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Abstract

Forecasting ‘Black Swan’ events in ecosystems is an important but challenging task. Many

ecosystems display aperiodic fluctuations in species abundance spanning orders of magni-

tude in scale, which have vast environmental and economic impact. Empirical evidence and

theoretical analyses suggest that these dynamics are in a regime where system nonlineari-

ties limit accurate forecasting of unprecedented events due to poor extrapolation of histori-

cal data to unsampled states. Leveraging increasingly available long-term high-frequency

ecological tracking data, we analyze multiple natural and experimental ecosystems (marine

plankton, intertidal mollusks, and deciduous forest), and recover hidden linearity embedded

in universal ‘scaling laws’ of species dynamics. We then develop a method using these scal-

ing laws to reduce data dependence in ecological forecasting and accurately predict

extreme events beyond the span of historical observations in diverse ecosystems.

Author summary

Rare large-amplitude ‘Black Swan’ fluctuation events have significant ecological and eco-

nomic impact. In this work, we tackle the grand challenge in forecasting critical fluctua-

tions in ecosystems, in particular in data sparse regimes. We take an unconventional

approach by bridging the fields of statistical physics and ecological forecasting. We apply

theory from avalanche systems (such as earthquakes) to analyze long-term monitoring

data from diverse natural ecosystems, including marine plankton, intertidal mollusks, and

deciduous forest. These datasets allow us to recover the clean power-law relations, or ‘scal-

ing laws’ in statistical physics terms, in system fluctuations that are ubiquitous across spe-

cies and communities. Leveraging these scaling laws, we extrapolate rare, extreme

dynamics from limited historical data and accurately forecast unprecedented events.

Therefore, our results have the potential to maximize data value in ecological forecasting

with a broad set of applications.

Introduction

Theoretical models and long-term tracking of natural and experimental ecosystems have iden-

tified widespread aperiodic fluctuations spanning orders of magnitude in amplitude and
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duration [1–7]. These fluctuations, especially rare but large-amplitude ‘Black Swan’ events,

have significant ecological and economic impact [7,8], generating a pressing need for forecast-

ing and management strategies. However, the highly nonlinear, near-chaotic nature of these

fluctuations presents significant challenges for forecasting algorithms [4,6,7,9].

Ecological forecasting methods tend to fall into two categories. The first uses prior biologi-

cal knowledge and statistical inference of historical data to build and fit a parametric model of

the ecosystem [7,10–12]. This requires extensive information for each community under

study. These models are also prone to overfitting to the current system conditions, with poor

generalization to rare and extreme events. The second approach, empirical dynamic modeling

(EDM), relies on reconstructing attractors of system dynamics [6,13,14]. Single- or multi- spe-

cies data are embedded into a high-dimensional state space. Forecasts from the current time

point are made based on the trajectories of neighboring historical states. These methods can

account for species interactions that vary nonlinearly with the system state and have proven

useful in predicting ecological dynamics. However, they can suffer from poor extrapolation

during rare events when no closely neighboring trajectories are present in historical data.

These methods are all fundamentally limited by the information within historical data, which

often fails to contain all possible dynamics of a system due to the costs of long-term monitor-

ing and low frequency of extreme events [15,16]. Therefore, we sought a method to better

extrapolate the dynamics of large, rare events from historical data containing only small but

frequent fluctuations.

To achieve this goal, we turn to the concept of ‘avalanches’ from statistical physics. Ava-

lanches are a specific type of discrete, impulsive fluctuation characterized by heavy-tailed

power law distributions (or scaling laws) in size and a self-similarity between events of diver-

gent scales that can arise from various microscopic generative processes [17,18]. These dynam-

ics occur in many systems including earthquakes, magnet polarization, and neuronal firings

[17–19]. Despite the diversity of systems that produce avalanches, the resulting dynamic scal-

ing laws often fall into a limited set of so-called “universality classes” that are insensitive to the

system specific details [17,20]. We reason that such scaling laws will allow us to use the infor-

mation inherent to the universal features of fluctuations to augment that of limited historical

data and improve forecasting accuracy.

Previous work has shown indications of avalanche-like dynamics in ecosystems using mea-

sures of species abundance and persistence [21–27], but due to data availability, these studies

typically considered a single distribution aggregated across species with timescale resolution

on the order of species’ lifetimes. Our fluctuation forecasting method goes beyond these dem-

onstrated relations and utilizes the full information about fluctuation duration, size, and fre-

quency within a single species lifetime. Validating these relations requires extensive data with

both high sampling frequency (to sample short events) and long duration (to capture rare

events) across multiple diverse communities (to demonstrate the conservation of the scaling

laws). Here we utilize the recently accumulating body of long term ecological research and

analyze the dynamics of three ecosystems: Baltic Sea plankton abundance measured in a recon-

structed closed laboratory [4,28], mollusk coverage in intertidal zones at Goat Island Bay, New

Zealand [3], and CO2 fluxes in the Harvard deciduous forest [29]. All three systems have

decade(s) of tracking data with sampling frequency varying from minutes to weeks. Each of

the three systems shows persistent large-amplitude bursts in the absence of extreme environ-

mental events in a manner consistent with avalanche dynamics (Fig 1A). We first validate a

complete set of self-consistent scaling laws conserved across communities and independent of

species interactions. We then develop a method based on the scaling laws to accurately extrap-

olate historical data to unsampled regimes and improve forecasting during unprecedented

events.
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Fig 1. Ecological fluctuations show universal avalanche scaling laws. A, Time series of species abundance (protozoa,

rotifers, calanoids) in an isolated plankton community [28] (top), rock coverage by intertidal mollusks [3] (middle),

and forest carbon fluxes [29] (bottom) show sustained aperiodic fluctuations varying in size and duration. Magnitudes

(X) are normalized by mean value for each dataset. B, The probability distributions of avalanche durations follow a

universal power law across communities. Avalanche duration (T) and corresponding size (S) are defined in inset. Blue,

cyan, purple: herbivore, detritivore, and producer trophic levels in the plankton community; green: forest carbon flux;

brown, yellow: barnacle and algae in the intertidal community. Due to the small number of events in the intertidal

community, this dataset is supplemented with the model provided in the original paper (triangle) [3]. The empirical

data are in quantitative agreement with the linear response model at marginal stability (Eq 1, λ = 10−3, grey line). C,

The distributions of avalanche sizes follow a universal power law. Sizes are shifted horizontally to account for varied

units between datasets. D, Scaling of average avalanche size vs. duration follows a power-law conserved across

communities and the linear response model (grey line). Translucent symbols: individual avalanche events; solid

symbols: bin-averaged values. In B-D, individual groups are collapsed through leading coefficients. E, Average

avalanche shape converges across datasets and the linear response model. Each avalanche event is isolated and

normalized to unit duration (t0 = t/T) and unit size (X0 = X/ST−1, resulting in S0 ¼
R 1

0
X0ðt0Þdt0 ¼ 1). Trajectories from

each dataset are then averaged to produce the avalanche shape separately. Blue, yellow, green: plankton, intertidal, and

forest data. Dashed line: modeled intertidal community. Grey line: linear response model at marginal stability (λ =

10−3).

https://doi.org/10.1371/journal.pcbi.1008021.g001
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Results

Fluctuation scalings across natural communities

Avalanche dynamics are defined by a specific set of scaling relations between fluctuation dura-

tion, frequency, and size across broad scales [20,26,30]. Previous theoretical analyses have sug-

gested that these scaling laws may experience a crossover at long observational timescales in

ecological fluctuations [30], which may limit the applicability of these scaling relations in fore-

casting unprecedented large events. Therefore, we first sought to confirm all predicted scaling

behaviors on relevant forecasting timescales.

To verify these scalings, we isolated avalanche events for each species as periods when data

amplitude (X) exceeds a reference baseline level [17,31]. Each event has a duration (T) mea-

sured as the time between two intersections with the reference, size (S) calculated from the

area of the data above the reference, and shape as the trajectory between two intersections (Fig

1B, inset). We found that all three datasets exhibit universal scaling laws regardless of where

the reference baseline is set (S1 Fig), with exponents matching theoretical expectations

[17,20,30].

Specifically, the frequency of avalanche events of a given duration follows a power law

across several decades with an exponent of α ~ 3/2 (Fig 1B). The frequency of a given ava-

lanche size follows another power law, with an exponent of τ ~ 4/3 (Fig 1C). We verified the

power-law and critical exponents of both distributions using the Akaike information content

of maximum likelihood estimate (Table 1) to exclude potential fitting biases [32,33]. These

heavy-tailed power-law distributions suggest that the size of the largest fluctuations should

grow with observation time, explaining the previously documented difficulties in using finite

data to sample the state space of an ecosystem [15].

Average avalanche size follows another power-law scaling against duration with an expo-

nent of γ ~ 3/2 (Fig 1D, and S1 Table). This set of exponents, α, τ, and γ, gives a self-consistent

characterization of the fluctuation dynamics, as confirmed by the relation g ¼ a� 1

t� 1
[20]. While

individual avalanches exhibit large variations, the scaling law between avalanche size and dura-

tion indicates that the average trajectory for avalanches of a given duration should be con-

served across systems and time scales. To extract the average avalanche trajectory, we

Table 1. Statistics of avalanche probability distributions.

α τ
Group n MLE±95% CI AICmax AICtheory MLE±95% CI AICmax AICtheory

Harvard forest 2570 1.53±0.02 1.0 1.0 1.25±0.01 1.0 1.0

Algae >105 1.52±0.002 1.0 1.0 1.36±0.002 1.0 1.0

Mussel >105 1.49±0.002 1.0 1.0 1.34±0.002 1.0 1.0

Herbivorous plankton 148 1.59±0.14 1.0 1.0 1.38±0.08 1.0 1.0

Photosynthetic plankton 198 1.75±0.15 1.0 0.0007 1.36±0.07 1.0 1.0

Detritivore 121 1.82±0.16 1.0 1.0 1.46±0.08 1.0 1.0

To verify duration-frequency scaling (α), the total number of avalanches (n) segmented within each group are fit to a power law, p(T) = aT−α, or an exponential

distribution, p(T) = a−zT, through Maximum Likelihood Estimation (MLE) [32]. To avoid skewed results from the distribution cut-off, MLE fits were made with support

on the range [0.95ts, 100ts] where ts is the sampling frequency of each system. The likelihood of each distribution is compared using the Akaike Information Criterion

(AIC) to determine the weight of evidence supporting each distribution. Values of 1.0 given in cases where >0.9999 of the evidence is in support of the power law

distribution. This analysis was repeated for both the MLE value â ¼ âmax (AICmax) or â ¼ 3=2 (AICtheory), which is the predicted slope of the avalanche theory [20].

Similar analysis was performed for size-frequency scaling (τ), with fits compared for the functions p(S) = aS−τ and p(S) = a−zS. AICtheory was determined using t̂ ¼ 4=3.

Algae and mussel distribution data are from simulations using the mechanistic model described in the original study because experimental data have too few data

points.

https://doi.org/10.1371/journal.pcbi.1008021.t001
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normalized each avalanche event by its mean amplitude (ST−1) and duration (T) and com-

puted the average normalized abundance at each time point along the trajectory (Methods).

The results confirm our expectation that the average avalanche trajectory converges to a con-

served shape across communities, though the averaging of noise is limited by the number of

events in the experimental datasets (Fig 1E). The scaling laws and conserved avalanche trajec-

tory are important as the linear relationship in log-log space provides a possibility to extrapo-

late the expected trajectory of large fluctuations from small events through nonlinear

relationships.

Avalanche scaling is consistent with marginal stability in near-neutral

ecological dynamics

The conserved avalanche scaling suggests that these fluctuations are driven by a generic feature

rather than system dependent species interactions. We tested whether the dynamics of near-

neutral ecology are sufficient to reproduce the avalanche statistics. Near-neutral dynamics can

emerge in systems with weak cross-species interactions compared to stochastic driving forces

or the influences of environmental factors, and are often taken as a null model for ecological

dynamics [30]. In this regime, the restoring force to perturbations becomes relatively weak,

and stochasticity can drive extreme fluctuations, giving rise to a state of so-called “marginal

stability” (S2 Fig) [34–36]. Empirical evidence of marginal stability has been found in ecosys-

tems at the ‘edge of chaos’ [1–7]. However, the specific generative mechanism is expected to be

irrelevant to statistical features of dynamic fluctuations and thereby the determination of scal-

ing laws.

We use a linear response model to simulate dynamics near marginal stability (Methods).

This model has been shown to generate signatures of emergent neutral ecology from large

numbers of weak species interactions without the need to assume a specific interaction matrix

[34–36]. Numerical simulations of the model produce avalanche scaling laws across increas-

ingly wider dynamic ranges as the system approaches marginal stability (S2 Fig), with expo-

nents in quantitative agreement with the empirical data (grey lines in Fig 1B–1D). While we

acknowledge that this is not the only model that can generate neutral ecology behavior, it pro-

vides a well-converged form of average avalanche trajectory consistent with the data (Fig 1E).

This allows us to use the model for generating test data in characterizing the performance of

forecasting algorithms described below.

Data extrapolation based on avalanche scaling improves forecasting during

unprecedented fluctuations

We next applied the avalanche statistics to improve forecasting accuracy during ecological

fluctuations. Incorporating this information into forecasting algorithms (particularly EDM

methods) is non-trivial, as their predictions rely directly on time series of species abundance.

Therefore, we developed a method, avalanche scaling extrapolation (ASE), to extrapolate

dynamic trajectories of large, unprecedented events from available small, frequent fluctuations

using the scaling laws identified above (Fig 2A, fitting sector). ASE calculates a single system-

specific parameter (unit avalanche size) based on observed fluctuations. This is then combined

with the scaling laws to stretch the average avalanche trajectory and produce expected dynam-

ics of large fluctuations that are not present in the historical data (Methods). The generated

time series data (referred to as ASE data for the rest of the paper) can be fed directly into EDM

methods such as S-map [14]. In S-map, forecasts are made by estimating the linearized local

dynamics based on neighboring historical data points in a time-embedded state space. The

predictions are calculated via a linear regression of the trajectories of k-nearest neighbors, with
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contributions weighted by their inverse distance (d−1). This method suffers when no nearby

neighbors are available and linearized dynamics must be extrapolated from other regimes. In

these cases, nonlinear extrapolation by ASE should provide a better estimate of unsampled

regimes (Fig 2A, prediction sector).

ASE is anticipated to offer three advantages: first, it relies on a single fit parameter from the

data, reducing the required information content for forecasting; second, it provides a dense

reconstruction of the state space that is difficult to sample in experimental time scales; third, it

uses average trajectories for state reconstruction instead of raw trajectories, which inevitably

contain sampling noise.

Fig 2. ASE improves forecasting of fluctuations in simulated near-neutral dynamics. A, Schematics showing ASE and S-map algorithms. Bottom: in standard S-map

algorithm, ‘fitting’ is performed by embedding available historical data into a time-lagged state space. Predictions from a time point (Xt) are then made by identifying

nearest neighbors in the embedded space and performing a linear regression weighted by their inverse distance (fd� 1
j g) from the current point to estimate local

dynamics. The neighbors are inevitably far from the current point for unprecedented fluctuations. This estimate (θ) is then used to predict future abundance (St). Top:

ASE supplements the data in unsampled regimes. Avalanche events are segmented from historical data and used to fit the size-duration scaling S = bTγ (red line), where

γ = 3/2 is set constant across communities. The unit duration (b) is used to generate ASE data (orange) using the scaling relationship and average avalanche trajectory

(Eq 2). The ASE data are fed into S-map algorithm and integrated with the raw data for forecasting. B, Relative prediction error (RE) on dynamics with various degree of

marginal stability using S-map with ASE only (orange), S-map with raw data (purple), and AR1 with raw data (cyan). For each condition 1,000 training sets were

segmented randomly from a simulation (length = 108) of Eq 1 and used to predict 3,000 time points in a separate simulation. Training sets have a fixed length of 1,000

time steps. C, Relative prediction error vs. training data length. For each length, 500 training datasets were segmented randomly from a simulation (length = 108) of Eq 1

(λ = 10−5). Each training dataset was used to predict 1,000 time points in a separate simulation. D, Relative error vs. training data average magnitude. The training sets

have a fixed length of 100 time steps. The predictions were made on the largest 5% of values in the simulated testing data (λ = 10−5). Dashed line: the median magnitude

of training datasets, showing>50% of training data fall within the first bin. Symbol size scales with the number of data points in each bin. To accumulate statistics, 5,000

training sets were segmented and used to predict 5,000 points in a separately simulated dataset. In B-D, embedding dimension: m = 10, prediction time: P = 50.

Symbols: median; error bars: interquartile values.

https://doi.org/10.1371/journal.pcbi.1008021.g002
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We ran several benchmarking tests on the data generated through the linear response

model to quantify the value of ASE data in forecasting fluctuations. To characterize the

dynamic regime in which ASE applies, we generated training data using various λ and assessed

the accuracy of forecasting time points in a separately simulated testing dataset using S-map

with ASE data, S-map with raw data, and a first order autoregressive (AR1) method with raw

data [37]. Though AR1 is a less general method than S-map, we include it here as a reference

because it matches the linear assumptions of the simulated model. As expected, we found that

using ASE data in S-map significantly reduces the prediction error compared to either method

using raw data when λ is small (Fig 2B). This is because as λ becomes smaller, the probability

of extreme, unsampled dynamics increases, resulting in poor extrapolation from raw data

alone. In contrast, as deterministic dynamics dominate the system (λ becomes larger), the dif-

ferences between the methods diminish.

Next, we showed that ASE removes sensitivity to the availability of historical data. To do so,

we ran each forecasting method using training datasets of various lengths. Predictions made

by S-map with ASE data maintain almost constant small errors across all training data lengths,

whereas shorter training data (sampling less of the fluctuation range) cause larger errors using

S-map or AR1 with raw data (Fig 2C). This contrast persists to the limit where training data

length approaches the forecasting time, at which point S-map with raw data is unable to exe-

cute. This feature of ASE is crucial in practice because there is often a lack of data in ecology

[15].

To directly demonstrate that ASE improves performance through better extrapolation dur-

ing unsampled events, we segmented data from the linear response model into training sets

with constant length but varying fluctuation amplitude. We then compared the effect of train-

ing data amplitude when predicting the largest 5% amplitude time points using raw or ASE

data (Fig 2D). We found that using ASE data in S-map enables accurate prediction of extreme

events from training data that only contain fluctuations of small magnitudes. This is important

as small fluctuations typically make up the majority of real ecological datasets.

Finally, we applied ASE to predict large rare events in the empirical data. To generalize

beyond the regime close to marginal stability, we developed a hybrid version of S-map. In this

method, raw and ASE data are each used to generate a separate reconstructed state space.

Nearest neighbors are then selected from each reconstruction and weighted inversely with

their distance from the current time point (d). To combine the two sets of nearest neighbors,

we further weight terms from the raw data and ASE reconstructions by 1−μ and μ respectively

before performing the prediction step (Fig 2A). This method allows the ASE data to act as a

prior condition when fitting local dynamics, i.e., when there is little historical data near the

current time point, the prediction is dominated by the ASE data. The weighting parameter μ
allows for tunable weighting of this prior condition and has been set at μ = 0.5 throughout our

analysis.

To assess forecasting accuracy, we segmented each empirical species dataset from the three

ecosystems we study into short time series, each sampling a limited dynamic range. The short

training set length allowed us to segment a larger number of independent training sets to eval-

uate statistical significance when comparing across methods. We used the 50% of segments

with smallest magnitudes as training data to predict the 5% largest out-of-sample time points

to show that our method is capable of better prediction of fluctuations unprecedented in his-

torical data. ASE results in significantly reduced error across species and communities (Fig 3).

Even for the small datasets of cyclopoids in plankton community and barnacles in the inter-

tidal community that do not provide sufficient statistics for us to recover avalanche scaling

laws, augmenting the historical data with ASE data still significantly improves forecasting

accuracy.
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Fig 3. Augmenting historical data with ASE improves forecasting in empirical data. Comparison of S-map

forecasts made from raw data (purple) and the hybrid method using both raw and ASE data (orange). To evaluate

performance during unprecedented events, we segment empirical data into short segments of lengths specified below.

We then use the 50% of segments with lowest average amplitude as training datasets to predict the 5% of time points

with largest amplitude. The mean relative error across predictions, hREi, is computed for each of these segments and

compared between the two methods. Data segment length: 10 time steps for plankton (equivalent of 1 month) and

intertidal (equivalent of 10 months) data, 48 steps (equivalent of 1 d) for the forest data. Prediction time: 1 time step for

plankton and intertidal data, 4 steps for forest data. Embedding dimension: m = 3 for all species. Bars: median; boxes:

interquartile, whiskers: 5 and 95 percentile; dots: outliers. p-values are computed using a two-sided t-test to compare

the mean errors in prediction with raw data only versus the hybrid method. Predictions are made for n training

segments in each species, as specified in the figure.

https://doi.org/10.1371/journal.pcbi.1008021.g003
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ASE enhances forecasting of chaotic dynamics

Does ASE also apply to ecosystems that do not follow near-neutral dynamics? To answer this

question, we quantified the forecasting accuracy on barnacle abundance fluctuations in the

mechanistic model derived from the intertidal community [3]. Using this model allows us to

explicitly explore the effect of stochastic and chaotic forcing in forecasting accuracy. The bar-

nacle abundance in this ecosystem can be strongly influenced by seasonal fluctuations. The

strength of this effect was modeled through a tunable forcing parameter (ϕ) known to drive

the system towards chaos through a series of period-doubling bifurcations [3]. Additionally,

the dynamics are influenced by a day-to-day stochastic temperature variation, characterized

by a standard deviation z.

As the system becomes more chaotic (larger ϕ) the size distribution of species abundance

fluctuations changes from a unimodal distribution, which is easy to sample with limited data,

to increasingly broad distributions with complex shapes (Fig 4A). None of these size distribu-

tions follows a power law. However, while the fluctuation size-duration relation also deviates

from a power-law scaling in the chaotic regime, it does mostly follow a monotonic trend (Fig

4B). The average fluctuation trajectories still exhibit approximately parabolic shape but are

skewed significantly as the system enters the chaotic regime (Fig 4C). All these statistical irreg-

ularities suggest that it should be challenging for ASE to improve forecasting accuracy in cha-

otic ecosystems.

Fig 4. ASE improves forecasting in chaotic regime. A, Distribution of fluctuation sizes in barnacle abundance from

the intertidal community model. As the system becomes more chaotic (larger ϕ) the fluctuations go from an easily

sampled unimodal distribution to broader, more complex shapes. Results are shown using data with the stochasticity

term z = 1. B, Scaling of fluctuation size vs. duration in barnacle abundance from the intertidal model. Colors same as

in A. C, Average trajectories of barnacle fluctuations from the intertidal model. Colors same as in A. D, Comparison of

relative prediction error using raw data and hybrid method. Training data length: 1 year of modeled data; prediction

time 10 days. Embedding dimension: m = 3 for all conditions. The fold changes are averaged from 50,000 predictions

at each condition, i.e., 500 time points randomly selected from separately simulated data were each predicted using 100

different training datasets.

https://doi.org/10.1371/journal.pcbi.1008021.g004
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We compared the forecasting accuracy of S-map using raw historical data alone and the

hybrid method across a range of chaos and stochasticity. We found that as the system becomes

more chaotic, historical data captures less of the full state space, and as an outcome, augment-

ing the training data with ASE data improves forecasting accuracy compared to the predictions

using historical data alone. At the same time, as short-term stochasticity in the driving term

increases, ASE reduces sensitivity to data idiosyncrasies and improves relative forecasting

accuracy (Fig 4D). This is possible as ASE does not rely on specific assumptions about whether

the stochastic driver of dynamics is due to chaotic microscale dynamics, intrinsic fluctuations,

or environmental modulations. Taken together, these results demonstrate that ASE serves to

improve forecasting in data-limited chaotic ecosystems.

In this analysis, we did not attempt to feed re-parameterized fluctuation size-duration rela-

tion or average fluctuation shape into ASE under each condition. This is because these statisti-

cal features are sensitive to conditions in the chaotic regime. Extracting them from real data

requires large volumes of data and is typically impractical. Here, just as neutral ecology often

serves as the null model for species interaction, we use ASE as a null predictive model, when

the knowledge of species interactions is incomplete.

Discussion

We study the scaling of ecological fluctuations in three independent long-term datasets. The

scaling laws emerge from cumulative interactions within the communities and are consistent

with near-neutral ecological dynamics [30]. The main advance of this work is a novel data

extrapolation method (ASE) which leverages the emergent scaling phenomena to improve

forecasting accuracy during rare events. ASE accomplishes this by extrapolating dynamics to

historically unsampled regimes in a nonlinear state space. While prior work has focused on

describing these fluctuations [21–27], our progress expands on and applies these results to

gain predictive power.

Compared to existing data-intensive ecological forecasting algorithms [10,13,15], ASE

achieves its superior performance by relying on only a single fit parameter, significantly reduc-

ing sensitivity to the quality and volume of the training data. In particular, by utilizing the

average trajectories it reduces the risk of overfitting to the idiosyncrasies of individual fluctua-

tions. These features are essential to enable accurate forecasting in understudied communities,

where extensive historical information does not exist.

The augmented data produced by ASE can be directly used in S-map as well as other

locally-weighted methods for state space reconstruction. Alternatively, for forecasts based on

mechanistic models, ASE data can be used to define null-model based priors for fit parameters.

Here, the goal of ASE is not to recover the detailed interactions of a community that give rise

to the observed dynamics but to capture the generic statistical regularity that can be used to

inform predictions.

We anticipate ASE to be useful even in systems where significant prior data is available.

First, the observed power-law distribution in fluctuations suggests unprecedented events will

occur regardless of the length of observation time. This illustrates an intrinsic challenge for

ecological forecasting: data never appears sufficient to capture the most impactful events. To

address this, ASE takes advantage of the “scale-free” property of these fluctuations to extract

information contained in frequent small-amplitude events and extrapolate it to historically

unobserved regimes.

Second, it is well-documented that ecosystems can suddenly shift to new equilibria due to

species invasion or long-term changes in environmental conditions such as climate change

[16,38,39]. Species interactions, and thereby fit model parameters, can be significantly altered
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in these scenarios, requiring retraining of the model with newly acquired data [40]. In these

cases, ASE can more rapidly provide useful predictions for the new community assembly

while data around the new equilibria is still limited.

One obvious potential limitation of the ASE method is that not all ecosystems follow near-

neutral dynamics. As a result, fluctuations in those systems must deviate from the avalanche

scaling behaviors, which might compromise the forecasting accuracy of ASE. However, we

have demonstrated that augmenting the historical data with ASE data can improve forecasting

accuracy even in a chaotic regime. This implies that ASE provides a better extrapolation of

unobserved fluctuations than the standard S-map method. ASE also ignores the fact the fluctu-

ations in real ecosystems must be constrained by the physical limits of carrying capacity,

because it is difficult to estimate these values from limited historical data. This finite size effect

can introduce truncations in avalanche scalings and cause errors in ASE, especially in systems

with small carrying capacities. While it exits as a theoretical possibility, we have not observed

this effect in our analyses of empirical data that were collected from experimental and natural

ecosystems.

While this work focuses on the application of ASE to single species and ignores spatial

structures, the technique can be extended to analyze multispecies interactions and spatial cor-

relations. Fluctuations can be fit and predicted along the principle components of multidimen-

sional datasets. These high-order complications can potentially alter the avalanche statistics

[17], therefore, ASE should again serve as a null model–any deviations would then require fit-

ting system specific community models from this prior.

Methods

Data

This work studies three experimental and natural ecological communities, which were selected

based on previously reported “edge-of-chaos” nonlinearity signatures, relatively high fre-

quency measurements, and long term monitoring—enabling us to identify a large number

(>100) of avalanche events from each dataset.

Plankton: Data for this community come from a ~8 year study of a plankton community

isolated from the Baltic Sea and cultured in a laboratory mesocosm under constant external

conditions [4,28]. Species abundances were measured twice weekly as a fresh weight biomass.

Trophic groups were defined in Ref. [4] as producers (picophytoplankton, nanophytoplank-

ton, filamentous diatoms), herbivores (protozoa, rotifers, calanoids), and detritivores (bacteria,

ostracods, harpacticoids). Predatory zooplankton (cyclopoids) were excluded from scaling

analyses due to the reduced quantity of data at this trophic level. The time series data were

accessed from Ref. [28] without further processing. To obtain sufficient events to characterize

the avalanche size distributions in the plankton community, we pooled segmented fluctuations

from all species at each trophic level.

Forrest: Data for this community come from the Ameriflux site US-HA1 and are accessible

at http://dx.doi.org/10.17190/AMF/1246059. This is a deciduous broadleaf forest with data

spanning from 1991 to present. Net carbon flux was recorded made in 30 minute intervals at a

height of 30 m [29]. As in previous work analyzing this time series [2], we linearly detrended

the data prior to our analysis in order to isolate stochastic avalanche fluctuations from long

term shifts in forest productivity.

Intertidal: Data for this community come from a 20 year study on the interactions of barna-

cles, algae, and mussels on the coast of New Zealand [3]. Abundances were measured as a per-

cent of rock coverage on a monthly basis.
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Additionally, the original study developed and fit a mechanistic ODE model of this com-

munity. In this model, barnacles colonize bare rock. Algae attach and grow on bare barnacles

with no effect on the barnacles. Mussels, which cannot colonize bare rock alone, adhere on top

of and smother the previous two species, increasing the detachment rate of them and thereby

driving the system back to bare rock. Additionally, the detachment rate of all species is influ-

enced by temperature. This variation is controlled by a seasonal oscillation, scaled by a param-

eter, ϕ, and a day-to-day stochastic variation sampled from a normal distribution with mean

zero and standard deviation z.

For the avalanche scaling analysis (Fig 1), we used the model with all parameters specified

in the original work to generate additional time series. To focus on species fluctuations due to

marginal stability, we set the seasonal variations stationary (ϕ = 0) and stochasticity z = 2.

Unlike algae and mussels, barnacle abundance in this model is maintained at a rather steady

high level under this condition. We therefore excluded barnacle from this part of the analysis.

For analysis on chaotic dynamics (Fig 4), we generated time series data of barnacle abundance

using non-zero ϕ. At small ϕ, the system undergoes yearly oscillations with the seasonal forc-

ing. As ϕ increases, the system is driven to chaos through a series of period-doubling bifurca-

tions [3]. Analyses of algae or mussels led to qualitatively similar conclusions, which are not

discussed in the text for brevity.

Avalanche analysis

We defined the reference baseline level as the average measured value through a time series.

The exact reference value, however, does not affect the scaling of avalanche events (S1 Fig).

Therefore, in the plankton community we lowered the threshold to 10% of the average to

include more small fluctuations, which significantly improved the confidence of the fit

exponents.

Avalanche events were identified as deviations of the tracked species abundance (X) above

the baseline. Duration (T) was determined by the time between exceeding and falling below

this threshold. Avalanche size (S) was calculated as the Reimann sum of the area between the

threshold and measured species abundance through the duration of an event.

To plot the probability distribution of avalanche durations and sizes (Fig 1B and 1C) and

the average size vs. duration relation (Fig 1D), we placed events in logarithmically scaled bins

to improve sampling of low frequency regions. To determine the relative frequency of events

with different durations and sizes, we normalized the number of events in each bin by either

the number of time points contained within when the data are discrete or the bin width when

the data are continuous.

Power law fitting of the frequency distributions were verified by comparing the Akaike

information criterion (AIC) for analytically derived maximum likelihood estimates of power

law and exponential scaling (Table 1). This approach is independent of any binning process,

providing a less biased measurement of power law behavior [32]. Scaling exponent of the aver-

age avalanche size was determined by fitting a linear regression to bin-averaged data values in

log-log scale (S1 Table).

To calculate the average avalanche trajectory, individual events were isolated and normal-

ized to unit duration (t0 = t/T) and unit size (X0 = X/ST−1, resulting in S0 ¼
R 1

0
X0ðt0Þdt0 ¼ 1).

The average curve was then calculated by averaging the normalized abundance at each normal-

ized time point. Because the data from differently sized events were unevenly sampled after

temporal normalization, we used interpolated values of each trajectory to achieve uniform

time sampling for averaging. To improve convergence in limited empirical data, we lumped

fluctuations from all species within each community for this calculation.
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Linear response model

While the identified scaling laws are consistent with previous theoretical predictions [20,30],

forecasting critical events requires a detailed average fluctuation trajectory, which is not pro-

vided in the previous theoretical work. To generate this trajectory, we used a linear response

model at marginal stability, an inherent regime of high-dimensional complex ecosystems as

suggested by classic theoretical analyses [34,36].

Consider an ecosystem of many interacting species. Dynamics can be written generally as

ds!
dt ¼ As!, where s! is a vector of species abundance and A is the interaction matrix. In general, s!

can also contain abiotic components of the system (e.g., CO2 flux) and A is a non-linear func-

tion of the system state. If there exists a fixed point such that ds!
dt js!s
¼ 0, its stability can be eval-

uated by determining the eigenvalues of Ajs!s
, with each eigenvalue λi defining the linear

response along the direction of the corresponding eigenvector x�!i. If Ajs!s
is negative definite

(λmax<0), the fixed point is stable and perturbations decay to equilibrium.

Previous work analyzing the properties of Ajs!s
has identified two key features: first, as the

dimension increases (s! contains many species/components) the probability of a fixed point

being stable drops dramatically [36], and second, almost all of the few stable fixed points in

this limit are marginally stable, i.e., λmax!0 [34,35]. This means that in a high-dimensional

ecosystem with many weak interactions, we should expect to observe dynamics near margin-

ally stable fixed points. In addition, transient marginal stability can also arise in ecosystems as

the dominant eigenvalue approaches zero around tipping points [16,39]. However, the specific

generative mechanism is irrelevant to the determination of scaling laws.

To simulate dynamics data at marginal stability, we introduce a multiplicative noise repre-

senting stochasticity in birth, death, or other cumulative rates to evaluate local dynamics

around a fixed point, as given by:

xtþ1 ¼ Ztðxt þ lðxs � xtÞÞ ½1�

where λ and x are the dominant eigenvalue and position along the dominant eigenvector

respectively. xs is the equilibrium value of x, and ηt ~N(1,ε). The projection of x onto any spe-

cies component is a linear transformation, and as a result, scaling laws in the dynamics of x
should be observed in the time traces of all non-orthogonal measurements of the community,

including species abundances and metabolic rates (e.g., the carbon flux of the forest

community).

For numerical simulation, Eq 1 was integrated using an explicit Euler integration function.

Simulations were run with ηt independently sampled at each time step from a Gaussian distri-

bution with mean 1 and standard deviation 0.01. The simulations produce avalanche dynamics

across an increasingly wider dynamic range as λ!0 (S2 Fig), with exponents in quantitative

agreement with the empirical data (grey lines in Fig 1B–1E).

In this model, we ignore the potential environmental influences. However, we note that the

plankton community studied in Ref. (28) was grown in a closed laboratory system under

largely constant conditions, suggesting that exogenous fluctuations are not necessary for the

observed power law statistics. Additionally, the stochastic noise in the forcing term (i.e., tem-

perature) in the intertidal model is Gaussian distributed, indicating that the power law statis-

tics do not directly correlate with the external driving force.

Avalanche scaling extrapolation (ASE)

ASE first defines average avalanche events from historical data and fits their size and duration

to the power-law scaling, hSTi = bTγ, in log-log space (Fig 2A). The scaling exponent (slope, γ)
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is assumed to be conserved across systems with near-neutral dynamics, allowing ASE to only

fit for the y-intercept (b), which is the size of a unit duration avalanche. The normalized ava-

lanche trajectory Yn(t0) is generated through quadratic interpolation of the converged curve

from the linear response model as shown in Fig 1E. It is then scaled according to the size-dura-

tion relation (Fig 1D). This produces a set of avalanche trajectories {YT(t)} spanning all time-

scales of interest, where:

YTðt
0Þ ¼ Ynðt

0Þ � hYTi ¼ Ynðt
0Þ � STT

� 1 ¼ Ynðt
0Þ½bTg� 1� ½2�

and t0 = t/T. These trajectories effectively sample the entire state space outside the historical

data and are appended to create an augmented training dataset.

Forecasting method

S-map: Raw historical and ASE data are fed into the single species S-map prediction algorithm

[13]. The algorithm is based on Taken’s theorem, which states that the information about a D-

dimensional attractor can be captured in an m-dimensional embedding of the time series of a

single state of the system, if m�2D+1 [41]. Intuitively, S-map estimates the local linearized

dynamics based on a distance-weighted regression of neighboring data points in the embedded

space. The local weighting allows this method to account for dynamics that vary non-linearly

across the state space without an explicit model of the system. Because S-map performs an

averaging of local states, it is well suited for using the trajectories generated by ASE which are

averaged dynamics for unobserved fluctuations across various time and length scales. Theoret-

ical justification of S-map even in the presence of internal or exogenous noise is available in

Ref. [9,42].

In the S-map algorithm, for each time point in the training data, we define the embedding

vector Xj,t = {xt,xt−τ,. . .,xt−(m−1)τ} where m is the embedding dimension and τ is the interval

time. To make prediction of xi+P, where P is the prediction time, we define the embedding vec-

tor Xi. We then identify the k-nearest neighbors to Xi in the training data {Xj,h|h2{1,..k}} based

on the 2-norm. These nearest neighbors are appended into the [m×k] matrix Ai and their cor-

responding accurate predictions into a k length vector Si. We then solve the weighted least

square regression WSi = θ(AiW) for the mapping function θ, where W is a [k×k] matrix used

to weight each nearest neighbor (Xj,h) by kXi−Xj,hk
−q. The prediction for the current time

point can then be made as Xi+P = Xi�θ.

Our hybrid method modifies the S-map algorithm by combining nearest neighbors from

both raw and ASE data for the weighted linear regression. Specifically, each dataset is embed-

ded separately. Then, k and kASE nearest neighbors are selected from the raw and ASE embed-

dings respectively and weighted by their respective inverse distance. Each neighbor from the

raw and ASE datasets are then weighted by an additional factor of
ð1� mÞ

k and m

kASE
respectively,

where μ � [0,1]. The weighting parameter μ allows us to control the strength of the prior given

by ASE dynamics. The nearest neighbors are then used for weighted linear regression.

q = 1, k = 2 were used for all forecasting analyses in this work and were chosen to optimize

performance of predictions on the marginal stability model using the raw data alone. A default

value of μ = 0.5 was used for all predictions based on both raw and ASE data. Due to differ-

ences in sampling frequency and data availability, m, τ, and P were varied between species as

specified in the figure captions. Because forecasting requires evenly spaced time points, we ran

predictions for plankton and intertidal data on interpolated values provided in the original

studies [3,28].

AR1: AR1 makes predictions using a linear regression, xt+P = θ0+θ1xt. Unlike in S-map

where reconstructions are based on local dynamics, in AR1 all timepoints in historical data are
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used to estimate θ using least squares regression. Note that this is fully equivalent to the specific

case of S-map where m = 1, p = 0, and k = n, where n is the total number of points in historical

data.

Supporting information

S1 Fig. Avalanche scaling laws are independent of reference level. A-B, Probability distribu-

tion scaling in herbivorous plankton (A) and linear response model (B) is independent of ref-

erence abundance. The references are in the unit of mean abundance. Shifted power-law

cutoff (arrow) is due to higher reference that truncates the avalanche duration. C-D, Size-dura-

tion scaling exponent independent of threshold abundance. Data in C are noisier at higher ref-

erences due to the loss of events and limited statistics. Symbol color: same as A and B.

(TIF)

S2 Fig. Marginal stability produces the universal scaling law. A, Perturbations of ecosystem

state (green dot) from a fixed point (black or grey filled symbol) respond along the eigenvec-

tors (red and blue arrows). Top: all eigenvalues are negative. The system is stable and follows a

deterministic exponential decay to equilibrium (green arrow). Bottom: one or more eigenval-

ues approaches zero, creating marginal stability. The deterministic linear response becomes

weak relative to stochastic terms (pink arrow), which then drives the system fluctuations along

the corresponding eigenvector. B, Probability distribution of avalanche durations in the linear

response model (Eq 1) approaches a power law at marginal stability as λ!0. Line: reference

slope of 3/2. Simulation run with η~N(0, 0.01).

(TIF)

S1 Table. Statistics of average avalanche size scaling. Bin average avalanche sizes of individ-

ual species from Fig 1D were fit to the equation using linear regression in log-log scale. s.e.:

standard error.

(PDF)
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