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Abstract

Sexual selection is an intense evolutionary force, which operates through competition for

the access to breeding resources. There are many cases where male copulatory success

is highly asymmetric, and few males are able to sire most females. Two main hypotheses

were proposed to explain this asymmetry: “female choice” and “male dominance”. The liter-

ature reports contrasting results. This variability may reflect actual differences among stud-

ied populations, but it may also be generated by methodological differences and statistical

shortcomings in data analysis. A review of the statistical methods used so far in lek studies,

shows a prevalence of Linear Models (LM) and Generalized Linear Models (GLM) which

may be affected by problems in inferring cause-effect relationships; multi-collinearity

among explanatory variables and erroneous handling of non-normal and non-continuous

distributions of the response variable. In lek breeding, selective pressure is maximal,

because large numbers of males and females congregate in small arenas. We used a data-

set on lekking fallow deer (Dama dama), to contrast the methods and procedures employed

so far, and we propose a novel approach based on Generalized Structural Equations Mod-

els (GSEMs). GSEMs combine the power and flexibility of both SEM and GLM in a unified

modeling framework. We showed that LMs fail to identify several important predictors of

male copulatory success and yields very imprecise parameter estimates. Minor variations

in data transformation yield wide changes in results and the method appears unreliable.

GLMs improved the analysis, but GSEMs provided better results, because the use of latent

variables decreases the impact of measurement errors. Using GSEMs, we were able to

test contrasting hypotheses and calculate both direct and indirect effects, and we reached

a high precision of the estimates, which implies a high predictive ability. In synthesis, we

recommend the use of GSEMs in studies on lekking behaviour, and we provide guidelines

to implement these models.

Introduction

Sexual selection is a fundamental evolutionary force that operates either through (i) direct

competition between males or (ii) female mate choice which leads to the evolution of forms of
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exaggerated and useless ornaments in males (e.g. the peacock’s tail). The ornaments are sup-

posed to display male genetic quality or the absence of sexually transmissible diseases [1].

Albeit a long record of studies since Darwin’s time have addressed this problem, many ques-

tions about sexual selection remain open, and this continues to be a major research theme. For

the present contribution, the main question is how to investigate the factors affecting male

copulatory success in lek mating. In lekking species, the two sexes interact mainly during the

rut [2, 3] when males defend small display territories inside an arena or lek. For males, lekking

is a high cost—high benefits strategy, in which the risk of injuries and even death is high, but

a few dominant males may monopolize most of the copulations [4, 5]. On the other hand,

females are supposed to benefit from visiting a lek, since they can choose among several poten-

tial partners [6, 7].

Lekking has been described in many different taxa (reviewed by Hoglund & Alatalo [3])

such as insects, fishes, amphibians, reptiles, birds [3, 8, 9, 10] and mammals [2, 7, 11]. In leks,

male mating success is highly skewed [12]. However this features is not unique to leks and it is

found in other reproductive systems as well [13]

As a specific example, in fallow deer (Dama dama) [11, 14], the breeding system is highly

variable and lekking is not the only strategy [5, 15]. Independtly from the breeding system in

this species the skew of male copulatory success appear always very high. Two main hypotheses

have been proposed to explain the observed asymmetry in copulatory success: female choice,

FCH, and male dominance, MDH, [16, 17, 18]. FCH [19] assumes that the females select

mates on the basis of the phenotypic traits of males, while according to MDH the copulatory

success is determined by lek attendance and a high dominance rank [20] In fallow deer, several

studies pointed out that female choice is the most likely determinant of copulatory skew [15,

21, 22, 23]. However, Clutton-Brock et al. 11] argue that copulatory success may not be solely

related to female preferences for specific male traits, but it may also arise from different rea-

sons, such as the need to minimize the risk of predation or harassment. Other authors, on the

contrary, suggested that copulatory success strictly depends on male dominance rank [5, 24,

25, 26, 27, 28].

A number of different statistical techniques have been used to investigate the copulatory

success in lekking species (e.g. [12]). Most papers have applied standard linear models (e.g.,

[12, 29, 30]), mixed models to account for repeated observations (e.g. [31, 32]), or Generalized

Linear Models to manage non-normal distributions. Finally, a few papers have used different

approaches, such as logistic regression [33], path analysis [34], and partial correlations [35]. A

detailed list of the methods used in the literature is reported in S2 Table. A critical reading of

this literature puts into light several methodological shortcomings: i) multicollinearity among

explanatory variables [35], (ii) erroneous handling of non-normal and non-continuous distri-

butions of the response variable, and (iii) problems in inferring cause-effect relationships, so

that no firm decision on the prevalence of female choice or male dominance could be estab-

lished [34].

Multicollinearity, which occurs when two or more predictors in a multiple regression

model are highly correlated, leads to variance inflation and increase type-I errors, thus making

some of the coefficients appear significant when they are not [36].

Another important source of bias depends on erroneous handling of non-normal and non-

continuous distributions of the response variable. Copulatory success is a classic example of

such a variable; in leks, only a few males have access to mating, and this process leads to a

zero-inflated distribution of copulations. In many cases, this problem is dealt with using square

root or logarithm transformations [12, 33, 35, 37], but despite this procedure being recom-

mended in general biometry textbooks (e.g., [38]), its validity is restricted to cases when
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deviations from normality are only to limited extent. Moreover, discrete response variables

containing many zeros cannot be transformed into normal distributions, and inference is

doomed to be severely biased [39, 40].

There are concerns related to the link between correlations and causation, which are

tricky to deal with. Explanatory variables and copulatory success may, in fact, appear unre-

lated when they are related, or on the contrary, they may be correlated even when no causal

link is present. A spurious or missing correlation may arise for several reasons which include

(i) a common causation that induces a false relationship or cancels out an existing associa-

tion, (ii) a reciprocal association loop, (iii) a conditional relationship between explanatory

and response variables following the value of a third control variable, or (iv) a non-linear

association between dependent and independent variables [41, 42, 43, 44]. When a correla-

tion between two variables is detected, cause-effect relationships cannot be easily deduced

without further assumptions [45,41]. The best way to test causal relationships is to use a

proper experimental design where the hypothetical cause is directly manipulated [45]. How-

ever, manipulative experiments are difficult to achieve, and researchers have to rely mainly

on observational studies [12, 3, 46].

The problem of inferring cause-effect relationships among variables can be addressed by

path analysis or Structural Equation Models (SEM) [47]. In field studies often the variables of

interest cannot be directly recorded by the observers. For instance, we cannot measure the

“sex appeal” of males [48]. However, we can measure some traits we expect to be correlated to

“sex appeal” and so obtain an indirect evaluation of the variable of interest. This is the same

done in principal component analysis: a reduced number of meaningful factors are estimated

from the correlations among a large number of descriptors. In SEM terminology, we refer to

the unobservable factors as latent and to the observed descriptors as manifest (a detailed dis-

cussion is presented in S3 Text and in S3 Fig). A SEM is a combination of a measurement

model that defines latent variables using one or more manifest variables and a structural

model that imputes causal relationships between latent variables [41]. The development of a

measurement model is also important to control for the errors introduced during observa-

tions, i.e., it represents a state space model for the unobserved variables of interest. In this way,

a latent variable is not directly observed, but its existence is inferred by the way it influences

manifest variables that can be directly observed [41].

One known limitation of standard SEM is to assume that all variables are normally distrib-

uted [49]. The introduction of Generalized Structural Equations Models (GSEM), may over-

come this limitation. In GSEM, it is possible to have a model with both continuous and

discrete variables grouped together in the same latent construct. As such, GSEM combines the

power and flexibility of both SEM and GLM in a unified modeling framework. The advantages

of GSEM are: (i) to evaluate potential causal relationships with the “structural model”; (ii) to

consider both direct and indirect effects of multiple interacting factors, simultaneously [41, 47,

50, 51]; (iii) the possibility of using appropriate probability density functions other than the

normal one for manifest indicators and latent constructs.

In this paper, we contrast the main statistical methods used in literature to GSEM using

data from a specific study case about fallow deer lekking behaviour. First, we reviewed the

available literature on lekking behaviour to obtain an overview of the statistical methods used.

Secondly, we fitted the main types of models used. Third, within a SEM framework, we formu-

lated two models, one describing the FCH and the other the MDH hypotheses, and fitted them

using both SEM and GSEM, for comparison. Finally, we compared the predictive perfor-

mances of the different methods using information theoretic indexes (AIC and BIC), residual

analysis, and precision of regression coefficients.
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Materials and methods

Study area and data collection

Field observations were carried out during 1991 and 1992 ruts (September-October) in

the Preserve of Castelporziano near Rome (Italy) (coordinate), an area covering 42 km2.

The habitat is characterized by an old-growth natural oak wood, with both evergreen

(Quercus ilex and Q. suber) and deciduous (mainly Q. cerris and Q. frainetto) tree species.

A detailed description of the vegetation of the study area can be found in Bianco et al.

[52]. Information on ungulate populations are given in Focardi et al. [53] and Imperio

et al. [54]. The dataset was used to estimate two different dominance indexes: (a) Dom [55];

(b) David’s score, Ds [56]. To obtain index values comparable across years, Dom and Ds
were relativized to the number of fights observed in each year. The number of observed

copulations achieved by a buck in one rut was used as a measure of copulatory success

(CopS).

Two measures of lek attendance were computed: LA1, is the number of total days in which

an animal was seen at the lek and LA2 is the number of days the animal was able to hold a terri-

tory. Finally, we estimated the average number of females observed in one buck’s territory

(harem size—HS) and courtship success (CourtS) as the number of courtships terminated with

a copulation divided by the total number of attempts (number of copulations /number of

courtship events, for every male).

Two variables were used: a) the total number of spellers (TotS) and b) a measure of fluctuat-

ing asymmetry for small spellers [57, 58] ASST.

Further details on study area, data collection, data validation and measures computations

are provided in S1 Text, S1 Table, S1 and S2 Figs in Supporting information.

Ethic statement

This work does not imply animal handling or capture. The “Segretariato alla Presidenza

della Repubblica” was the authority responsible for the permission to work in the Preserve of

Castelporziano, Rome, (Italy). The fieldwork was based on a research and management agree-

ment between the I.S.P.R.A -The Italian National Institute for Environmental Protection and

Research (ex I.N.F.S. National Institute for Wildlife) (former institution of SF 1988–2011), the

Director of the Preserve of Castelporziano, Dr. A. Demichelis, the Preserve research responsi-

ble, Dr. A. Tinelli, in collaboration with the Presidential Estate rangers, and the Corpo Fore-

stale dello Stato (C.F.S.) under the combined prescriptions of the Italian law which regulates

studies on wild species and does not require that the I.S.P.R.A. obtain permits from any other

authorities. The field study did not involve endangered or protected species and this implied

that it was not required any approval from Institutional Animal Care and Use Committee. The

study was not carried out on private land.

Statistical analysis

We compared several modelling approaches described in the literature. We were aware that

some of these approaches are inherently flawed, but we decided to use them due to their wide-

spread use in the pertinent literature on leks (cfr. S2 Text and S2 Table). All the tested models

have CopS as the response variable. Note that CopS is discrete by definition (because it is a

count) and hence cannot be assumed to be normally distributed.
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Linear Models and Generalized Linear Models

The copulatory success of the i-th buck (CopS) is modelled as:

CopSi ¼ b0 þ b1x1;i þ b2x2;i þ . . .þ bpxp;i þ εCopS ð1Þ

where the xp,i are predictor variables, the βs regression coefficients and εCopS is the error term.

Following the approaches described in the literature, we first used ordinary least squares

regression where the response variable CopS. was untransformed, log-transformed, or square-

root transformed. Secondly, we used GLMs for count data. The following models were

considered:

LM1, multiple regression model without CopS transformation;

LM2 where the dependent variable is log(CopS +1);

LM3 where the dependent variable is log(CopS +0.5);

LM4 where the dependent variable is log(CopS +0.1);

LM5 where the dependent variable is CopS 0.5;

GLM1, Generalized Linear Model where CopS follows a Poisson distribution;

GLM2, assuming that CopS follows a Negative Binomial distribution;

GLM3, assuming that CopS follows a Zero Inflated Poisson distribution (ZIP);

GLM4, assuming that CopS follows a Zero Inflated Negative Binomial distribution (ZINB);

GLM5, assuming that CopS follows a Hurdle at Zero Distribution (Hurdle). In the Hurdle

models a Bernoulli probability governs the binary outcome of whether a count variable has a

zero or positive realization. When the realization is positive the conditional distribution is

modelled by a truncated at zero count data model.

For each type of model we considered both the full model, which includes all significant

(P<0.05) and non-significant coefficients and the Minimal Adequate Models (MAM) which

include only significant values [59]. MAMs, hereafter denoted by the suffix r (e.g. GLM4,r)

were obtained using a p-value selection procedure [60].

Akaike information criterion (AIC) and Bayesian information criterion (BIC) were also

computed to assess model performances.

Statistical analysis was carried out in R [61], using the packages fitdistrplus, gamlss, pscl, vcd.

Generalized Structural Equation Models. A. A SEM requires the a-priori definition of

links among model variables in the form of a regression equations system. The goal of this

class of models is minimize the difference between estimates and expectations variance-covari-

ance matrix of data.

Latent variables are unobserved factors denoted,η1,η2,. . ..,ηn that represent an hypothetical

construct that can be inferred by the way it influences manifest or observed variables (continu-

ous, Yi = y1, y2,..,yn) [41, 51].

A SEM model is composed by two sub-models: a measurement model that describes the

relationships between latent variables and their manifest variables and a structural or causal

model that constitutes a directional chain system that describes the hypothetical causal rela-

tionship between the constructs of theoretical interest (latent variables) using path diagrams
(Fig 1a and 1b).

Structural coefficients or regression coefficient (γ, β, λ) represent the effects of each inde-

pendent variable on the dependent variable (Fig 1a and 1b).

A manifest variable, in a SEM with latent variables, plays a role of endogenous variable if it

is predicted by another variable in the model and is therefore a response variable; it is assumed

to be generated as a linear function of its latent dimension and the residual error term repre-

sents the imprecision in the measurement process. An exogenous variable whose variation is
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not explained in a model (i.e. fluctuating asimmetry of small spellers ASST or Dom). A descrip-

tion of SEM modelling is reported in S3 Text, S3 Table and S3 Fig.

GSEMs represent a generalization of SEMs by allowing the use of discrete variables and

non-Gaussian distributions. They combine observed (or manifest) and latent variables repre-

senting unmeasured constructs. A GSEM [62] reads:

η ¼ fZðZ; x; zÞ

x ¼ fxðZ; dÞ

y ¼ fyðZ; εÞ

ð2Þ

where x and y are vectors of manifest variables and η, ξ, z represent the latent variables, while

δ, and ε denote the error terms. The functions (fη, fy, fx) provide a general way to represent the

Fig 1. Path diagrams for a) the “dominance male” model (MDH) and b) “female choice” model (FCH).

Variable names are: ASST = the fluctuating asymmetry of small antler’s spellers; TotS = total number of small

and large antler’s spellers; Dom = Dominance Index (Clutton-Brock Index [55]) divided by the total number of

bucks of each year; Ds = the David’s score (Gammel et al.) [56] divided for the total number of bucks of each

year; LA1 = number of days in which the animal was present in the lek. LA2 = total number of days of

presence/territory in different locations of the same lek. HS = average number of females in a male’s territory;

CourtS = the fraction of courtship events terminated with a copulation (number of copulations / number of

courtship events, for every male); CopS = total copulatory success of the i-th buck in one rut. The number of

observations is the same for all models (N = 118). Symbols and variables are described in the text and in S1

Table.

https://doi.org/10.1371/journal.pone.0181305.g001
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connections between the variables within the parentheses to those on the left hand side of each

equation. We developed and compared two different causal models, one assuming that copula-

tory success is determined by MDH and the other one based on FCH.

We verified that the number of parameters is identifiable according to rules 1 and 3 of

Shipley [41]. We used a robust maximum likelihood estimator and a sandwich estimator

[63]. We fitted GSEMs with both Mplus [64] and STATA [65]. We used both softwares to

check that the results are identical. Further STATA provided case-specific residuals which

are not outputted by Mplus. On the other hand, Mplus returns the standardized path

coefficients and total, direct, and indirect effects which STATA does not compute. The

STATA and Mplus codes used to generate SEM and GSEM models are presented in

S4 Text.

Models’ comparison. Unfortunately, there is no a simple method for comparing these dif-

ferent sets of models. GLMs and LMs can be compared by AIC or BIC, but only if the depen-

dent variable is not transformed [66]. To overcome this problem and make all LMs and GLMs

comparable, we calculated the maximum likelihood estimates from the log-transformed or

root square—transformed model applying the formula reported in Weiss [67] (see S5 Text for

details).

The comparison of SEM or GSEM with AIC is questionable due to the presence of latent var-

iables which increase AIC values making these models not comparable to GLMs [68]. On the

other hand, the use of absolute fitting indexes is vulnerable to criticisms [69, 70]. We compared

models by two different approaches. First, we measured the precision of each estimated regres-

sion coefficient b̂ by computing its coefficient of variation (CV ¼ SEðb̂ Þ
jb̂ j
¼ 1

jb̂ j=SEðb̂Þ
¼ 1

jTj ¼
ffiffiffiffiffi
w2

1

p
,

where T is the statistic test and w2
1

is the chi-square test with one degree of freedom). For a more

general evaluation of the model’s precision, we computed the median CV for the parameters

estimated by each model [71]. Second, we performed an analysis of case-specific residuals. In

principle, if a model correctly fits the data, the residuals are expected to have zero mean, normal

distribution, without any pattern or structure. We visually checked residual distributions and

computed their mean, variance, and kurtosis. The best distribution is the one with the smallest

variance of residuals, symmetrical and centered around zero.

Definition of working hypotheses. In this paper, we contrast two working non-nested

hypotheses, “male dominance” (MDH) and “female choice” (FCH). The structure of the

models corresponding to the Male Dominance Hypothesis (MDH) and the Female Domi-

nance Hypothesis (FDH) is shown in Fig 1. We have assumed, according to literature, the

existence of four latent variables: ξ1 represents the effect of antler shape and is described by

ASST and TotS, ξ1a represents male dominance and is described by Dom and Ds, η1 repre-

sents lek attendance (LA1 and LA2). Finally, η2 represents courtship and is measured by HS,

CourtS, and CopS. The use of latent variables allowed us to reduce the unavoidable errors in

the measurement of manifest variables. For MDH we assume that ξ1a influences η1, or in

other words the fighting ability of bucks determines their lek attendance and territory hold-

ing. Being able to defend a territory allowed a buck to keep a harem and finally to sire

females. For the FCH we assume that male phenotypic quality, ξ1, which represents its health

and physical fitness, allows the buck to stay in the lek for a long time and to be selected by

wandering females.

Note that SEM allows us to study the effects of remote and proximate causes of male copu-

latory success in the same statistical framework. Further, the use of latent variables reduces the

unavoidable errors in the measurement of manifest variables. Once the measurement model is

defined, we can establish appropriate causal relationships among latent variables.

GSEM in sexual-selection analyses
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The MDH is implemented by the following system of regression equations (Fig 1a):

Ds ¼ l1ax1a þ dDs

Dom ¼ l2ax1a þ dDom

LA1 ¼ l3Z1 þ �LA1

LA2 ¼ l4Z1 þ εLA2

HS ¼ l5Z2 þ εHS

CourtS ¼ l6Z2 þ εCourtS
CopS � PoissonðmÞ; logðmðCopSÞÞ ¼ l7Z2:

ð3Þ

The model for FCH is represented in Fig 1b and reads:

ASST ¼ l1x1 þ dASST

TotS ¼ l2x1 þ dTotS

LA1 ¼ l3Z1 þ �LA1

LA2 ¼ l4Z1 þ εLA2

HS ¼ l5Z2 þ εHS

CourtS ¼ l6Z2 þ εCourtS
CopS � PoissonðmÞ; logðmðCopSÞÞ ¼ l7Z2:

ð4Þ

FCH and MDH used 21 and 19 free parameters, respectively, which are identifiable, accord-

ing to Shipley [41].

Results

The distribution of CopS is showed in Fig 2. Most of the bucks (68.6%) had no copulations.

The number of copulations per individual ranged from 0 to 43, and the distribution has high

kurtosis (32.33) and skewness (4.99). The distribution of CopS is best fitted by a negative bino-

mial distribution (χ2 = 0.28, P = 0.595), which is much better supported than alternative mod-

els (ZINB, ΔAIC = 33.39; ZIP, ΔAIC = 152.47; Poisson, ΔAIC = 535.02). Data transformation

changes the discrete CopS distribution into a continuous one, which remains, however, non-

normally distributed (Shapiro-Wilk Test: log(CopS+1), W = 0.648, P<0.001; log(CopS+0.5),

W = 0.659, P<0.001; log(CopS+0.1), W = 0.662, P<0.001; CopS0.5, W = 0.635, P<0.001).

Linear and Generalized Linear Models

The AIC and BIC values associated with LMs with untransformed response variables and

GLMs are reported in Table 1. LM1 and LM1r have considerably higher AIC and BIC than

GLMs. Among the different GLMs, GLM2,r exhibits the lowest AIC and BIC values, while the

corresponding full model, GLM5,r has higher AIC and BIC values. GLM4,r presents the same

AIC values as GLM2,r, but a higher BIC values. As expected, MAMs show lower fit indexes

than corresponding full models, except in Hurdle model. The different models identify differ-

ent sets of significant variables, and the unstandardized coefficients for all models are given in

S4 Table. In synthesis, among the eight variables considered, only HS and CourtS (except in

GLM5,r) are always detected as significant, whereas TotS, Ds, and LA1 were only put into light

by some of the GLMs. Note, however, that their estimates are nonsensical since they are always

negative, whereas positive values are expected. This is an example of Simpson’s paradox,

which Pearl (e.g. [47]) has discussed as a common problem with non-SEM studies.
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Fig 2. Frequency distribution of number of copulations achieved by each buck (CopS) before (upper

left panel) and after transformation. The continuous red line shows the theoretical normal curve for

reference.

https://doi.org/10.1371/journal.pone.0181305.g002

Table 1. AIC and BIC values associated with linear (untransformed) and GLM models.

Model Type K AIC BIC

LM1 Normal 9 662.6 687.5

LM1,r Normal 3 657.7 670.9

GLM1 Poisson 9 283.2 308.2

GLM1,r Poisson 6 280.2 296.8

GLM2 Neg Binom 10 224.7 252.4

GLM2,r Neg Binom 4 222.7 233.8

GLM3 ZIP 10 285.2 313.0

GLM3,r ZIP 7 282.2 309.9

GLM4 ZINB 11 226.7 257.2

GLM4,r ZINB 5 224.7 255.2

GLM5 Hurdle 10 385.3 412.9

GLM5,r Hurdle 6 400.8 414.7

K = number of parameters in the model. Type indicates the distribution used. The suffix r indicates reduced

models

https://doi.org/10.1371/journal.pone.0181305.t001
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The models with linear transformed response variables (Table 2) have erratic AIC and BIC

values varying from a minimum for LM4,r (AIC = -67.6 and BIC = -59.3) to a maximum asso-

ciated to LM5. (AIC = 347.7 and BIC = 372.6). AIC and BIC values vary in an unpredictable

way depending on the value of the constant added to the transformed variable (or in the calcu-

lation of maximum likelihood in the case of the square root transformation). Due to the com-

plete unreliability of data transformations, this approach will not be considered further in this

paper.

Structural Equation Models

The variance-covariance/correlation matrix used in SEM and GSEM is reported in S5 Table.

To select the appropriate distribution of CopS for GSEM, we first selected the discrete distri-

butions available both in Mplus and STATA. It resulted that only two of these distributions,

Poisson and Negative binomial, were supported. According to the results of Table 1, we first

tested the negative binomial distribution, but the model did not converge in either software.

Thus we were forced to use the Poisson distribution.

Table 2. AIC and BIC values associated with linear models with transformed response variables.

Model Transformation K AIC BIC

LM2 log(x+1) 9 250.2 275.1

LM2,r log(x+1) 3 249.4 257.7

LM3 log(x+0.5) 9 157.5 182.4

LM3,r log(x+0.5) 3 156.7 165.0

LM4 log(x+0.1) 9 -66.3 -41.3

LM4,r log(x+0.1) 3 -67.6 -59.3

LM5 x 0.5 9 347.7 372.6

LM5,r x 0.5 3 344.7 353.0

K = number of parameters in the model. Transformation indicates the type of transformation applied to the dependent variable. The suffix r indicates

reduced models.

https://doi.org/10.1371/journal.pone.0181305.t002

Table 3. Standardized path coefficients, SE, and p-value for FCH in GSEM.

Variables Path coefficients GSEM

Estimate ± SE P

Mating success (η2)

HS λ5 0.630 ± 0.065 <0.001

CourtS λ6 0.896 ± 0.019 <0.001

CopS λ7 2.387 ± 0.138 <0.001

Lek attendance (η1)

LA1 λ3 0.936 ± 0.035 <0.001

LA2 λ4 0.969 ± 0.038 <0.001

Antler shape (ξ1)

ASST λ1 0.480± 0.038 <0.001

TotS λ2 0.379 ± 0.121 0.002

η1 on ξ1 γ1 0.585 ± 0.194 0.003

η2 on η1 β1 0.330 ± 0.093 <0.001

Variables and symbols are detailed in the text.

https://doi.org/10.1371/journal.pone.0181305.t003
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If we implement the SEM for MDH with Mplus, convergence is not achieved, because the

residual covariance matrix is not positive definite [72] and the residual variances associated

with LA1 have negative values. Note that the AIC values yielded by Mplus are biased. Indeed,

in GSEM the convergence of the MDH model is only achieved by fixing the path-coefficients

for Dom, LA1, and HS to a predefined value. The MDH model (SEM or GSEM) does not con-

verge with STATA. With these problems of convergence, GSEM, was always better than SEM

(ΔAIC = 433.4 and ΔBIC = 436.2). On the contrary, the FCH converges using both SEM and

GSEM. Even for FCH, GSEM provided a better fit than SEM (ΔAIC = 438.9, ΔBIC = 441.7). In

synthesis, this analysis shows that FCH is always preferred to MDH by having lower AIC and

BIC values both when fitted using SEM and GSEM (ΔAIC and ΔBIC>140 always). Due to

these results, the MDH model will not be considered in the following analyses. Path coeffi-

cients for GSEM-FCH models are shown in Table 3. All coefficients are highly significant

(P<0.003). Noteworthy, the path coefficient for ASST is positive and not negative as expected.

Model comparisons

The comparison of the models is reported in Table 4. It clearly appears that the precision of

MAM models for LMs and GLMs is higher than that of the corresponding full models. Consid-

ering the median CV values, the two less precise models are GLM4 (median CV = 1.089) and

LM1 (median CV = 0.828), while the more precise models are GLM4,r (median CV = 0.162)

and GLM2,r (median CV = 0.148). LMs and GLMs were clearly outperformed by both the

SEM (median CV = 0.079) and, to a larger extent, by GSEM (median CV = 0.059), whose coef-

ficient CV values range from 0.02 to 0.319.

Comparable results are obtained when analysing the distribution of residuals (Table 5, Fig

3). In LMs, the variance is very large, and the distribution is strongly leptokurtic with heavy

tails (Fig 3). As a comparison, statistics of the distribution of residuals for LMs with trans-

formed response variables are shown in S6 Table. These distributions are characterised by

large variances and kurtosis, and none is centred on zero.

Table 4. Summary results of LM, GLM, SEM, and GSEM.

Model K1 ASST TotS Dom Ds LA1 LA2 HS CourtS Median

LM1 2 1.883 1.007 0.645 0.859 0.798 1.600 0.182 0.339 0.828

LM1,r 2 0.171 0.286 0.228

GLM1 5 0.624 0.227 8719 0.365 0.369 1.177 0.098 0.103 0.367

GLM1,r 5 0.235 0.262 0.214 0.086 0.097 0.214

GLM2 2 4.569 0.783 3.369 1.299 0.613 2.033 0.199 0.132 1.041

GLM2,r 2 0.178 0.119 0.148

GLM3 5 0.625 0.227 2311 0.335 0.368 1.176 0.098 0.103 0.351

GLM3,r 5 0.235 0.262 0.214 0.086 0.097 0.214

GLM4 2 4.946 0.838 3.395 1.341 0.644 2.204 0.219 0.144 1.089

GLM4,r 2 0.193 0.132 0.162

GLM5 3 0.508 0.296 0.826 2.75 0.605 100 0.128 0.886 0.715

GLM5,r 3 0.456 0.520 0.097 0.456

SEM-FCH 7 0.079 0.312 0.051 0.046 0.143 0.131 0.079

GSEM-FCH 7 0.079 0.319 0.037 0.039 0.103 0.021 0.059

On the left: type of model, number of significant (P<0.05) coefficients. On the right: coefficient of variation (CV) of regression parameters and their median.

MAMs are denoted by the suffix r. Variable names are detailed in the text. All models have the same numbers of observations (N = 118). K1 is the number of

significant regression coefficients.

https://doi.org/10.1371/journal.pone.0181305.t004
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GLMs perform better than LMs (Table 5), distributions remain leptokurtic, but variances

are smaller, and the mean is slightly biased low (Fig 3a and 3b). The residuals associated with

SEM-FCH (actually to the relationship between CopS and η2), although their mean is close to

0, have a strongly leptokurtic distribution and have a variance much larger than that of GLMs

(but not LMs). Finally, the residuals associated with GSEM-FCH have a low variance and the

least value of kurtosis among the studied models.

Interestingly the number of regression coefficients that are significant is maximal in SEM

and GSEM (Table 4). Since results indicate that GSEM-FCH is the model more appropriate

for our data (lower AIC/BIC, lower residuals’ variance, and lower CV median), it is interesting

to investigate total effects (cfr. S3 Text) for this model (Table 6). Noteworthy, the impact of ξ1
and η1 on CopS is of similar size with respect to η2, while ξ1 and η1 have much smaller effects

on CourtS or HS than η2, which suggests a remote causation for CopS. The impact of ξ1 on

both ASST and TotS, but to different degree, is more relevant for ASST than TotS.

Discussion

The data collected at Castelporziano on the mating behaviour of fallow bucks represents a typi-

cal example of the many studies performed on the leks of this species [11, 12, 34, 23] and other

species of vertebrates [9, 12, 29]. These behavioural studies are important not only to identify

the proximate causes of mate selection, but also for determining the intensity of sexual selec-

tion and understanding the evolution of exaggerated traits in males.

A literature review (cfr. S2 Text and S2 Table) allowed us to select the more popular meth-

ods used in previous research and to contrast them with innovative GSEMs. The use of the

same dataset to compare different statistical methodologies is useful for evaluating their rela-

tive efficiency in data fitting. In general, LMs appear to be severely biased, and although GLMs

may improve the reliability of the results, they overlook several important effects and the esti-

mated coefficients still have low precision, which severely jeopardizes their predictive capacity.

It is worth stressing that data transformation is not appropriate to normalize data distribution,

Table 5. Mean, variance, and kurtosis for residual distributions of the different models considered in

this paper.

Model Mean Var Kurtosis

LM1 0 13.92 29.96

LM1,r 0 14.78 30.58

GLM1 -0.26 1.18 9.23

GLM1,r -0.27 1.2 9.32

GLM2 -0.21 0.32 9.45

GLM2,r -0.23 0.33 8.30

GLM3 -0.10 1.32 9.86

GLM3,r -0.11 1.30 9.44

GLM4 -0.08 0.36 14.44

GLM4,r -0.09 0.38 18.41

GLM5 0.01 1.28 7.55

GLM5,r 0.01 1.37 7.22

SEM—FCH 0 6.10 32.56

GSEM—FCH 0.14 0.28 6.84

Models are in Table 1.

https://doi.org/10.1371/journal.pone.0181305.t005
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Fig 3. Model validation graph. a) Distribution of standardized residuals of GLMs, SEM, and GSEM

models. For LMs and GLMs, both full (a) and reduced models (b) are shown. Models are in Table 1. The

respective descriptive statistics of the different distribution models considered in this paper are reported in

Table 5.

https://doi.org/10.1371/journal.pone.0181305.g003
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since results appear extremely sensitive to the specific function used. This problem is exacer-

bated by the large number of zeros in the distribution of male copulatory success.

The introduction of GSEMs in the analysis of lek mating appears to represent a relevant

leap ahead in the field. Our study provided evidence of several advantages of GSEMs compared

to GLMs. First, the collinearity of predictors is no longer a nuisance provided that an appropri-

ate measurement model is built, so we save part of the information collected in the field, which

is usually lost in GLMs to reduce variance inflation [36]. Second, GSEMs are a flexible tool

since they allow contrasting different casual models (e.g. using AIC, BIC, or other fit indexes)

which must be formulated a–priori. In comparison to both LM and GLM, a proactive model

formulation improves the awareness of the biological significance of the mechanism to be

tested and allows scholars to modify a basic theoretical construct by introducing specific paths

which are known or thought to be relevant in each particular study condition. This feature of

SEMs allows us to include both general theoretical statements and specific conditions in the

same model, which are then evaluated together. The publication of the variance-covariance

matrix has the advantage of allowing other scholars to replicate the results easily and to pro-

pose different theoretical models pertinent to the system of interest, and in doing so, improve

the transparency of the research and the full reproducibility of the results. However the avail-

ability of rough data can be useful to adjust the standard errors. Finally, SEM/GSEM help to

control for measurement errors, a much neglected flaw in most quantitative analyses.

GSEM represents a bridge between the descriptive approach developed in LM and GLM

and experimental tests with manipulative treatments; indeed the consistency of alternative

causal paths can be tested, and when possible, the results can be used to develop more stringent

experiments.

The importance of using GSEMs is well represented by the between-method comparisons

reported in this study. First, we were able to show that, with respect to GLMs and even more

to LMs, GSEMs suggest the potential influence of a larger number of predictors, in other

words more informative models can be developed. This may have a strong impact on the inter-

pretation of the study. For instance, both LMs and GLMs (except for the Poisson models) were

unable to detect any effect of predictors referring to male dominance, which are however pres-

ent, albeit with a small effect. Indeed in the literature, several authors were unable to detect

these effects at all (e.g. [8,10, 14, 73]).

The second relevant aspect of GSEMs is the increased precision of the estimates of the

regression coefficients. For several predictors GLMs yielded CV values>50% which are clearly

unacceptable, while with GSEMs, CVs were often <10%, a precision we consider “acceptable”

Table 6. Total effects of GSEM in FCH model.

Manifest Variables GSEM

ξ1 η1 η2

ASST 0.480

TotS 0.379

LA1 0.548 0.936

LA2 0.567 0.969

HS 0.122 0.208 0.630

CourtS 0.173 0.296 0.896

CopS 0.193 0.330 2.387

Latent Variables

ξ1 0.585 0.193

η1 0.330

https://doi.org/10.1371/journal.pone.0181305.t006
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for a field study. The analysis of residuals in GSEMs and GLMs confirmed that the former

allowed a better fitting of the data than the latter.

While these results are not meant to disprove the available results about lek breeding of fal-

low deer based on linear models, the analysis of our dataset illustrates some advantages in

using GSEMs for discrete responses. SEMs are more flexible and have more parameters than

GLMs and may better fit the data of interest. Indeed, the formal definition of contrasting

working hypotheses, such as FCH and MDH in this study, is illustrative of the potentiality of

SEM for hypotheses testing. On the other hand, with respect to LMs and GLMs, SEM are data

hungry and Shipley [41] gives a rule of thumb to decide the number of parameters that can be

safely estimated given a certain sample size.

The practical use of GSEM presents several difficulties. The main problem is that the likeli-

hood of SEMs with latent variables is generally multimodal, and there is a need for a general

algorithm to locate the global maximum. Moreover, the algorithm sometimes does not con-

verge to a proper solution and this usually suggests that the model is not identifiable (at least in

some parts). A partial remedy is to include reasonable identifiability constraints. In path analy-

sis or with GLMs, the problems of non-convergence are generally absent.

One drawback that may limit a wider diffusion of GSEM is that the possibility of modelling

non-normal variables is not yet implemented in widespread statistical packages, such as SAS,

R, or S-plus. In this paper, GSEMs have been implemented in Mplus and STATA. We support

the importance of using both packages, because they present complementary advantages and

disadvantages. For instance STATA provides case-specific residuals, which are not outputted

by Mplus, but Mplus returns the standardized path coefficients and total, direct, and indirect

effects which STATA does not compute. The use of Mplus requires caution, because to get

convergence, it automatically constrains the value of some path coefficients to be one. In

STATA, constraints have to be specifically applied, which is a feature that improves awareness

for the user. In our experience, STATA is much slower than Mplus, but it is well-documented;

in some cases STATA, unlike Mplus, failed to converge (e.g. with MDH). However, STATA

implements only a limited GSEM procedure, for example it does not support ZIP or ZINB dis-

tributions despite the greater flexibility in model specification.

The analyses in this paper were developed under a frequentist approach. A Bayesian analy-

sis of our data with GSEM is outside the scope of the present study and would require further

research especially as far as the choice of priors is concerned. For an introduction to Bayesian

SEMs see Kaplan & Depaoli [74].

The importance of this study lies in the fact that, to our knowledge, it is the first compara-

tive study of SEM and GSEM models. We believe that past work should be reviewed in the

light of the results obtained here. Specifically, the results from studies using LMs should be

considered with great caution, particularly in those cases where assumptions were clearly vio-

lated and transformations to normalise non-normal variables were applied. Interestingly,

Grace et al. [75] analysed the species richness-productivity relationships using SEM and

showed that an integrative model has an higher explanatory power than traditional linear

models, since SEM allows us to integrate competing hypothesis into a single model. Further-

more, SEMs help to solve the Simpson’s paradox [47]. Finally, it is important to stress that the

use of GSEMs can be extended to other behavioural and ecological contexts characterised by

non-normal distributions of variables. SEMs are getting traction in behavioural studies and in

ecology. According to the WOS (accessed on the 13/5/2016), the number of ecological and

zoological papers using SEM is increasing by 7% per year. Thus, GSEM can find wider and

wider opportunities for application. In particular, the possibility of using SEMs to test hypoth-

eses in competition and investigate both remote and proximate effects is of particular interest
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in ecological and evolutionary studies. The present study can therefore stimulate the applica-

tion of GSEM to different study cases.
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