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Abstract

Rift Valley fever (RVF) is an emerging, vector-borne viral zoonosis that has significantly

impacted public health, livestock health and production, and food security over the last three

decades across large regions of the African continent and the Arabian Peninsula. The

potential for expansion of RVF outbreaks within and beyond the range of previous occur-

rence is unknown. Despite many large national and international epidemics, the landscape

epidemiology of RVF remains obscure, particularly with respect to the ecological roles of

wildlife reservoirs and surface water features. The current investigation modeled RVF risk

throughout Africa and the Arabian Peninsula as a function of a suite of biotic and abiotic

landscape features using machine learning methods. Intermittent wetland, wild Bovidae

species richness and sheep density were associated with increased landscape suitability to

RVF outbreaks. These results suggest the role of wildlife hosts and distinct hydrogeographic

landscapes in RVF virus circulation and subsequent outbreaks may be underestimated.

These results await validation by studies employing a deeper, field-based interrogation of

potential wildlife hosts within high risk taxa.

Author summary

Rift Valley fever (RVF) is a vector-borne zoonotic disease that imparts a substantial bur-

den to the economy and public health of pastoralist communities across the African conti-

nent and Arabian Peninsula. Furthermore, RVF is also an emerging pathogen of growing

global concern. Knowledge of the epidemiological and ecological factors that influence

the geographic distribution of RVF outbreaks and determine risk for humans and animals

is incomplete. The current study examined the distribution of RVF outbreaks from 1998

to 2016 and modeled their occurrence as a function of climate, surface water, land cover,

livestock density, wild mammalian species richness, and human migration. The results
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indicate that wetlands, Bovidae species richness, and sheep density were associated with

increased risk of RVF outbreaks. Our findings contribute to improved understanding of

the spatial and ecological dynamics of RVF risk with a particular emphasis on the distribu-

tion of wetlands and potential wildlife reservoirs in designing RVF surveillance programs.

Introduction

Rift Valley fever (RVF) is an emerging, vector-borne viral zoonosis that causes significant mor-

bidity in humans and their livestock. The etiologic agent, Rift Valley fever virus (RVFV), is a

Phlebovirus in the Bunyaviridae family and is transmitted by several mosquito species that

facilitate viral maintenance (Aedes spp.) or amplification (Culex spp.) [1,2]. Human infections

are invariably asymptomatic or mild in early stages, however, severe cases can manifest as

hemorrhagic fever or encephalitis [3,4]. Sheep, goats, and cattle experience fetal abortions as a

result of RVFV infection, and the disease contributes to substantive economic losses to pasto-

ralist communities during outbreaks [5,6].

Historically, most outbreaks in humans and domestic animals have occurred in the African

continent, and in eastern Africa these typically follow periods of excessive rain in poorly drain-

ing arid or semi-arid landscapes [7]. The resultant flooding is conducive to the breeding and

hatching of infected mosquitoes which transmit the virus to ruminant hosts followed by even-

tual secondary transmission to other ruminants and humans [5]. In more recent years, RVF

has progressively expanded east into the Arabian Peninsula, with outbreaks in Saudi Arabia

and Yemen [8].

The epidemiology and infection ecology of RVFV is complex and our knowledge of these

incomplete. Several species in two distinct mosquito genera transmit infection. As primary

vectors, Aedes mosquitoes maintain RVFV transovarially during dry periods; during these

times there are little to no reported human or livestock infections. Aedes mosquito population

explosion following wet periods leads to localized transmission to mammalian hosts [9,10].

Following this, Culex mosquitoes can expand (amplify) transmission to more dispersed live-

stock and human populations distant from the areas of local Aedes transmission [2,11,12].

Once RVFV becomes amplified in livestock, ongoing human infection occurs primarily

through zoonotic transmission as a result of direct or indirect contact with animal tissues and

body fluids, such as occurs during slaughtering or through performing obstetrical procedures

on infected animals. Transmission from mosquitoes that feed on infected animals is also a via-

ble though less important source of human infection [1,13].

While the role of vectors in RVFV infection ecology is well-established, the extent to which

wildlife contributes to transmission as possible maintenance or amplification hosts is not well

understood. Field investigations suggest that wild ruminants and rodents are the most likely

RVFV reservoirs [14]. Nevertheless, data from these field surveys are limited, so definitive

mammalian natural reservoirs for RVFV are not described [11,14].

The landscape epidemiology of RVFV is also incomplete with respect to abiotic systems of

influence. For example, periods of excessive rain are strongly associated with RVF outbreaks

in East Africa [7,15–18], however very little is known regarding the interaction between cli-

mate and terrestrial or hydrogeographic profiles in mediating RVF outbreaks [19]. In addition,

there has been a lack of attention to land cover characteristics, which have the potential to

influence mosquito habitat, sylvan reservoir habitat, and the movement of domestic livestock

through the landscape. Finally, anthropogenic influence, such as human migration, may
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introduce novel, or increase existing, exposures among pastoralist and/or other rural and peri-

urban communities [20].

The study sought to expand our current understanding of RVF epidemiology and infection

ecology by investigating the role of diverse hydrogeographic features and wild Bovidae and

Muridae species richness in delineating the landscape suitability of future outbreaks across the

African continent and Arabian Peninsula.

Methods

Data sources

Occurrence data for RVF outbreaks in humans and livestock animals were obtained from the

ProMED-mail electronic surveillance system. This surveillance system is maintained by the

International Society of Infectious Diseases and provides near real time and archival documen-

tation of formal and informal reports of infectious diseases [21]. The database was searched

using the keywords “rift valley fever”, “rift valley fever virus”, “rvf”, and “rvfv”. Only those

reports documenting RVF outbreaks in humans or livestock in unique locations were included

(i.e. duplicate outbreaks were not included). One hundred and three reports of laboratory

confirmed, geolocated outbreaks of RVF in humans and livestock were documented by the

ProMED system between January 1, 1998 and August 31, 2016. Google Maps was used to cap-

ture the geographic coordinates for each outbreak and cross-checked against Open Street

Map. Centroids of the reported outbreak locations were recorded to a spatial resolution of

4km2.

To test our landscape suitability model (see Statistical Analysis section), a second source of

RVF outbreak data were obtained from the World Organization for Animal Health (OIE).

OIE maintains an official biosurveillance mechanism for RVF in livestock. These data have

been archived since 2004 and can be accessed via the World Animal Health Information Sys-

tem (WAHIS) web portal [22]. Reports included the location of each event by place name, the

date, type of livestock affected, and the number of infected animals identified. Between Janu-

ary, 2005 and August, 2016 a total of 50 "immediate notification" and subsequent “follow-up”

RVFV outbreak reports were submitted to OIE. The geographic coordinates for these events

were obtained with Google Maps as above. Outbreaks from ten of these reports could not be

located within this coordinate reference system. This left a total 40 OIE reports with 102 uni-

que outbreak occurrences. Twenty-three of the OIE documented outbreaks were also recorded

in the ProMED surveillance and therefore were not included in this testing dataset to prevent

inflation of model performance. Thus, the final OIE sample of 79 was used for model testing.

Altitude and four Bioclim climate rasters were obtained from the WorldClim Global Cli-

mate database and used as climate indicators for this investigation [23]. Aggregate spatio-tem-

poral weather station data between 1950 and 2000 were used to calculate the mean

temperature during the hottest and coldest quarters, and the mean precipitation during the

wettest and driest quarters, and extracted as 30 arc second (approximately 1 km2) resolution

rasters [24].

Vegetation cover was assessed using the MODIS-based Maximum Green Vegetation Frac-

tion (MGVF), which is a data product from the United States Geologic Survey’s Land Cover

Institute [25]. The MGVF records the percentage of green vegetation cover per pixel as a func-

tion of the normalized difference vegetation index at a resolution of 1 km2[26]. Rasters were

obtained at two time points, years 2001 and 2010, and the difference between them calculated

to determine vegetation loss over this 10 year period. Change in MGVF over this time period

was considered a more robust representation of vegetation cover than mean MGVF, and

therefore more appropriate in assessing its influence on RVF landscape suitability.

The landscape epidemiology of Rift Valley fever
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The Global Lakes and Wetlands Database [27] was used to define surface water. This raster

was derived from three discrete components. The first two comprised vector data of polygons.

Component 1 represented lakes with area� 50 km2 and controlled water reservoirs with

volume� 0.5 km3, while component 2 represented all surface water with area� 0.1 km2. The

third component combined and rasterized the polygon data from the first two components,

while supplementing the wetland data. The final 1 km2 raster based on component three was

used here. The surface water categories were: lake, controlled water reservoir, river, freshwater

marsh, swamp, coastal wetland, brackish, bog, or intermittent wetland [28]. The surface water

types were extracted and new distance rasters created. Distance was calculated in the QGIS

geographic information system using the proximity function to produce separate 1 km2 resolu-

tion rasters for each water category[29]. Pixel values in these rasters convey the distance in

kilometers between a given pixel and the nearest pixel occupied by each unique category of

surface water. In this way the models can incorporate a spectrum of proximity to diverse

hydrogeography across the metacontinent (see Statistical Analysis section).

Net human population migration was obtained as a 30 arc-second raster from the Socio-

economic Data and Applications Center (SEDAC), which is part of the National Aeronautics

and Space Agency’s Earth Observing System Data and Information System [30]. This raster

describes the net change (increase vs. decrease) in persons per km2 from the period 1990 to

2000 [31].

The global densities of cattle, sheep, and goats were represented as 1 km2 resolution rasters

from the Gridded Livestock of the World (GLW) [32]. The GLW also classified ruminant live-

stock production systems by system (livestock-only, mixed rain fed, and mixed irrigated) and

climate regime (Hyper-arid, Arid, Humid, and Temperate/Tropical Highlands) comprising 12

production system categories plus one additional category classified as Urban [33].

Rasters of Bovidae and Muridae species richness at 1 km2 resolution were acquired from

the International Union for Conservation of Nature (IUCN) and Center for International

Earth Science Information Network (CIESIN)[34].

Finally, all species of Aedes mosquitoes observed across the geographic range of RVF out-

breaks were extracted from the Global Biodiversity Information Facility (GBIF)[35]. There

were 215 field observations of Aedes mosquitoes geolocated within the African continent and

Arabian Peninsula. However, of these 215 mosquito observations, 151 observations recorded

the genus only without species designation, while 57 were Ae. africanus, and 7 were Ae. albo-
pictus. As such, there was not sufficient species representation in the GBIF to produce valid

models of the ecological niche of Aedes vectors. One generic ecological niche model of Aedes
mosquitoes was included in an exploratory analysis, but this contributed very little to the loss

function when modeling RVF landscape suitability (see Statistical Analysis section), further

suggesting that the mosquito data were insufficient to include in the current investigation.

Similarly, this analysis did not include potential Culex amplification vectors as there were too

few GBIF specimens across the region and those that were present were of too diverse an eco-

logical and behavioral spectrum to be pooled for analysis.

Statistical analysis

This study used maximum entropy (Maxent) machine learning to model the landscape suit-

ability of RVF outbreaks in human and livestock hosts across Africa and the Arabian Peninsula

at a resolution of 4 km2. In the current study, risk is defined explicitly as the probability of

landscape suitability to RVF outbreaks. Machine learning in general, and Maxent in particular,

is analytically appealing because a specific model form is not assumed. Instead algorithms cre-

ate rule-based data partitions that optimize homogeneity between predictors and outcomes

The landscape epidemiology of Rift Valley fever
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[36]. Further, the Maxent machine learning algorithm does not require the locations of RVF

outbreak absences which are effectively unknowable [37,38].

The full Maxent model (based on ProMED data) comprised the following landscape fea-

tures: mean dry quarter precipitation; mean warm and cold quarter temperature; change in

vegetation cover; proximity to the surface water features; wild Bovidae and Muridae species

richness; cattle, sheep, and goat densities; and net human migration between 1990 and 2000.

Correlation between most of the landscape factors acquired for this study was low. However,

there were a few exceptions (wet quarter precipitation, ruminant production systems, swamp,

and altitude), all of which were correlated with several other landscape factors and provided

generally redundant information. Therefore, these factors were dropped from the original 22

predictors acquired from our data sources described above. Ten thousand background points

were sampled, weighted according to human population density to adjust for any potential

sampling bias in RVF occurrences derived from ProMED. A value of 1.0 was selected for the

regularization parameter, to correct for overfitting of the model predictions. The Maxent mod-

els were trained using five-fold cross-validation. This approach divides the training set into

k = 5 subsets, iteratively fits the model to 4-subset combinations, and then tests against the 5th.

Each of the five subsets included approximately 20 RVF outbreaks selected randomly from the

total number of available observations in the training dataset (ProMed; n = 103 outbreaks).

Landscape features used in the full Maxent model were ranked according to their permuta-

tion importance, which randomly permutes the values of the landscape factors between back-

ground and presence points in the training dataset. This is preferred over the direct percent

contribution to the loss function because it is non-heuristic and more robust to any residual

correlation in assessing the influence of individual features on RVF landscape suitability

[37,39].

Finally, as a robust evaluation of prediction error, the trained models were tested against

the data obtained from OIE. The difference in model predictions based on the training and

testing data was used to assess the model prediction error, which was reported as the area

under the curve (AUC). The models were fit using the maxent function (dismo package; v.

0.9–3) setting the distribution to Bernoulli [38,40,41]. All analyses were performed using R sta-

tistical software version 3.1.3 [42].

Results

The distributions of RVF outbreaks captured by ProMED and OIE are presented in Fig 1. The

clustering of these outbreaks in the Sahel and in eastern and southern African is demonstrated,

as is the more recent emergence of RVFV in the Arabian Peninsula.

All landscape features used in the ecological niche modeling are presented separately for

the abiotic (climate, vegetation change, and surface water) and biotic (livestock densities, Bovi-

dae and Muridae species richness, and human population migration) features in Figs 2, 3 and

4.

The predicted landscape suitability of the African continent and Arabian Peninsula to RVF

outbreaks is presented in Fig 5. High risk landscapes were identified in Mauritania extending

eastward into the Sahel, as well as in large portions of Sudan, Kenya, Tanzania, South Africa,

Madagascar, and a corridor adjacent to the Red Sea in Saudi Arabia and Yemen. Moderate

landscape suitability was predicted for northern parts of the Maghreb, the Horn of Africa and

the broader Arabian Peninsula.

The Maxent model identified proximity to intermittent wetlands (permutation impor-

tance = 18%), Bovidae species richness (11.7%), sheep density (11%), dry quarter precipitation

(10.2%), and proximity to freshwater marsh (9.1%) as the most influential features to RVF

The landscape epidemiology of Rift Valley fever
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landscape suitability (Fig 6). Muridae species richness was not as influential to suitability as

Bovidae richness, but was impactful in the model with 8.6% permutation importance.

Response curves for these features and RVF outbreak risk are presented in S1 Fig. Increas-

ing wild Bovidae species richness was associated with an increase in landscape suitability,

as was sheep density up to an approximate average of 100 animals per km2, after which it

decreased and remained constant at 250 animals per km2. Muridae richness demonstrated a

V-shaped relationship with high landscape suitability in areas of low and high species richness.

Fig 1. The distribution of Rift Valley fever outbreaks across the African continent and the Arabian Peninsula between 1998 and 2016 as

reported by ProMED-mail (blue) and between 2005 and 2016 as reported by the World Organization for Animal Health (red). Countries

affected are highlighted in salmon and include: Botswana, Burundi, Egypt, Kenya, Madagascar, Mali, Mauritania, Mayotte (France), Namibia,

Niger, Saudi Arabia, Senegal, Somalia, South Africa, Sudan, Tanzania, Uganda, Yemen.

https://doi.org/10.1371/journal.pntd.0005756.g001
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Close proximity to intermittent wetlands and freshwater marsh was associated with greater

suitability to RVF outbreaks, as was low precipitation during the driest quarter. The model

performed well when tested against the OIE data with the AUC equal to 83%.

Discussion

This is the first study to explore and identify the influence of diverse surface water types on

RVF outbreaks at a continental scale. The distribution of hydrogeographic features, particu-

larly intermittent wetlands, contributed to suitable landscape conditions for RVF outbreaks.

Fig 2. Distributions of driest and wettest quarter precipitation (upper panels) and coldest and warmest quarter temperature (lower panels)

across Africa and the Arabian Peninsula.

https://doi.org/10.1371/journal.pntd.0005756.g002
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Our model also indicated that Bovidae species richness, sheep density and (to a lesser extent)

Muridae species richness were predictive of RVF landscape suitability. This supports field

observations that suggest that wild ruminants and rodents are the most likely wild reservoirs

for RVFV [14]. These two important landscape features, i.e. wetland hydrogeography and

Bovidae species richness, are novel contributions to our understanding of the epidemiology

and infection ecology of RVF outbreaks in the African continent and the Arabian Peninsula.

Proximity to intermittent wetlands was particularly important to RVF landscape suitability,

as identified by its permutation importance (18%). Hydrogeography has not previously been

investigated across the diverse spectrum of surface water types in association with RVF occur-

rence in continent or country-wide analyses. One comprehensive study did find that proximity

to rivers was an important determinant of landscape suitability across the African continent

[43]. Our model, which is based on a larger number of epidemic occurrences, identified other

wetland features–namely intermittent wetlands and freshwater marsh–as more important con-

tributors to RVF risk. Nonetheless, the two continent-wide studies are in general agreement

with respect to high risk landscapes in the Sahel, and eastern and southern Africa.

A regional study in the Ferlo area of Senegal examined proximity to transient ponds in

hyperlocal settings of mixed vegetation cover and found that the juxtaposition of these small

bodies of water with dense vegetation was strongly associated with positive serology in sheep

and goats [44]. Moreover, this same group demonstrated that these landscape features corre-

sponded to fluctuations in Aedes and Culex species during RVF epidemic years [45]. These

kinds of transient surface water features were the most influential features to RVF landscape

suitability in our model as well. Another study in the Mbeya region of Tanzania, found that

proximity to Lake Malawi was very strongly associated with antibody evidence of past infec-

tion in humans [46,47], which is consistent with our finding of the importance of fixed fresh-

water sources such as freshwater marshes.

Fig 3. Distributions of surface water (left panel) and vegetation loss (right panel) across Africa and the Arabian Peninsula.

https://doi.org/10.1371/journal.pntd.0005756.g003
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Our understanding of the landscape epidemiology of RVFV is, perhaps, most deficient with

respect to reservoir hosts. Several potential mammalian RVFV hosts have been studied in both

field and experimental settings to identify natural reservoirs in RVFV infection ecology [14].

While several species across multiple orders may be implicated as reservoirs, one review identi-

fied ruminants and rodents as likely natural reservoir(s) [14]. Evidence from the same study

suggests that ruminants are more effective in virus amplification rather than maintenance and

this may pose the greatest risk to humans in proximity. Consistent with this, our model dem-

onstrated that wild Bovidae species richness was important in delineating the landscape suit-

ability of RVF (permutation importance 11.7%). Interestingly, this landscape feature was as

important as sheep density and more important than density of goats and cattle (see below).

Muridae species richness was not as influential as Bovidae species richness, but the former did

contribute to RVF landscape suitability (permutation importance = 8.6%). The V-shaped

response curve also suggested high risk landscapes associated with low and high Muridae spe-

cies richness and lower risk landscapes across intermediate species richness. While some previ-

ous work has identified the possibility of individual Muridae species as possible maintenance

[14] or amplification hosts [48–54], the findings from the current study cannot attribute either

role to the Muridae.

The density of sheep was strongly associated with landscape suitability to RVF outbreaks

(permutation importance = 11%). This is not surprising given the high susceptibility of sheep

[5] and their focus within most of the RVF outbreaks that occurred between 1998 and 2016

Fig 4. Distributions of livestock (animals per km2), wild Bovidae and Muridae species richness (number of species per km2), and net

human migration (number of people into [red] or out of [blue] each km2).

https://doi.org/10.1371/journal.pntd.0005756.g004
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[55,56]. Moreover, it is through contact with animals and animal products that most human

RVF occurs [13,57,58]. Goat and cattle density did not contribute substantively to RVF land-

scape suitability(permutation importance < 3 for both). While goats certainly have been

affected in many RVF outbreaks, their lesser susceptibility relative to both sheep and cattle has

been previously demonstrated [56].

Dry quarter precipitation was a moderately strong contributor to landscape suitability. Low

levels of precipitation were associated with increased landscape suitability during the driest

period of the year. However, as precipitation increased during this time, RVF suitability

sharply decreased (S1 Fig). This may suggest that climatically drier areas are more susceptible

Fig 5. Landscape suitability (%) to Rift Valley fever outbreaks. The risk surface is derived from the ecological niche of RVF outbreaks using

the Maxent model.

https://doi.org/10.1371/journal.pntd.0005756.g005
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when periodically inundated with sporadic episodes of rain [56]. Indeed, barren, arid land-

scapes punctuated with temporary ponds were associated with the greatest proliferation of

both maintenance and amplification vector mosquitoes in West Africa [55,59]. Furthermore,

regions with sensitive hydrogeographic dependency demonstrate high RVF susceptibility to

precipitation variability attributable to El Nino southern oscillations [18,60]. Indeed, the latter,

more recent, study identified a clear sensitivity to both seasonal climatic variation and El Nino

oscillation across the whole of the African continent [60]. While the current findings may sug-

gest climatic variations in arid to semi-arid conditions, or extremes of precipitation between

dry and wet seasons, we emphasize that our study did not assess the relationship between RVF

outbreaks and specific weather events.

This investigation identified landscapes suitable to RVFV beyond the historical extent of

transmission. This suggests that conditions may be favorable for transmission should the virus

be introduced into these naïve geographic spaces. In essence this allows us to conceive of how

a realized niche in one space may be related to a potential niche in another, and what struc-

tures may be necessary or useful to prevent the realization of the niche in the novel space. For

example, the introduction of RVFV from infected cattle herds to non-infected susceptible

Fig 6. Permutation importance describing the relative importance of each feature to RVF landscape suitability as derived from the Maxent model.

https://doi.org/10.1371/journal.pntd.0005756.g006
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herds has been well documented in both local [61] and global [62,63] scales. More specifically,

network structure and resulting dissemination of herd animals across villages has been shown

to drive the introduction or re-introduction of RVFV to susceptible livestock herds [61].

Translocations of RVFV at more global scales can follow international trade in livestock [62],

as well national-level trade in livestock [63]. Surveillance mechanisms should target trans-

boundary livestock movement and mosquito control along livestock migratory corridors for

effective prevention of RVF transmission. Indeed, some success has been documented with

respect to cross-disciplinary, systems-based approaches to RVFV surveillance in East Africa as

organized by the Armed Forces Health Surveillance Center, Division of Global Emerging

Infections Surveillance and Response System Operations (AFHSC-GEIS)[64].

A perennial problem in ecological niche modeling, in general, and in emerging disease risk

mapping, in particular, is the lack of independent sample data for testing trained models [65].

Typically only one sample is available, which is partitioned into training and testing datasets. A

strength of the current study is that we utilized two distinct sources of RVF outbreak data; one

(ProMED) to train the landscape suitability model and the other (OIE) to test the prediction

error of the model. Nonetheless, the findings from the current study must be interpreted with

caution due to its limitations. First, temperature and precipitation were measured as single

composites over the period 1950 to 2000. Therefore, while the spatial resolution of these mea-

surements was high (~1 km2 rasters), the analysis was simultaneously constrained by coarse

temporal resolution, given that the climate rasters represent 50 year averages. Second, the num-

ber of documented RVF occurrences is small. Therefore, with only 103 ProMED-reported

occurrences and 78 unique OIE-reported occurrences, this collection of RVF outbreaks may

not represent the true incidence across the continent of Africa and the Arabian Peninsula. Fur-

thermore, the model may produce an underfit representation of the ecological niche of RVF.

Nevertheless, the current analysis attempted a robust validation of models trained on limited

data by using a second vetted source of RVF occurrence data from OIE for testing. Third, due

to a lack of adequate presence data, the current investigation was unable to evaluate the influ-

ence of Aedes and Culex mosquitoes. Because these vectors are part of the RVFV infection cycle,

the lack of Aedes and Culex mosquitoes in our model necessarily demarcates a less refined pic-

ture of RVF landscape suitability. Nevertheless, the hydrogeographic features identified by the

model as influential to RVF suitability correspond to surface water features documented to be

most favorable to the Aedes mosquitoes [44,45,66] and Culex mosquitoes [2,59,67] and so the

model still appears to identify landscapes appropriate to the relevant vector ecology.

The findings of this study will help to improve our understanding of the landscape epidemi-

ology of RVF outbreaks. The model of RVF landscape suitability will require further develop-

ment as more data become available to validate the results. Moreover, because this study is

observational rather than experimental, we cannot assign causation to the associations

between RVF outbreaks and landscape factors, including surface water features and mamma-

lian hosts. More definitive causal inference demands better assessment of species in the land-

scapes where outbreaks are occurring, and crucially at high spatial resolution and in real time.

This will require thorough field studies that combine animal serology and viral RNA detection,

more detailed habitat description, observation of wild Bovidae movement patterns, wildlife-

domestic animal interaction, and maintenance and amplification vectors, as well as cultural

and economic drivers of the livestock industries.

Conclusion

This study found that proximity to wetlands in landscapes that are rich in wild Bovidae species

and high in sheep density, delineate the most suitable landscapes for RVF outbreaks.
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Moreover, this study found that the RVF risk surface may extend to regions beyond the histor-

ical range of past zoonotic experience should the virus be introduced to these regions via live-

stock transport or local invasion by infected mosquitoes.
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