05 cluster-level FDR corrected.
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One sample t-tests showed that the response of PAC showed
greater pattern similarity for pairs of syllables presented in the
same acoustic form irrespective of syllable identity (significant
fit to the acoustic model [t16 = 3.557, P < 0.003]). However, pattern
similarity was no greater for pairs of syllables with the same
underlying syllable identity (i.e., no significant fit to the syllable
identitymodel, t16 = 1.506, P = 0.152). Conversely, the response in
somatomotor cortex showed greater pattern similarity for the
same underlying syllable (as predicted by the syllable identity
model, t16 = 3.296, P = 0.005), but not for syllables presented in
the same acoustic form (t16 = 1.748, P = 0.100). A 2 × 2 repeated-
measures ANOVA with factors: region (PAC, somatomotor) and
model (acoustic, identity) demonstrated no main effects of
region (F1,16 = 0.146, P = 0.708, η2 = 0.009) or model (F1,16 = 0.304,
P = 0.589, η2 = 0.019), but a significant cross-over interaction
(F1,16 = 6.016, P = 0.026, η2 = 0.273) reflecting a double dissociation
of responses to acoustic and syllable identity information in PAC
and somatomotor cortex (Fig. 4B). These results show PAC and
somatomotor cortex sit at opposite ends of the speech process-
ing hierarchy: during a simple 1-back detection task, brain

regions involved in speech production show activation patterns
consistent with representing the underlying identity of heard
syllables but not their acoustic form. Conversely PAC shows ac-
tivation patterns consistent with a representation of the surface
acoustic form of speech, but not underlying syllable identity.

Graded Abstraction of Syllable Identity Representations
Neural representations of syllables detected by the identity
model could reflect several different levels of abstraction from
the surface acoustic form of the speech signal. We can character-
ize the degree of abstraction of neural representations in tem-
poral and somatomotor regions by differentiating identity
coding in 4 submodels that comprise a 2-by-2 factorial crossing
of whether syllables come from the same or different speaker
and are presented in the sameor different acoustic form (i.e., deg-
radation). The 4 models can be described thus:

Model 1. Same Degradation and Same Speaker (Fig. 5, Red)
quantifies increased similarity for the same acoustic
token, that is, syllables presented in the same acoustic

Figure 4. (A) Univariate activity associated with speech production: [Overt > Covert] (green), signal degradation during speech perception: [((NV + SW)/2) > CL] (Red), and

multivariate syllable identity coding (blue) displayed on a canonical brain image. Note that multivariate decoding maps were resampled to 2-mm isotropic voxels to

illustrate and quantify voxel-to-voxel overlap between univariate and multivariate results. i) Overlap between neural responses to signal degradation and speech

production, ii) overlap between neural coding of syllable identity and neural responses during speech production and iii) coronal and sagittal sections showing the

adjacent location of activation of responses to speech degradation during perception and syllable identity coding. (B) Comparison of the similarity response in the

bilateral PAC and the left somatomotor cortex for the syllable identity and acoustic form models. Bar graphs show similarity response in these regions with error bars

showing within-subject standard error (Loftus and Masson 1994). All results presented at P < 0.001 peak level uncorrected, q < 0.05 cluster-level FDR corrected.
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form (CL, NV, or SW) and spoken by the same speaker (male
or female). This model therefore expresses the lowest de-
gree of abstraction. Even an unmodified acoustic represen-
tation would be expected to show similarity of this type.
Note, however, that since comparisons are made between
odd- and even-numbered blocks in each scanning run,
this model still requires greater than chance similarity be-
tween neural responses to different presentations of the
same acoustic token.

Model 2. Different Degradation and Same Speaker (Fig. 5,
green) quantifies increased similarity for the same syllable
presented in a different acoustic form (CL to NV, CL to SW,
etc.) but spoken by the same speaker. This would identify
regions in which, for example, a NV /ba/ from the male
speaker was more similar to a SW /ba/ than to a SW /da/
from the male speaker.

Model 3. Same Degradation and Different Speaker (Fig. 5,
Blue) quantifies increased similarity for the same syllable
presented in the same acoustic form but spoken by a differ-
ent speaker. This model would highlight regions in which,
for example, a NV /ba/ from the male speaker was more
similar to a NV /ba/ from the female speaker, than to a
NV /da/ from the female speaker.

Model 4. Different Degradation and Different Speaker (Fig. 5,
Pink) quantifies increased similarity for the same syllable
presented in a different acoustic form and spoken by a dif-
ferent speaker. Thismodel would identify regions inwhich,
for example, a NV /ba/ from the male speaker was more
similar to a SW /ba/ from the female speaker than a SW
/da/ from the female speaker. This model therefore ex-
presses the greatest degree of abstraction since syllable
identity is represented in a manner that is invariant to
changes to the speaker and acoustic form of each syllable.

We ran follow-up ROI similarity analyses with each of the 4
models described earlier, within the 3 regions identified by the
full identity model in the left and right temporal cortex and the
left precentral gyrus (Fig. 3). In order to avoid statistical bias
(given that each of these 4 models is a subset of the full identity
model), ROIs were defined using a leave-one-subject-out method
(Esterman et al. 2010). That is, to identify an ROI for Participant 1,
we re-estimated the random effects t-test using the whole-brain
searchlightmaps for the full identitymodelwith Participants 2 to
17. We thresholded these maps at a P < 0.004 (uncorrected) to
extract clusters in the left and right temporal cortex and the left
somatomotor cortex (in the pre- and post-central gyri); this

Figure 5.Hierarchical abstraction of syllable encoding in the left precentral gyrus and the left and right temporal cortex. (A) Brain rendering showing the overlap between

the leave-one-participant-out ROIs used in the analysis. These regions showed a significant fit to the full syllable identity codingmodel (Fig. 3, right panel) but are defined

for each participant using data from all other participants. This ensured that follow-up tests comparing different submodels are statistically independent of the data used

to define the ROI. We differentiated the response in these regions by testing for 4 component models shown in (B). These test for similarity driven for identical syllables

presented in the SameDegradation-Same Speaker (Model 1), Different Degradation-Same Speaker (Model 2), SameDegradation-Different Speaker (Model 3), and Different

Degradation-Different Speaker (Model 4, themost abstract formof similarity tested in the current design). Red tiles indicate cells inwhich increased similarity is expected,

blue tiles indicate decreased similarity, and green tiles are comparisons removed from analysis. Bar graphs show similarity responses for each of these 4 models in each

ROI with within-subject error bars representing one standard error of the mean suitable for repeated-measures comparisons (Loftus and Masson 1994).
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threshold was chosen as it ensured that we could identify 3 dis-
crete clusters in all leave-one-out permutations and that these
clusters did not extend to other anatomical regions. This gener-
ated 17 subtly different ROIs, which provided statistically inde-
pendent regions for testing differences between the 4 models
described earlier. The heat map and color bar in Figure 5 show
the mean location of these ROIs across subjects.

The most abstract representation of syllable identity is indi-
cated byModel 4 (greater similarity for identical syllables despite
being spoken by different speakers and presented in a different
acoustic form). This model was significant in all 3 regions (all
P ≤ 0.024). A one-way ANOVA examining differences between
the regions in their response to this model was not significant
(F2,32 = 0.026, P = 0.974, η2 = 0.002). Hence, all 3 regions achieve a
substantial degree of invariance to speaker and degradation
changes in representing the identity of spoken syllables. How-
ever, this finding need not imply that there is no influence of
speaker or degradation changes on neural representations of syl-
lable identity. To assess this, we conducted a 3 × 2 × 2 repeated-
measures ANOVAwith the factors region (left somatomotor, left
temporal, right temporal), degradation type (same/different deg-
radation type), and speaker (same/different speaker) on the Fish-
er transformed values. This showed a main effect of speaker
(F1,16 = 6.871, P = 0.019, η2 = 0.300), indicating greater similarity
for syllables spoken by the same than for different speakers. No
othermain effects or interactions reached statistical significance.
We then conducted 2 × 2 ANOVAs with the factors degradation
(same/different) and speaker (same/different) within each of
these 3 regions. This showed that the effect of speaker on re-
sponse pattern similarity was reliable in the left temporal cortex
(F1,16 = 6.306, P = 0.023, η2 = 0.283) and identified a similar trend
in the right temporal cortex (F1,16 = 3.308, P = 0.088, η2 = 0.171),
but therewas no effect of speaker changes on similarity in soma-
tomotor cortex (F1,16 = 0.340, P = 0.568, η2 = 0.021). A 2 × 2 × 2
ANOVA including just the left somatomotor and left temporal
lobe clusters showed a marginal region × speaker interaction
(F1,16 = 3.618, P = 0.075, η2 = 0.184). While the absence of any sig-
nificant interaction with region in the overall ANOVA limits the
strength of conclusions that can be drawn concerning differences
between these regions in their representations of spoken sylla-
bles, these findings are suggestive of greater sensitivity to speak-
er identity in temporal than in frontal regions.

To further test the response in somatomotor cortex, we used
an ROI defined on the basis of activity in the independent speech
production run (ROI shown in Fig. 4B). In this ROI, we tested the
most abstract identity coding model (Model 4—different speaker
and different degradation type) which was shown to be signifi-
cant (t16 = 3.820, P = 0.002). We further conducted a 2 × 2 ANOVA
with degradation type (same/different) and speaker (same/differ-
ent) as factors within this region. This showed there to be no sig-
nificantmain effects or interactions (all P > 0.1) suggesting coding
of abstract syllable identity irrespective of degradation or speaker
identity.

A further question with regard to somatomotor responses
concernswhether representations of syllable identity are specific
to degraded speech. This might be anticipated based on the in-
creased univariate activity observed for degraded compared
with clear speech (Fig. 2C). We therefore computed 2 further
models, in which we assessed syllable identity representations
for clear speech (the combination of CL to CL, CL to NV, and CL
to SW) and for degraded speech (NV to NV, SW to SW, and NV
to SW). For the left precentral gyrus ROI (defined by a leave-
one-out procedure as mentioned earlier), both of these models
showed significant representation of syllable identity (clear

speech [t16 = 2.587, P = 0.020]; degraded speech [t16 = 3.723, P =
0.002]), and there was no evidence of a difference between
these 2 models (t16 = 1.131, P = 0.275). For the left somatomotor
cortex ROI (defined from the speech production run, Fig. 4B),
only the clear speech model showed significant representation
of syllable identity (clear speech [t16 = 3.826, P = 0.001]; degraded
speech [t16 = 1.614, P = 0.126]), but there was no evidence of a dif-
ference between these 2 models (t16 = 1.450, P = 0.166). These
results indicate reliable coding of syllable identity in somatomo-
tor regions even for clear speech.

Structure of Syllable Identity Representations

Having demonstrated representations of syllable identity, we
now assess the nature of syllable identity representations at dif-
ferent levels of the processing hierarchy. We do this by consider-
ing similarity between pairs of non-identical syllables that
nonetheless shared articulatory features, phonemes, or Conson-
ant-Vowel syllable structure. To do this, we compared the simi-
larity of non-identical syllable pairs that shared a specific
feature (e.g., bilabial place of articulation is common to both
the oral stop /ba/ and the nasal stop /ma/) and pairs that differed
in that feature (e.g., /ba/ and /na/). These models were specified
for all combinations of same/different speaker and same/differ-
ent degradation and tested within the same leave-one-subject-
out ROIs usedbefore; these ROIs andmodels are shown in Figure 6
and described below:

Model 1. Place of articulation featuremodel (Fig. 6, Red) quan-
tifies increased similarity for pairs of CV syllables that share
the same place of articulation comparedwith pairs that dif-
fer in place of articulation. For example, thismodel specifies
that the bilabial consonant /ba/ is more similar to bilabial
/ma/ than to the alveolar /na/, whereas alveolar /da/ is
more similar to alveolar /na/ than bilabial /ma/. Note that
these comparisons involve changes in manner of articula-
tion; /ma/ and /na/ are both nasal consonants whereas
/ba/ and /da/ are oral consonants.

Model 2. Manner of articulation feature model (Fig. 6, Green)
quantifies increased similarity for pairs of CV syllables that
share the same manner of articulation compared with
pairs that differ in manner. For example, this model speci-
fies that the oral consonant /ba/ is more similar to the oral
/da/ than to /na/ which is a nasal consonant, whereas
nasal /ma/ is more similar to nasal /na/ than oral /da/.
Note that both these comparisons involve changes in place
of articulation: /ma/ and /ba/ are both producedwith bilabial
closurewhereas /da/ and /na/ are both producedwith alveo-
lar closure.

Model 3. Phoneme model (Fig. 6, Blue) quantifies increased
similarity between CV and VC syllables that share the
same phonemes compared with pairs of syllables that con-
tain different phonemes. For example, this model specifies
that /ba/ ismore similar to /ab/ syllablewhich shares 2 pho-
nemes, than to /ad/ which only shares one phoneme. Con-
versely, /da/ ismore similar to /ad/ than /ab/. Note that both
of these comparisons involve changes to CV structure: /ab/
and /ad/ are VC structure syllables, whereas /ba/ and /da/
are CV syllables.

Model 4. CV structuremodel (Fig. 6, Pink) quantifies increased
similarity for syllables that share the same CV structure
compared with syllable pairs that have different structures.
For example, this model specifies that a CV /ba/ is more
similar to a CV /da/ than to a VC /ad/ whereas /ab/ is more
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similar to /ad/ than to /da/. Note that both of these compar-
isons involve changes to phoneme content, /da/ and /ad/
contain the same phonemes, as do /ba/ and /ab/.

The CV structure model was significant in all 3 regions (left pre-
central gyrus, P < 0.001, left temporal, P = 0.001, right temporal,
P = 0.003). In contrast, the phoneme model was only significant
in the precentral gyrus (P = 0.011) and neither of the featuremod-
els (place or manner of articulation) were significant in any
region (all Ps > 0.126). To assess between-region effects, we con-
ducted a 3 × 4 repeated-measures ANOVA on the Fisher trans-
formed values, with region (left precentral, left temporal and
right temporal) and model (place, manner, phoneme, CV struc-
ture) as factors. This showed there to be a significant effect of
model (F3.48 = 6.579, P = 0.001. η2 = 0.291), which was driven by
stronger encoding of the CV structure model compared with all
other models (all Ps < 0.007), and a marginal region by model in-
teraction (F6,96 = 1.973, P = 0.077, η2 = 0.110), with nomain effect of
region (F2,32 = 1.906, P = 0.165, η2 = 0.106). A further 2 × 4 repeated-
measures ANOVA comparing responses in left temporal and pre-
central gyrus ROIs (with region and model as factors) showed
there to be a marginal region by model interaction (F3,48 = 2.294,
P = 0.090, η2 = 0.125) whereas the equivalent interaction was ab-
sent in comparison of the left and right temporal lobe (region

by model interaction, P = 0.789). While these marginally signifi-
cant interactions with region only support very tentative conclu-
sions concerning differences between regions, follow-up
comparisons suggest that the left precentral gyrus represents
heard speech using phonemic or syllabic representations to a
greater degree than the left temporal lobe region; simple com-
parison of the phonememodel shows amarginally significant re-
duction (t16 = 1.926, P = 0.072), as does the equivalent comparison
for the CV structuremodel (t16 = 2.068, P = 0.055), whereas neither
of the feature models show any change between region (both
P > 0.377).

Discussion
We used searchlight RSA to examine neural coding of spoken
syllables that differed greatly in their acoustic form as a conse-
quence of changing speaker and degrading the surface character-
istics of speech. We have shown that multivariate patterns in
bilateral superior temporal and left somatomotor cortex code
the identity of syllables irrespective of substantial changes in
auditory form. By comparing the degree towhichmultivoxel pat-
terns in auditory, temporal, and somatomotor regions also code
for surface acoustic characteristics, we provide evidence that
these regions sit at different levels of a processing hierarchy

Figure 6. Structure of syllable identity representations within the left precentral gyrus and the left and right temporal cortex. (A) Brain rendering showing the overlap

between the leave-one-participant-out ROIs used in the analysis. We further differentiated the response in regions shown to encode syllable identity to identify the

additional structure of syllable identity representations (B) within these regions. These test for similarity driven by the place of articulation feature (Model 1) and

manner of articulation feature for consonants (Model 2), phoneme identity (Model 3) and CV vs. VC syllable structure (Model 4). Red tiles indicate cells in which

increased similarity is expected, blue tiles indicate decreased similarity, and green tiles are comparisons removed from analysis. Bar graphs show similarity responses

for each of these 4 models in each ROI as plotted in Figure 5.
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that maps the variable acoustic forms of speech signals to more
abstract representations of syllable identity. Indeed, we find evi-
dence for a graded hierarchy of abstraction across the brain, such
that anatomically defined PAC represents the surface acoustic
form of speech (such as whether syllables are clearly spoken,
NVor SWsynthesized) irrespective of the identity of the syllables.
At an intermediate level, bilateral temporal cortex encodes both
syllable identity (including speaker information) and the surface
acoustic formof the speech. Themost abstract representations of
syllables are found in somatomotor cortex, which represents syl-
lable identity without encoding speaker differences and does not
significantly differentiate the surface acoustic formof speech sig-
nals. In this region, there was some evidence that syllable iden-
tity representations were organized in terms of phonemic units
and CV structure, and this was more apparent in somatomotor
than temporal lobe regions. In a later section, we consider the
role of abstract somatomotor representations in neural accounts
of speech perception, a domain in whichmotor contributions are
much debated. However, we first consider the implications of our
findings for the hierarchical organization of speech perception.

Hierarchical Organization of Speech Perception

Our study identified a hierarchically organized temporo-frontal
network that contributes to speech perception.While hierarchic-
al organization of auditory and speech networks has been sug-
gested previously (Wessinger et al. 2001; Davis and Johnsrude
2003; Okada et al. 2010; Peelle et al. 2010; Evans, Kyong et al.
2014), our RSA analyses extend these findings by determining
the degree of abstraction with which speech is represented with-
in these networks. The lowest level of abstraction in neural re-
presentation was shown in anatomically defined PAC, which
encoded surface acoustic forms (whether syllables were pre-
sented as SW, NV, or clear speech), but not the identity of sylla-
bles. This is consistent with univariate studies showing that
neural responses associated with categorical perception and
speech intelligibility are only found in regions beyond PAC
(Binder et al. 2000; Scott et al. 2000; Zevin and McCandliss 2004;
Dehaene et al. 2005; Liebenthal et al. 2005; Joanisse et al. 2007).
Our results add to previous MVPA fMRI studies in which voxels
within and close to Heschl’s Gyrus can classify isolated vowels
and CV syllables (Formisano et al. 2008; Obleser et al. 2010;
Kilian-Hutten et al. 2011). Here, using a larger set of syllables (6 ra-
ther than 2 or 3) and more extreme acoustic changes, including
artificial degradation, we observed that the response within ana-
tomically defined PAC (alone) did not encode abstract syllable
identity. Our results suggest that voxels inhierarchicallyhigher re-
gions of auditory belt and parabelt are more critical for represent-
ing the identity of speech sounds.

Searchlight analyses showed that multivariate patterns in bi-
lateral temporal cortex encoded both the surface acoustic form
and the abstract identity of syllables. Follow-up ROI analyses
showed that these representations were also sensitive to be-
tween-speaker differences. This is consistent with univariate
fMRI observations that peri-auditory regions of the STG respond
to both intelligibility and surface acoustic characteristics of
speech (Davis and Johnsrude 2003; Obleser et al. 2004, 2006b,
2008; McGettigan, Evans et al. 2012). Studies of vocal perception
also suggest a contribution of peri-auditory STG regions (particu-
larly in the right hemisphere) to processing speaker identity
(Formisano et al. 2008; Latinus et al. 2013; Bonte et al. 2014).
Many of the acoustic features that discriminate between speak-
ers are removed by noise-vocoding and SW synthesis (for ex-
ample, fundamental frequency and harmonic to noise ratio)

but others remain (e.g., formant frequency dispersion [Latinus
et al. 2013]). Our observation that speaker information is encoded
alongside syllable identity information suggests that indexical as
well as abstract representations of syllables are simultaneously
encoded in lateral temporal regions. These combined representa-
tions might increase the redundancy of the encoded speech sig-
nal allowing more robust perception particularly in the difficult
listening conditions studied here.

Whole-brain searchlight analyses also showed that represen-
tations of syllable identity were observed in a region that over-
lapped with both primary motor and somatosensory cortex,
suggestive of integrated motor and somatosensory (somatomo-
tor) representations of speech sounds (Guenther et al. 2006;
Davis and Johnsrude 2007). These representations are markedly
different from earlier perceptual stages, as confirmed by ROI ana-
lyses, which showed a significant cross-over interaction of acous-
tic and identity similarity in comparison with anatomically
defined primary auditory regions. These observations provide
novel evidence for abstract, non-acoustic coding of the identity
of heard speech in somatomotor regions.

Our study also provides evidence that somatomotor regions
support articulatory coding of syllables during speech percep-
tion. This evidence comes from three additional observations de-
rived from univariate statistical analyses: 1) These somatomotor
regions were also activated during overt compared with covert
speech production, 2) adjacent motor and premotor regions
were more active for degraded as compared with clearly spoken
syllables, and 3) these regions show activity correlated with
individual differences in monitoring of degraded speech. These
findings showneural convergence such that premotor and soma-
tomotor regions traditionally associated with speech production
are also engaged during perception. These results extend previ-
ous fMRI studies that have shown increased activation within
primary motor cortex to degraded compared with clear speech
(Adank and Devlin 2010; Osnes et al. 2011; Hervais-Adelman
et al. 2012) and motor or premotor coding of segment identity
during phoneme identification tasks (Lee et al. 2012; Du et al.
2014). A parsimonious explanation of all these observations is
that the highest-level, most abstract representations of heard
syllables involve articulatory coding in somatomotor regions.

However, we also used RSA models to directly test for articu-
latory feature representations (representations of place andman-
ner of articulation) as well as representations of phonemic units
and syllable structure (CV vs. VC). To our surprise, we failed to ob-
serve evidence that representations of syllable identity were
structured in terms of place ormanner of articulation features ei-
ther in somatomotor or lateral temporal regions. This is in con-
trast to a recent MVPA study by Arsenault and Buchsbaum
(2015), which demonstrated encoding of place andmanner with-
in the auditory cortices (but not frontal regions), and a study re-
ported by Correia (2015) in which featural representations are
shown in both peri-auditory and motor regions. It remains un-
clear why we failed to demonstrate similar place and manner
coding in our study; one suggestion may be that the degraded
speech tokens used in our study permitted less rich articula-
tory/acoustic feature representations than the clear speech to-
kens used in these other studies. Alternatively, it might be that
our use of a one-back detection task of speech focused attention
on larger, syllabic rather than segmental units.

Our results did, however, show somatomotor encoding of syl-
lables in terms of their CV structure and constituent phonemes.
Furthermore, marginally significant between-region differences
suggest that these representation were perhaps more reliable in
somatomotor as compared with lateral temporal cortex. Our
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observation of phonemic representation within somatomotor
cortex is consistent with the premotor activity that has been
shown during speech segmentation and categorization tasks
(Burton et al. 2000; Sato et al. 2009) thatmay be supported by dor-
sal stream connectivity between temporal and premotor cortex
(Chevillet et al. 2013). We note, however, that our study only
used a limited set of phonemes, and syllable structures. We
therefore had only a limited opportunity to compare alternative
models of speech representation in temporal and somatomotor
cortex.

The Role of Somatomotor Representations in Speech
Perception

Our findings of somatomotor representations of syllable identity
can inform neural accounts of speech perception in whichmotor
contributions are much debated (Lotto et al. 2009; Scott et al.
2009; Pulvermüller and Fadiga 2010). At the same time, we ac-
knowledge that there are limitations to the strength of inference
that can be drawn from our results. No functional imaging study
of healthy individuals can show that an activated brain region is
necessarily required for speech perception; such evidence can
only come from studies in which neural processing is perturbed
due to a prior lesion or brain stimulation (Uddin et al. 2006; Devlin
and Watkins 2007; Weber and Thompson-schill 2010). Existing
evidence from brain stimulation suggests that somatopically
specific neural stimulation of motor regions can impair speech
perception (D’Ausilio et al. 2009; Möttönen and Watkins 2009),
and yet, for a variety of reasons, these results remain controver-
sial (Hickok et al. 2011). Our functional imaging data combined
with multivoxel pattern analysis methods reveal that somato-
motor representations of abstract syllable identities are activated
during speech perception. Yet, this does not demonstrate their cau-
sal role in perception. However, we follow Weber & Thompson-
Schill (2010) in arguing that activation of these representations in
our participants is caused by them hearing speech. By considering
what aspects of the listening situation tested here cause activation
of somatomotor representations, we can provide additional con-
straints on the functional (but not necessarily causal) role of soma-
tomotor regions in speech perception.

It has been argued previously that somatomotor responses to
speech may reflect the acoustic properties of sounds and are not
specific to speech (Scott et al. 2009). However,wehave shown that
multivariate patterns in somatomotor cortex represent the
underlying identity of syllables despite marked differences in
their surface acoustic form. It seems unlikely that our results
are due to acoustic properties of speech, independent of our lis-
teners’ ability to hear these sounds as specific syllables. In our
study, this depended on prior training with NV and SW syllables
(Remez et al. 1981; Davis et al. 2005).We predict thatwewould not
observe somatomotor coding of syllable identity for listeners
who were not trained to perceive these syllables as speech or
who could not accurately distinguish degraded syllables. How-
ever, this remains to be tested. Conversely, it seems unlikely
that our results can be explained entirely by short-term learning
effects for degraded speech. Participants received themajority of
training with these sounds up to 7 days (and at least 48 h) prior to
scanning and rapid within scanner perceptual learning for de-
graded speech is associated with inferior frontal rather than so-
matomotor activity (Eisner et al. 2010). Furthermore, we see
equivalent coding of syllable identity for clear speech as for de-
graded speech in somatomotor regions. Hence, we propose that
the effects shown in our study reflect access to somatomotor re-
presentations of syllable identity for heard speech in general, and

not just due to our use of degraded speech, or due to prior
training.

A second concern is that somatomotor responses to speech
reflect phonological segmentation and working memory pro-
cesses associated with active speech perception tasks (Lotto
et al. 2009; Sato et al. 2009; McGettigan et al. 2010; Krieger-
Redwood et al. 2013). This is consistent with a recent MVPA
fMRI study that showed prefrontal and motor representations of
speech content during a phoneme identification task (Du et al.
2014). In Du et al. (2014), participants made a 4-alternative
forced-choice button press response on every trial to indicate the
identity of critical phonemes. Hence, it might have been that
motor representations only encoded phoneme identity in order
to perform this task. In contrast, in our study, participants only
made button press responses when they identified occasional
stimulus repetitions. Thus, it seems unlikely that our results can
be explained by activity associated with button presses as these
were rare (only 7.7% of trials required a response), were modeled
separately, and in any casedidnot directlyencode syllable identity.

However, it is harder for us to rule out the possibility that our
participants are engaged in a particular listening strategy that re-
quires phonological segmentation, or maintenance of syllables
in articulatory working memory. It might be that segmentation
or working memory depends on somatomotor representations
in a way that natural speech comprehension does not. Indeed,
our observation that somatomotor cortex-encoded phoneme
identity and syllable structure may be interpreted as consistent
with this interpretation. However, as participants detected im-
mediate whole-syllable repetitions, we argue this should have
minimized segmentation and working memory demands.

Nonetheless, our task did require that participants actively
engagedwith the syllables andmaintain their attention through-
out the scanning run. This may prove to be critical in explaining
activation of somatomotor representations, particularly if speech
is degraded. A recent fMRI study showed that exogenous distrac-
tion reduces recall of degraded but not clear speech and that
frontal andmotor regions are only activated for degraded speech
when it is attended (Wild et al. 2012). Previous studies suggest
that the details of the active tasks that participants perform in
the scanner are important. Univariate and multivariate imaging
studies show differential modulation of neural activity in re-
sponse to identical stimuli, depending on the feature of the
stimulus that participants were instructed to attend to (von
Kriegstein et al. 2003; Bonte et al. 2014). Thus, it is unclear
whether we would get the same pattern of responses if we had
asked participants to attend to a different feature of our stimuli,
for example, the speaker rather than the identity of the syllable.
Wenote, however, that Arsenault & Buchsbaum (2015) showed so-
matomotor representations of articulatory features of heard
speech during a speaker gender decision task. Further studies
using passive listening or more natural (semantic) listening
tasks are necessary, however, for us to delimit the listening situa-
tions inwhich these somatomotor representations become active.

What then, are we to conclude, regarding the role of somato-
motor cortex in speechperception?Thepresent results show that
the somatomotor responses represent the identity of heard sylla-
bles. However, somatomotor cortex is not the only region to
encode abstract representations of speech sounds; indeed, our
results are consistentwith previous findings that temporal cortex
also encodes abstract syllable identity (Obleser et al. 2004;
Obleser, Boecker, et al. 2006a; Obleser, Scott, et al. 2006b). Our re-
sults do suggest that syllable representations in somatomotor
regions do not encode speaker identity, suggesting a greater de-
gree of abstraction from the acoustic signal than is seen in lateral
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temporal regions. Thus, somatomotor responses are unlikely to
reflect generic attentional, executive, or decision-making pro-
cesses (perhaps unlike responses in inferior frontal regions, cf.
Binder et al. 2004). While we found evidence for the encoding of
syllable identity for both clear and degraded speech, evidence for
somatomotor involvement in our work, and in previous imaging
(Osnes et al. 2011; Hervais-Adelman et al. 2012; Du et al. 2014) and
TMS studies (D’Ausilio et al. 2009; Möttönen andWatkins 2009), is
most often observed in challenging listening situations. Our find-
ings are thus consistent with a role for somatomotor regions in
supervisory or predictive mechanisms that operate in canonical
perception but are most apparent when adapting to degraded
or novel speech forms (Adank and Devlin 2010; Erb et al. 2013
for fMRI and Sohoglu et al. (2012) for MEG evidence). Thus,
while our findings are to some extent compatiblewith traditional
“motoric” theories of speech perception (Studdert-Kennedy et al.
1970; Liberman and Whalen 2000), we suggest a more nuanced
interpretation. We propose that somatomotor representations
combine in a top-down fashion (Davis and Johnsrude 2007;
Osnes et al. 2011) with auditory representations in order to
guide speech perception; perhaps through efferent copy me-
chanisms similar to those proposed in neural models of speech
production (Guenther et al. 2006; Hickok et al. 2011).

Conclusions
Our findings suggest that links between speech perception and
production culminate in abstract representations of heard sylla-
bles in somatomotor regions that are also activated during
speech production. Activation was increased in adjacent pre-
motor regions during the perception of degraded speech and ac-
tivity in this region correlated with monitoring accuracy. This is
to some extent consistent with analysis-by-synthesis proposed
in motor theories of speech perception (Studdert-Kennedy et al.
1970; Liberman and Whalen 2000), and in more recent neural ac-
counts (cf. Davis and Johnsrude 2007; Poeppel and Monahan
2011). However, it is not the case that motor representations
can be directly derived from the acoustic signal without several
intervening stages of processing. In our data, somatomotor repre-
sentations of syllable identity are observed at the top of a graded
hierarchy mediated by auditory abstraction processes in lateral
temporal regions. Thus, we suggest that speech representations
in the STG are at an intermediate level between the auditory re-
presentations in Heschl’s gyrus and the fully abstracted repre-
sentations observed in somatomotor regions. Understanding
the interactive neural computations by which acoustic represen-
tations are transformed into more abstract representations is an
important goal if we are to understand the neural mechanisms
underlying speech perception.
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