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Abstract

Predicting the response of cancer cell lines to specific drugs is one of the central problems in personalized medicine, where
the cell lines show diverse characteristics. Researchers have developed a variety of computational methods to discover
associations between drugs and cell lines, and improved drug sensitivity analyses by integrating heterogeneous biological
data. However, choosing informative data sources and methods that can incorporate multiple sources efficiently is the
challenging part of successful analysis in personalized medicine. The reason is that finding decisive factors of cancer and
developing methods that can overcome the problems of integrating data, such as differences in data structures and data
complexities, are difficult. In this review, we summarize recent advances in data integration-based machine learning for
drug response prediction, by categorizing methods as matrix factorization-based, kernel-based and network-based
methods. We also present a short description of relevant databases used as a benchmark in drug response prediction
analyses, followed by providing a brief discussion of challenges faced in integrating and interpreting data from multiple
sources. Finally, we address the advantages of combining multiple heterogeneous data sources on drug sensitivity analysis
by showing an experimental comparison.
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Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.
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Introduction

On-going technological improvements in high-throughput biol-
ogy are generating increasing amounts of biological data. Thus,
given the wealth of data, it is natural to take advantage of data-
driven decision-making solutions in personalized medicine. One
of the main computational problems of personalized medicine is

to provide an understanding of cancer cell lines at the molecular
level and recommend individualized therapies to patients that
allow high efficacy in different cancer types by measuring drug
responses [1]. As the amount of data increases, the precise
computational prediction of the drug sensitivity of cancer cell
lines based on molecular interactions, genomic features and
chemical structures becomes essential [2, 3]. The fundamental
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Table 1. An overview and comparison of related reviews

Reviews
Drug response

prediction
Data

integration
Summary of recent

ML methods
Experimental
comparison

Computational models for predicting drug responses in cancer research [6] � �
Algorithms for drug sensitivity prediction [7] � � �
A review on machine learning principles for multi-view biological data
integration [8]

�

More is better: recent progress in multi-omics data integration methods [9] � �
Comparison and evaluation of integrative methods for the analysis of
multilevel omics data: a study based on simulated and experimental
cancer data [10]

� � �

Machine learning and feature selection for drug response prediction in
precision oncology applications [11]

� � �

Improving drug response prediction by integrating multiple heterogeneous
data sources from machine learning view point (this review)

� � � �

reason is that cancer is a complex disease caused by a number
of genetic mutations and somatic alterations. Machine learning
(ML) algorithms are increasingly being applied to the personal-
ized predictions of drug responses since they enable the integra-
tion of data from different sources in a statistically meaningful
way to identify predictive biomarkers [4, 5]. The critical step here
is how data from multiple sources are integrated to improve the
prediction performance of drug responses.

In this review, we summarize recent advances that have
been proposed to obtain relevant information from genomic and
chemical sources for improving drug sensitivity analyses. We
also compare the recent drug response prediction methods for
a more profound understanding of associations between drugs
and cell lines by taking advantage of side information. There are
already some reviews that cover drug response prediction and
data integration methods emphasizing different perspectives,
or with a special focus on a particular biological problem, to
the best of our knowledge [6–11]. However, these reviews have
not simultaneously (i) taken into consideration how to integrate
data from different sources in drug response prediction, from
the viewpoint of developing ML methods, and (ii) provided a
summary of recent ML methods with the appropriate exper-
imental comparison. Table 1 shows a detailed comparison of
recent reviews.

The outline of this review is as follows: we will divide
methods into three categories and summarize them as matrix
factorization (MF), kernel-based and network-based methods.
The reason is to give intuition that MF models are capable
of learning interactions among features from different side-
data sources (also called views), kernel methods capture non-
linearity and fuse the similarity in higher-dimensional spaces
and network-based methods are good at understanding direct
and indirect associations in a heterogeneous network. Then, we
provide information on relevant data sources that are commonly
used to improve prediction of drug response, followed by a brief
discussion of significant challenges especially when we face
integrating data and evaluating predictive performance. Finally,
to address the need for comparative studies, we will show an
experimental comparison of drug response prediction methods
underneath the data integration.

Drug sensitivity analysis
Drug sensitivity analysis is the problem of predicting the correct
treatment for the right patient, for it; computational methods

need to be developed to facilitate matching of patients to drugs.
This problem is one of the most critical problems in the era
of personalized medicine. The essential step in this task is the
identification of biomarkers and developing ML algorithms for
accurate drug response prediction [12]. There are some tradi-
tional ML methods focusing on this problem such as elastic
net, support vector machines and random forest algorithms [3,
13–15]. However, verification of predictive biomarkers would
require substantial efforts and is often expensive. The primary
reason is that the cancer cells show distinct characteristics
because they are influenced by diverse information from, for
example, genetic, molecular and environmental sources, which
makes it hard to find decisive factors. Thus, a variety of studies
have been conducted with large-scale drug screenings on cell
line profiles to identify predictive biomarkers [16–18].

There has been a trending demand to incorporate prior
knowledge of biological systems into drug response prediction
methods for improving the performance over the past decade
[14]. The common understanding is that prior information
provides opportunities to understand the mechanism of cancer
therapy regarding the tumor progression [9, 19]. Based on this
idea, various approaches have been developed for drug response
prediction by integrating prior knowledge based on genomic and
molecular profiles [20–22]. We summarize some of the recent
improvements in this review in Section 4.

Data integration
Data integration approaches combine data from different
sources in a statistically meaningful way and provide a unified
view of them. It has become popular in personalized medicine
recently since the need for new treatment combinations and
opportunities has emerged [23, 24]. Another reason is that
diseases are characterized by incredible heterogeneity, and data
from only one source are not enough to capture all complexity
and information to understand a disease. With the increasing
data, integration methodologies demonstrated that they could
achieve a more informative analysis of drug sensitivity than
using a single data source by compensating missing and
unreliable information in the data [25, 26].

One of the most critical challenges for data integration in
personalized medicine is dealing with heterogeneous data. Data
from different sources are difficult to compare because of the
structure, and the majority of the current data integration sys-
tems have difficulties to overcome challenges such as different
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Table 2. The list of symbols and notations used in this paper

Symbol Description

C C = {c1, c2, ..., cN}; set of N cell lines
D D = {d1, d2, ..., dM}; set of M drugs
R Drug response matrix (main input), R ∈ R

N×M

R̂ij Predicted drug response value (output), (It might be real
value or binary value, depends on the problem.)

S General notation for similarity matrix
Sc Cell line similarity matrix, Sc ∈ R

N×N

Sd Drug similarity matrix, Sd ∈ R
M×M

St Target similarity matrix, St ∈ R
L×L

U Low-rank representation of cell lines, U ∈ R
N×K

V Low-rank representation of drugs, V ∈ R
M×K

F Feature matrix, F ∈ R
N×G, (side information representing

features separately from similarity matrices)
H Low-rank representation of feature matrix, H ∈ R

G×K

A Projection matrix for dimensionality reduction
B Bias term matrix for drugs and cell lines
K General notation for a kernel matrix
Kc Cell line kernel matrix, Kc ∈ R

N×N

Kd Drug kernel matrix, Kd ∈ R
M×M

e Kernel weights; e = {e1, e2, . . . , eP}, P number of matrices.
T Drug target interaction matrix, T ∈ R

M×L

sizes, complexity and noisiness [27]. The main reason is that
many of these systems are dependent on methods that have
been designed to analyze one type of data, and they fail when
applied to multiple data types. However, many ML algorithms
have an ability to integrate diverse biological networks and can
be extended to incorporate other heterogeneous data types. This
review outlines the progress of computational ML models for
predicting drug responses in the field of multiple heterogeneous
data integration.

Drug response prediction by ML methods
We briefly introduce the recent drug response prediction meth-
ods along with the integration of multiple heterogeneous data,
which are categorized into three types: MF, kernel-based and
network-based methods. Summary of these models and their
data types are given in Tables 3 and 4. Before moving into the
explanation of the methods, we define the problem that many
methods have addressed. The main input is a drug response
matrix R ∈ R

N×M, in which rows correspond to cell lines and
columns to drugs. Then Rij represents the relation between enti-
ties; patient i and drug j. We consider two scenarios as an output
R̂ij: (i) we can predict either missing entries in R and (ii) classify
the cancer cell lines whether they are sensitive or resistance
to given drug. Figure 1 shows the main input, possible side
information and their dimensions. We use the same notations
throughout this article for consistency between all methods.
Table 2 shows the list of notations used in this review.

MF methods

MF has become popular mainly because of its usefulness in
clustering and missing value prediction. Moreover, this approach
has found its way into the domain of personalized medicine, and
it is promising for modern drug discovery analyses especially
because it has potential to incorporate any number of heteroge-
neous data [21, 28]. MF methods are considered efficient since
they allow us to incorporate additional information to solve

Fig. 1. R is the drug response matrix, the main input. Sd is drug similarity matrix

where the similarity between drugs i and j is denoted as Sd(i,j) . Sc and St are

similarity matrices of cell lines and targets, respectively.

linear problems, and to extract sparse and easily interpretable
factors automatically. Furthermore, they provide an additive
basis to represent the data. Nevertheless, the main drawback is
that they cannot capture non-linear relationships.

MF discovers hidden features underlying the interactions
between entities by linear combinations of latent features. It is
an unsupervised learning algorithm that decomposes a matrix
into two low-rank matrices. Through this model, drug response
matrix R can be mapped to a low-dimensional latent factor space
and regarded as the product of cell lines and drugs as presented
in Equation (1),

R ≈ UVT, where U ∈ R
N×K, V ∈ R

M×K. 1

Matrices U and V represent the latent features of cell lines
and drugs, respectively. In particular, R̂ij results from the linear
combinations of underlying latent features of cell line i and
drug j.

SRMF

SRMF [21] was proposed as a method for drug response predic-
tion by simultaneously incorporating drug and cell line similar-
ity information. The main reason behind the idea is that similar
drugs and similar cell lines indicate interchangeable behavior on
drug responses.

SRMF approximates the drug response matrix by two latent
factors and utilizes a weight matrix for missing values. It treats
chemical structural similarity of drugs and similarity of cell lines
obtained from gene expression profiles as regularization terms
to avoid overfitting to training data, and imposes them to the MF
model. Additionally, prior knowledge on drug and cell line sim-
ilarities is used to improve prediction accuracy by minimizing
the differences between the similarity of two drugs and cell lines
in the latent space. The final drug response prediction model is
formulated as follows:

min
U,V

||W ◦ (R − UVT)||2F + λl(||U||2F + ||V||2F)

+ λd(||Sd − VVT||2F + λc(||Sc − UUT||2F) 2
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where ◦ denotes element (entry) wise product and W is a weight
matrix that indicates whether there is a known response value.
The λ’s are the regularization parameters. However, λd and λc can
also be interpreted as weight parameters for drug and cell line
similarity matrices. The model uses the alternating minimiza-
tion algorithm to search for the local minimum instead of the
global minimum due to the objective function not being convex.

From a graph learning perspective, when we regard the simi-
larity as a weighted undirected graph, the most general regular-
ization term would be graph smoothness. That is, the term UUT

in Equation (2) could be replaced by UTLU, where L is the graph
Laplacian, which can be generated by D − Sd, and D is a diagonal
matrix with its (i, i) element being the sum over all elements of
the i-th row (or columns) of Sd. A clear drawback of Equation
(2) is that the regularization part has a quadratic term that is
computationally intractable, while the above graph regularizer
keeps the quadratic order, which is much easier computationally.

Hybrid matrix factorization

Bayesian hybrid matrix factorization (HMF) model [26] is a gen-
eral data integration paradigm that is capable of integrating
many data sets. The article answers the question of how multiple
data sets can be integrated efficiently to improve predictions in
the era of having many different data sets and relating entity
types. It is known as the first hybrid model between MF and tri-
factorization.

HMF can factorize each data into two or three latent matrices
jointly, and the user can identify whether to use non-negative,
semi-nonnegative or real-valued MF. The main advantage of
using the probabilistic approach is the ability of handling miss-
ing values efficiently. Another benefit is that there is no need
for separate model selection since Bayesian automatic relevance
determination is used for seeking the exact rank in contrast
to traditional MF methods. HMF builds a model that considers
three types of data: (i) primary data R, (ii) feature data F and (iii)
similarity data S, and each can be decomposed in different ways.

One of the common challenges in heterogeneous data inte-
gration is finding a solution that fits all data sets. This is the
main reason why HMF prefers to use importance values for each
data type. The likelihood is formulated by using the importance
value α, which is the power of the probabilities in Equation (3)
below:

p(θ |R, F, S) ∝ p(θ) ×
X∏

x=1

p(Rx|Utx , Vx, Uux , τ x)αx

×
Y∏

y=1

p(Fy|Uty , Hy, τ y)αy ×
Z∏

z=1

p(Sz|Utz , Vz, τ z)αz
, 3

where θ is the set of model parameters and X, Y, Z are the total
numbers of data sets of each type. HMF not only considers sim-
ilarity matrices as side information but also features matrices,
unlike SRMF, and so it is applicable to a wide range of tasks.
The main distinction between HMF and multiple MF approaches
[40, 41] might be the ability of using several entity types in one
model.

CaDRReS

CaDRReS [28] is a comprehensive model that attempts to solve
many problems in precision medicine such as identifying drug
response mechanisms, subtypes of cell-lines and drug-pathway
associations by using the interaction information between drugs

and cell lines. The model learns the projections of drugs and cell
lines in a latent space based on a recommendation system to
predict drug responses for unseen cell lines. The idea behind the
preference of using a collaborative filtering technique is building
a model that prioritizes information from similar drugs; hence
all drugs will not have equal importance in response prediction.

The model utilizes MF to learn a ‘pharmacogenomic space’
of drugs and cell lines. The dot product of drug vector vj and cell
line vector ui represents the interaction between the drug and
the cell line. The predicted sensitivity score R̂ij is computed as
follows:

R̂ij = μ + bV
j + bU

i + vj.ui = μ + bV
i + bU

u + vj(xuA)T 4

where μ is the overall drug response mean, and bV
j , bU

i are the
bias terms for drug j and cell line i, respectively. Cell line features
xu are obtained by Pearson correlation between every pair of
cell lines using gene expression information. The essential part
is that a transformation matrix A projects cell line features xu

into a latent space. This formulation can easily be seen as a
decomposition of the drug response matrix R into biases B and
latent factors of cell lines and drugs:

R̂ = B + UVT. 5

CaDRReS shows the ability of predicting unseen cell-lines in
contrast to SRMF because of projecting cell line features into
a latent space with transformation matrix; however, it cannot
provide predictions for unseen drugs.

Kernel-based methods

In recent years, a variety of kernel methods have been applied
for drug discovery-relevant applications and have proven their
ability among the best-performing approaches [42]. Kernel meth-
ods capture nonlinear patterns in the data by mapping to very
high-dimensional spaces with a reasonable computational cost
[43]. Besides modeling nonlinear relationships, they also offer
the advantage of flexibility to work on different data types such
as strings and time series. However, it may be more challenging
to understand and interpret the final model than MF methods.
Nonetheless, kernels can be better interpreted with the cooper-
ation of MF and KBMF [44] can be given as an example.

We will define kernel matrix notation as K for the rest of
the article, and similarly denote Kd and Kc for drug and cell
line kernels. For example Kd can be calculated using properties
of a drug in the drug response scenario with a chosen kernel
function. Furthermore, kernel weights will be defined with the
notation of e = {e1, e2, . . . , eN} for N matrices.

Integrative and personalized quantitative structure-activity
relationship analysis by KBMF

Integrative and personalized quantitative structure-activity rela-
tionship (QSAR) analysis [29] is a method developed to extend
traditional integrative QSAR approaches [45] by utilizing the
cooperation of genomic features of cell lines and chemical drug
descriptors. The motivation is that QSAR approaches are limited
by concentrating on a small number of features to mainstream
structural properties able to predict activity in a single cell line
or a single tissue type, and hence they are not capable of solving
personalized QSAR tasks.
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The model builds an integrative and personalized QSAR
approaches by predicting drug responses for multiple cell lines
and drug efficacy for new cancer cell lines simultaneously.
Bayesian MF and multiple kernel learning (MKL) paradigms
cooperate to solve the drug response prediction problem.
The model consists of three main parts: (i) kernel-based
nonlinear dimensionality reduction, (ii) MKL that combines
the view-specific factors (also called components) and (iii) MF
to generate an approximated matrix by utilizing the latent
factors learned from MKL. One of the essential parts is that
the method determines the ‘importance weights’ for each data
set to find a solution that fits all data sets. Hence, importance
weights answer the question of which data type we should use
for better predictive performance or how much effect does
it have on the result. The probabilistic kernel QSAR model
formulates the so-called composite components for drugs as
follows:

V =
Pd∑

m=1

em(AT
d Kd,m) = AT

d

⎛
⎝ Pd∑

m=1

emKd,m

⎞
⎠ 6

where Pd is the total number of drug kernels. Here Gd = Ad
TKd

corresponds to dimensionality reduction (part 1) where Ad is the
projection matrix. The second part combines the kernel-specific
components with the kernel weights em. The same formula is
applied for composite components of cell lines U. The final step
is MF (part 3); the approximation of drug response matrix is
calculated by the multiplication of low-dimensional composite
drug and cell line components obtained by kernel learning with
formulation R̂ = UVT.

cwKBMF

cwKBMF [25] extended the idea of integrative and personal-
ized QSAR by allowing selective data integration from multiple
sources for predicting the response of each drug. The motivation
is that integrated information does not have to be relevant to
all drugs compared to in QSAR; instead, different views may be
relevant for different groups of drugs. In particular, cwKBMF can
learn the latent relationships between the data sources and drug
responses.

Figure 2 shows a detailed graphical representation of
cwKBMF with the same notations used in personalized QSAR.
The model has one extra part in addition to [29], which can
be seen in Figure 2 part 4 (hyperpriors over kernel weights).
The main difference is in the MKL formulation, since cwKBMF
requires to identify the relationship between kernels and

Fig. 2. Graphical representation of cwKBMF showing four main parts of the

model. The difference between personalized QSAR and cwKBMF is part 4. The

same diagram can be drawn for latent factor U.

components. Thus, the model proposes component-wise MKL,
which learns the underlying factors as a combination of kernel-
specific components parameterized by the component-specific
kernel weights. A vital insight is that the method has the ability
to understand whether kernels shared by across all components
or component-specific ones. The model controls the activity
of each kernel in each component by defining element-wise
hyperpriors parameterized by η over kernel weights (part 4), and
this makes it possible to turn off components that are active for
only a few entities. One of the disadvantages might be that the
model requires normalization of drug response matrix, which
can cause loss of information.

pairwiseMKL

The pairwiseMKL [22] method was introduced as the first
method for time and memory-efficient learning with multiple
pairwise kernels. The primary motivation is that current MKL
methods cannot feasibly scale up to the considerable number
of pairwise kernels, optimize the kernel weights and train
the model. By solving these challenges, pairwiseMKL builds a
general approach to MKL, which can be applicable to many
problems, especially pairwise learning, which involves a pair
of objects, for example, drugs and their targets. The model
integrates heterogeneous data sources into a single model by
combining input kernels and analyzing learned kernel mixture
weights for the different information sources.

There are two steps to realize the main task of constructing
a pairwise kernel matrix by calculating the Kronecker product
of drug and cell line kernels: (i) discovering the combination
of pairwise input kernels and (ii) using these kernels to learn
pairwise prediction function. First part develops an efficient
Kronecker decomposition to face with the complexity comes
from the centering of the pairwise kernel. New decomposition
is performed by K̂ = CKC, where C is a centering operator for
K to generate the centerized K̂. This decomposition helps to
efficiently compute the necessary variables needed in the kernel
mixture weights optimization without calculation of massive
pairwise matrices. In the second stage, kernel weights obtained
in the first part are used for model training by kernel ridge
regression in the following form:

R̂ =
(
e1Kd

(1) ⊗ Kc
(1)+, . . . , +ePKd

(P) ⊗ Kc
(P) + λI

)
ααα 7

where λ is a regularization hyper-parameter that controls the
balance between training error and model complexity. I corre-
sponds to identity matrix, P denotes the total number of sub-
matrices and ααα is a vector of parameters obtained by the learning
algorithm. Examples of kernels are kernels created by using gene
expression and other molecular fingerprints. The method shows
satisfactory results regarding memory usage, running time and
prediction performance. Another advantage is that the method
reveals which data kernels are more critical to prediction, by
assigning them in the model.

Network-based methods

Network-based approaches are powerful for discovering interac-
tions. The main advantages of using networks are the abilities to
incorporate large amounts of data and to infer direct and indirect
associations in a heterogeneous network with low computa-
tional complexity. However, with the increasing dimensionality
of data sets, they might face additional challenges for ML tasks
such as making feature selection difficult or ability to capture
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Fig. 3. Bipartite graph representation of drug-cell line association network along

with similarity networks. d and c represent drugs and cell lines, respectively.

nonlinear relationships in comparison to kernel methods, but
they reveal heterogeneous relations well.

Network-based approaches have already offered essential
insights into disease-associated mechanisms in recent years
[46, 47]. They reveal interesting relationships among subsets
of cell lines and drugs. Nodes represent drugs and cell lines,
edges for associations between these nodes in drug response
prediction. The basic representation of drug-cell line association
network can be drawn as in Figure 3. Then the score is calculated
for each drug representing the probability of a cell line being
sensitive (or resistant), or how much sensitive to a given drug
in the network.

Dual-layer integrated cell line-drug network model

Dual-layer integrated cell line-drug network model [30], which
can use both cell line and drug similarity networks in a weighted
scheme, was proposed for drug response prediction of a given
cell line. The model was developed based on the observations
that similar cell lines have a similar response to the same drug,
and the other way around; similar chemical structures also show
similar inhibitory effects over different cell lines. One of the
primary outcomes from this research is that using drug similar-
ity information is more valuable than using cell line similarity;
however, using both networks gives better performance than
either cell line or drug similarity network alone.

The dual-layer model has three parameters, which decide
how to estimate weights on the different cell lines wC, weigh
on the various drugs (wD) and which network will be dominated
in the model λ. The advantage of having these parameters is
that similar cell lines or drugs will have higher weights in
their similarity networks. The model first predicts the response
of a new cell line to a known drug ŜC and known cell line
to a new drug ŜD separately with a linear weighted model.
The linear formula predicting ŜC and ŜD can be defined as
follows:

ŜC(ci, dj) =
∑

ci �=C RijwC(C, ci)∑
ci �=C wC(C, ci)

8

ŜD(ci, dj) =
∑

dj �=D RijwD(D, di)∑
dj �=D wD(D, di)

9

Then, ŜC and ŜD are linearly combined to make an integrated
network and predict the sensitivity score of a cell line to drug,
as follows:

Ŝ(ci, dj) = λ̂SD(ci, dj) + (1 − λ)̂SC(ci, dj). 10

The main advantage of the dual-layer model over integrative
QSAR [29] is that the most similar cell lines or drugs will have
similar responses and contribute much more to the prediction
than the others. Another interesting comparison is that the dual-
layer model shows drug similarity information has a valuable
effect on prediction while SRMF results show otherwise, which
might be because of parameter selection.

Drug response prediction as a link prediction problem

Data-integrated drug response prediction problem is formulated
as a link prediction in [20]. The main idea is to make feature
selection easier by utilizing functional links while the number of
genes is larger than samples. The model creates three network
profiles, one for cell lines and two for drugs: (i) cell line network
profile x(c), (ii) resistant network profile r(d) and (iii) sensitive
network profile s(d). These profiles represent the proximity of
mutated genes to each cell line and drug pair to observe how
mutation information will influence the association of drugs
and cell lines.

Fig. 4. Resistance and sensitive drug network profiles contain resistant and

sensitive cell lines separately for each drug. Cell line network contains the infor-

mation from PPI network and cell line mutations. It is computed by performing

a random walk with restart (RWR) for each cell line and drug pairs.
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Profiles are acquired through a random walk with restarts
(RWR) on a network consisting of edges representing mutations
of genes, and interactions between proteins. Links representing
the sensitivity or resistance of cell lines to drugs can be predicted
by using associations between network profiles. Figure 4 shows
RWR pseudo algorithm and the graph representation of network
profiles. Sensitivity σ(ci, dj) and resistance scores ρ(ci, dj) of cell
line-drug pair are computed by Pearson correlations between
drug and cell line network profiles. The difference between these
scores is utilized to assess the likelihood that a given cell line is
sensitive or resistant to the given drug. Cell line-drug pair scores
and final score δ(ci, dj) are computed as follows:

σ(ci, dj) = corr(x(ci), s(dj)) 11

ρ(ci, dj) = corr(x(ci), r(dj)) 12

δ(ci, dj) = ρ(ci, dj) − σ(ci, dj). 13

We can interpret this formulation as a comparison of sensitive
and resistant drugs through mutation information because we
calculate the difference by checking if the directions of the drug
vectors with cell line network are similar or not separately. Based
on the final score, the cell line will have a network profile similar
to the other cell lines’ network profiles that are also sensitive.
This model can be used for predicting new drugs and cell lines.

HNMDRP

HNMDRP [31] is a heterogeneous network-based approach that
classifies drug responses as to whether a particular cancer cell
line is sensitive or resistant. Recent network-based methods
[20, 30] have already achieved promising results, and this model
contributes to prediction performance by integrating protein–
protein interaction (PPI) and drug-target information, which the
others did not include yet.

The model is constituted of five sub-networks: (i) cell line
similarity, (ii) drug similarity, (iii) target similarity, (iv) drug-target
interaction and (v) cell line-drug association networks. Figure 5
shows all networks, nodes and interactions. These interaction
networks turn into a bipartite graph that is built according to the
activity between nodes; for example, the drug response matrix
is a bipartite association network between cell lines and drugs.
If a cell line is sensitive to a drug the edge between them is set
to 1 or otherwise to 0.

HNMDRP uses an information flow-based algorithm and a
three layer network model [48] to predict drug response R(k+1) and

Fig. 5. Graph representation of five different similarity and interaction network

profiles. Genes, drugs and cell lines denote nodes. Target similarity network is

obtained by fusing PPI information and gene–gene correlation score based on

gene expression profile. For other similarity networks, the Pearson correlation

coefficient is calculated between cell line profiles and drug chemical structures.

drug target interaction scores T(k+1); it can be seen as an iterative
algorithm:

R(k+1) = αR(k)(SdT(k)StT(k)T
) + (1 − α)R(0) 14

T(k+1) = α(R(k)T
ScR(k)Sd)T(k) + (1 − α)T(0) 15

where α is the decay parameter, R(0) denotes the initial cell
line-drug associations and T(0) the drug-target interactions. The
iterative algorithm learns the final scores by utilizing similarity
networks, and the current value of drug response R(k) and drug-
target information T(k). Whenever the new scores R(k+1) and T(k+1)

are learned, they feed into the right hand side of Equations (14)
and (15).

Similarity matrices are compressed by drug response and
target matrices. This is done, according to [48, 49], who modified
two layer model for both predicting drug-disease and drug-target
interactions. The main advantage is to be able to predict drug
responses and target interactions at the same time. However,
the drawback compared to [20, 30] is that the iterative algorithm
cannot predict new interactions, for unseen drugs or cell lines.

Data sources
We present related data sets that are commonly used as bench-
marks to evaluate drug response prediction methods.

Drug sensitivity data

Drug response values measure the effectiveness of a drug on a
cell line at different concentrations. These measurements are
summarized by metrics such as IC50 (concentration of a drug
required for 50% inhibition), EC50 (concentration of a drug wto
reach 50% of its maximal effect) and AUC (area under the dose-
response curve) values, which are based on estimating the cell
count of a treated condition, compared to an untreated control.
There are three main publicly available resources for investigat-
ing drug responses, where some of the entries are missing. The
statistics of these sources can be found in Table 5.

• Genomics of Drug Sensitivity in Cancer (GDSC) [32] is a collab-
orative project of Wellcome Trust Sanger Institute and Mas-
sachusetts General Hospital Cancer Center that combines
genomic data and drug activity data. It is one of the most
extensive resources on drug sensitivity in cancer cell lines,
which screens more than 1000 human cell lines in a range of

Table 5. Statistics of three commonly used public data resources
for the development of drug sensitivity analysis methods

GDSC CTRP v2 CCLE

Number of experiments >200 K >300 K >11 K
Number of tissue types 30 25 38
Total number of cell lines 1001 1107 1457
Number of cell lines tested on drug
screening

990 887 947

Number of drugs tested on drug
screening

265 544 24

Gene expression � �
Copy number variation � �
DNA methylation � �
Mutation � �

Note: GDSC, Genomics of Drug Sensitivity in Cancer [32]; CTRP, Cancer Thera-
peutics Response Portal [33]; CCLE, Cancer Cell Line Encyclopedia [34].
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anti-cancer therapeutics. The current release of GDSC drug
screening data contains drug responses to approximately 300
anticancer drugs across 990 cell lines.

• Cancer Therapeutics Response Portal (CTRP) [33] was
developed by the Center for the Science of Therapeutics at
the Broad Institute to screen a large panel of cancer cell
lines. CTRP drug sensitivity data summarize drug responses
between each cell line and drug pair using EC50 and AUC
values. CTRPv2 [50] is an extended version of the CTRP project
and currently known as the largest pharmacological drug
screening source providing sensitivity measurements of 544
drugs on almost 900 cell lines.

• Cancer Cell Line Encyclopedia (CCLE) [34] is a collaborative
project of the Broad Institute and the Novartis Institutes
for Biomedical Research. The current version of the drug
sensitivity data contains genomic data from approximately
950 human cancer cell lines against 24 anticancer drugs by
allowing large-scale comparative analysis. The data include
a smaller number of drugs compared to others.

The GDSC and CCLE resources not only provide drug sensitivity
data but also omics data including gene expression (i.e. tran-
scriptomic), genetic variants such as mutations and CNVs in the
genome and DNA methylation data. All these data sources can
be used as auxiliary information in drug response prediction
models.

Gene expression data for drug response prediction

Gene expression is the process of determining which instruc-
tions are used to synthesize gene products. The expression
level indicates the approximate amount of genetic transcription
under specific circumstances or in a specific type of a cell. There
is compelling evidence that gene expression information can
be used to predict molecular biomarkers and drug responses to
anticancer therapies [51, 52]. There are some benchmark gene
expression sources that can be integrated into drug response
data efficiently:

• CCLE [34] gene expression data were quantified by Affymetrix
U133 Plus 2.0 arrays. The raw data were converted to a single
value for each probe set by the robust multi-array aver-
age (RMA) approach, which is log2 transformed and then
quantile-normalized.

• GDSC [32] gene expression data were measured by Affymetrix
Human Genome U219 Array, and normalized by using RMA.
Some further data processing have been applied to remove
batch effects caused by growth properties.

• NCI-60 [53] offers a large number of omics data profiles across
60 human tumor cell lines derived from 9 different cancer
tissues. This is known as the largest compound library. The
expression data were obtained by integrating probes from
five platforms. The probe values were first transformed to z-
scores then the average score was determined for each gene
for each cell line.

CCLE and GDSC projects are the commonly used sources con-
taining gene expression levels from next-generation sequencing
data for a large number of cancer cell lines. They provide more
extensive coverage in terms of tissue types compared to NCI-60,
thus more preferable in drug sensitivity cases.

Drug similarity

The chemical similarity is usually used to identify compounds
sharing similar biological activity based on the structural sim-

ilarity between compounds in drug discovery. The typical drug
properties are as follows: (i) chemical fingerprints of drugs that
capture the occurrence of fragments; (ii) 1D, 2D and 3D molecular
descriptors that encode chemical composition, topology and
3D shape and functionality; and (iii) VolSurf is known as a 3D
descriptor focusing on spatial properties of the drugs, which
can easily be calculated by Molecular Operating Environment
software [54]. The commonly used database for the chemical
structural information for each drug is PubChem [39] that con-
tains validated chemical information for 19 million unique com-
pounds contributed from a large number of organizations. The
database generates binary substructure fingerprints for chemi-
cal structures, which can be used for similarity neighboring and
searching.

There are two popular computational chemical similarity
tools that have been developed to link the structural properties
of drugs to their biological capacity:

• PADEL [55] currently calculates 1875 molecular descriptors
and 12 types of fingerprints mainly using The Chemistry
Development Kit.

• The PubChem Score Matrix Service [39] can compute matri-
ces of 2D and 3D similarity scores for a given set of com-
pounds effortlessly for PubChem compound database iden-
tifiers.

Cell line similarity

Cell line similarity network derived from cell lines and tumors
is the most frequently used side information in drug response
prediction. The main reason is that cell lines with similar pro-
files tend to be within the same cancer type that has similar
responses to a given drug. Thus, gene expression and copy
number variation profiles have become a popular and critical
information to characterize both the similarity and dissimilarity
between cell lines [56]. The conventional way to calculate cell
line similarities is based on three stages: (i) represent each cell
line as a vector of omics features such as expression values, (ii)
calculate the correlation coefficient between two represented
vectors to obtain the similarity and (iii) repeat the procedure for
every pair of cell lines to construct a similarity network.

Challenges
This section discusses two challenges in the computational pre-
diction of drug responses, which earlier reviews did not mention
explicitly.

1) Data set weights: One of the most critical challenges
for data integration in drug sensitivity analysis is dealing with
heterogeneous sources. Data from different sources are difficult
to integrate because of the input data type, dimensionality,
noise ratio and complexity. Moreover, the majority of the data-
integrating drug response prediction models fail to identify the
degree of relatedness between side information and target data,
since they assume each side-information sources to have a
binary relationship with drug response data, that is they are
either relevant or not. However, if side data and the target source
are dissimilar, the methods may discover a solution that fits one
data set much better, and cause weak predictions for the other
one [26]. For this reason, using data importance or gathering
highly correlated data sets might ensure that the method will
find a solution that better fits all data sets. Another common
approach is identifying predictive genomic and molecular fea-
tures to decrease the dominance of side information by using
feature selection [57–59].
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Table 6. Prediction performance of SRMF, pairwiseMKL, HNMDRP
and baseline approach

RMSE PCC AUC

SRMF 1.437 0.899 0.932
pairwiseMKL 1.690 0.856 0.908
HNMDRP 2.117 0.815 0.882
Baseline (overall mean prediction) 3.270 – –

2) Evaluation of prediction models: An other crucial challenge
in drug response prediction is the selection of performance eval-
uation methods. If we consider the baseline of different drugs
might have a very diverse range of activity, there might be several
convenient ways of evaluating prediction performance. Most
drug sensitivity analyses concentrate on the correlation between
actual and predicted values as a measure of efficiency [2, 34].
This approach is supported by the idea of similar gene expres-
sion or drug profiles having significantly higher drug sensitivity
correlations. Another proposition claims that the correlation
of drug responses between actual and predicted values might
overestimate the prediction performance, so focusing on evalua-
tion metrics for specific drugs such as drug-averaged correlation
scores or drug averaged RMSE might be a better evaluation
technique [21]. On the other hand, the relative order of drugs
can be more crucial than the absolute values of drug responses
especially for the clinical settings, because of the batch effects
of different experiments [28]. These findings demonstrate that
we need to consider many factors such as data, biomedical

outcomes and domain-specific models when we decide the
performance evaluation approach.

Empirical comparison
We compared the performance of state-of-the-art drug response
prediction methods, which were reviewed above. One model
was chosen from each of three categories, which are MF-based,
kernel-based and network-based methods. We considered
using the latest method from each category, and comparing all
methods with more general performance evaluation criteria,
which are applicable to all methods, such as correlation
coefficient or mean square error. However, the exception is
SRMF from the first group, because, in these evaluation scores,
SRMF outperformed the latest method of MF category, which is
CaDRReS. We did not include other methods to comparison
from similar reason, which is previously done comparisons
between methods. Additionally, we wanted to compare the
methods with a common baseline approach; taking mean of the
training drug response data as a prediction for the unobserved
drug responses. So entirely, we selected the following methods:
baseline approach, SRMF from MF-based methods, pairwiseMKL
from kernel-based methods and HNMDRP from network-based
methods.

Data

We used only three types of data: drug response, cell line and
drug similarity data, which are the ‘maximum’ number of data
that satisfy all methods we compared. We selected the data from
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Fig. 6. Performance comparison of predicted and observed activity of SRMF, pairwiseMKL and HNMDRP using three different evaluation measures based on 10-fold

cross-validation experiments. The SRMF approach has the best cross-validated prediction performance over all evaluation methods.
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the sources used in pairwiseMKL whose experiments include
many data sources. We only used:

• GDSC [32] drug response data in the form of normalized IC50
values consisting of 124 drugs and 124 human cancer cell
lines,

• drug kernels computed by Tanimoto kernels using PubChem
[39] molecular fingerprints,

• cell line kernels obtained from gene expression measure-
ments by calculating Gaussian kernels.

All these data are directly suitable for SRMF and pairwiseMKL
methods, but HNMDRP requires binary network data as input,
as it was initially used for classification only. We applied HNM-
DRP here as suitable for quantitative drug response prediction
to ensure their fair comparison. Furthermore, HNMDRP needs
target information unlike the others since the formulation is a
three-layered network. Therefore we used two uniformly dis-
tributed target data as target similarity and drug-target interac-
tion to follow the same formulation.

Setting

We conducted nested 10-fold cross validation for pairwiseMKL
for the hard hyper-parameters setting, following the same
procedure as in original paper [22]. It requires regularization
hyper-parameter λ that controls the balance between train-
ing error and model complexity, chosen from a given set
{10−5, 10−4, . . . , 100}. We carried out 10-fold cross-validation
on SRMF and HNMDRP for the performance comparison
as well. The regularization parameters {λl, λd, λc} for SRMF
were selected from the range provided by original paper [21]
{2−3, . . . , 22}, {2−5, . . . , 21, 20}, {2−5, . . . , 21, 20} and the dimension-
ality was set to the same value as 45 for the MF. In HNMDRP,
the decay factor parameter α was chosen in the range of 0 to
1 as given. The same training and test folds were used for the
performance evaluation of all methods.

Results

Table 6 shows the results of the comparison of average predictive
performances in the form of Pearson correlation coefficient
(PCC), root mean square error (RMSE) and area under curve (AUC)
between the actual and predicted drug sensitivity scores of the
baseline method, SRMF, pairwiseMKL and HNMDRP. AUC score
was computed by first ordering the actual values then convert-
ing them to ordered binary classification values according to
the threshold that was chosen as mean of the actual values.
The detailed performance comparison based on cross-validation
experiments can be found in Figure 6.

We observe that SRMF obtained the best performance, fol-
lowed by pairwiseMKL, HNMDRP and baseline. One of the rea-
sons for SRMF’s good performance might be that it uses data
importance; it achieved the best prediction performance when
the drug similarity weight parameter is zero. This parameter
was also the same in [21] and implies that drug similarity infor-
mation does not contribute to prediction performance. Even
though there is a slight difference between SRMF and pair-
wiseMKL, pairwiseMKL might be better where the number of
data sources is significantly higher because of its time and
memory efficient learning algorithm. HNMDRP showed worse
performance compared to SRMF and pairwiseMKL; we believe
this is likely due to not using weights over data sets, which

implies every data source is considered to have the same effect
on prediction performance. Another reason might be that its
formulation demands a three-layer network, and for the third
layer, we generated uninformative target information. Therefore,
we might consider HNMDRP to be preferable for scenarios where
all three types of connections are available; cancer cell line, drug
and target gene nodes.

Conclusion
As more biological data become available, the traditional drug
development process needs to utilize new treatment combina-
tions and opportunities for generating novel models. Currently,
there is a large number of cancer-related resources that cover
disease information such as genotypes, phenotypes and their
associations. It is natural to integrate these multiple data sources
to create more accurate models. However, the selection of the
auxiliary information to improve drug response prediction of
cancer cell lines is one of the challenging parts of personalized
medicine since cancer associates with many factors, includ-
ing phenotypes, environmental exposures, drugs and chemical
molecules, and hence it is hard to find out which one is more
causative. ML methods are becoming a crucial element of mod-
ern biomedical research in this phase. There is a demand to
develop methods that can integrate data from many different
biomedical sources efficiently and understand what kind of
effects they have on the prediction of drug responses. Thus,
many methods have been developed using different types of side
information for high efficiency on drug sensitivity analyses in
recent years. In this review, we discussed several of the latest
ML approaches that can be implemented to perform robust
integrative analyses on drug response prediction problem.

We conducted an experiment comparing three methods
belonging to different categories using the same data sets. In this
experiment, we aimed to identify subsets of features explaining
relationships between drugs and cell lines by utilizing side
information. Based on the results, MF and kernel-based methods
are better to detect underlying factors of drug response data
by using side information from the similarity of cell lines and
drugs. The network-based method is least capable of identifying
the factors; however, it might show better performance to
understand indirect relations such as between drug response
and similarity matrices. On the other hand, choosing a method
is intrinsically tied to designing the experiments. Plenty of
experiments have already been done, and we should be able to
use this experience to design new ones in an automated way. For
example, meta-learning could fit here; it is also called ‘learning
to learn’ as a way to choose a method or hyper-parameters, in
other words, make specific experimental design choices [60].
Moreover, if more informative data sources can be incorporated
in these models, the predictive performance might be improved.
Another future direction might be predicting the response of
drug combinations by integrating side information because
drug combination therapy could provide an effective strategy
to overcome drug resistance and incorporating prior knowledge
might increase the prediction accuracy [61–63]. As the data
increase, more challenges will arise, such as the redundancy
between the predictive profiles, or big data problems that require
carefully chosen feature selection methods. Deep learning
methods have gained popularity in recent years for drug
discovery and might be good direction for high dimensionality
problems [64–66].

There will be a need to develop more efficient computational
methods for different cancer diseases as expectations increase
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and opportunities emerge with the increasing data. By utilizing
different types of molecular and genomic data, we can make
more accurate and personalized choices for drug treatment. On-
going developments demonstrate that ML methods are promis-
ing and have an exciting future for biomedical data integration,
especially for the drug response prediction problem. The fun-
damental part here is the predictive approach, which should be
selected to be consistent with different types of domain-specific
models, data and biomedical outcomes, to cape with high het-
erogeneity between cell lines and primary patient tumors.

Keypoints
• Integrative analysis of drug response prediction is

an essential part of personalized medicine; however,
choosing informative data sources and the method that
can incorporate multi-view sources is challenging.

• We review recent machine learning approaches solv-
ing integrative drug response prediction problem in
three categories: matrix factorization-based, kernel-
based and network-based methods.

• Understanding multi-view side data characteristics and
effects on drug responses is one of the critical criteria of
successful integrative drug response prediction.

• The predicted performance can be improved by inte-
grating more informative data types.

• We conclude that the predictive approach should be
selected consistent with different types of domain-
specific models, data and biomedical outcomes.
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