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A novel quantitative 
and reference‑free ultrasound 
analysis to discriminate different 
concentrations of bone mineral 
content
A. Sorriento1,2*, A. Poliziani1,2,5, A. Cafarelli1,2,5, G. Valenza3,4 & L. Ricotti1,2

Bone fracture is a continuous process, during which bone mineral matrix evolves leading to an increase 
in hydroxyapatite and calcium carbonate content. Currently, no gold standard methods are available 
for a quantitative assessment of bone fracture healing. Moreover, the available tools do not provide 
information on bone composition. Whereby, there is a need for objective and non‑invasive methods 
to monitor the evolution of bone mineral content. In general, ultrasound can guarantee a quantitative 
characterization of tissues. However, previous studies required measurements on reference samples. 
In this paper we propose a novel and reference‑free parameter, based on the entropy of the phase 
signal calculated from the backscattered data in combination with amplitude information, to also 
consider absorption and scattering phenomena. The proposed metric was effective in discriminating 
different hydroxyapatite (from 10 to 50% w/v) and calcium carbonate (from 2 to 6% w/v) 
concentrations in bone‑mimicking phantoms without the need for reference measurements, paving 
the way to their translational use for the diagnosis of tissue healing. To the best of our knowledge 
this is the first time that the phase entropy of the backscattered ultrasound signals is exploited for 
monitoring changes in the mineral content of bone‑like materials.

Ultrasound (US)-based techniques are an attractive option in the field of tissue diagnosis since they are non-
invasive, safe, portable and low cost. Conventional B-mode images are widely used as a clinical diagnostic tool 
in radiology. However, they do not guarantee a quantitative, system-independent metrics to characterize tissues. 
Indeed, grayscale signal-based analyses are both system- and operator-dependent, being affected by a variety 
of factors that are not all associated with specific tissue properties. Moreover, B-mode US images contain less 
information than the raw radio-frequency (RF) data of US backscattering signals, due to many processing steps 
involved in the analog-to-digital conversion and image formation.

Quantitative ultrasound (QUS) techniques offer the advantage of working directly on RF data extracting 
objective and quantitative metrics for tissue  characterization1. QUS imaging techniques include spectral-based 
 parameterization2,  elastography3, shear wave  imaging4 and envelope  statistics5. In recent years, spectral-based 
parameterization and envelope statistics showed successful outcomes in many applications, even if they are not 
available in conventional US machines, typically used in the  clinics1.

Spectral parametrization grounds on the analysis of the normalized power spectrum of RF signals for deriving 
information about tissue microstructure. The normalized power spectrum is calculated by dividing the tissue 
power spectrum by a reference spectrum using a planar reference method in case of single-element transducers 
or a reference phantom technique for clinical array  systems1. Hence, a reference signal is always needed during 
the acquisitions in order to remove artifacts and dependency from the system. The extracted parameters typi-
cally include the backscatter coefficient, the slope and intercept of the regression line as well as the mid-band 
fit (MBF). The spectral slope has been shown to correlate with the scatter size, while the MBF depends on the 
size, concentration and relative acoustic impedance of the scattering  elements6. Spectral-based parametrization 
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has been widely used in the field of tissue engineering for the estimation of cell  concentration7 and osteoblast 
 differentiation8.

On the other hand, the envelope statistics grounds on the concept that the shape and attributes of the back-
scattered US envelope also contain information about tissue microstructural properties. Several statistical models 
for analyzing the envelope have been proposed, and one of the most used is the Nakagami  distribution5. Shannon 
entropy has also been applied to describe changes in scattering media. To find differences in entropy distribu-
tion, US entropy imaging techniques have been employed. Typically, the entropy is estimated on the part of the 
envelope images that are derived from the absolute value of the Hilbert transform of backscattered RF signals.

QUS techniques have been exploited, with a certain success degree, to improve medical diagnostics of soft 
tissues, such as classification of tumors and lymph nodes, detection of cancer and liver diseases, monitoring 
 therapies1 and cell  death6. However, very few works tried to extend QUS techniques to orthopedic applications 
and, in particular, for the assessment of bone fracture healing, despite there is evidence that the US can detect 
callus formation before radiographic changes become  visible9.

Fracture healing is a complex and dynamic process, which involves both biological and mechanical  aspects10. 
Although the assessment of bone union is of key importance, there are no standardized methods in the clinical 
orthopedics to do  that11–13. Currently, radiographic and clinical examination are the most used methods for 
monitoring bone healing. Imaging tools such as computed tomography, ultrasonography, positron emission 
tomography and magnetic resonance imaging can also be employed for the characterization of the geometry and 
the microstructure of the bone, even if they do not offer information on the state of strength and  composition14. 
Moreover, all the available methods are subjective, operator-dependent and non-quantitative. A reliable tool 
able to establish an objective endpoint of healing would be desirable for a precise and patient-specific diagnosis. 
Such an indicator could improve the outcome of healing, determining: (1) early detection of impaired healing, 
(2) the need for further treatment or operation to promote healing and (3) the formulation of patient-specific 
rehabilitation protocols.

QUS techniques have been investigated to assess bone mineral density in patients affected by osteoporosis 
 diseases15,16 and rheumatoid  arthritis17. On the other hand, a few studies have been conducted in the context of 
bone fracture, with most of them only focused on evaluating the speed of sound. The propagation velocity across 
fractured bones has been explored as an indicator of healing in animal and clinical  trials18. However, due to a lack 
of standardization in the procedures, it is challenging to provide reference velocity and attenuation values for 
each stage of healing. Al-Nashash et al.19 proposed the image intensity as a metrics for monitoring the healing of 
fractured limbs by assessing changes in acoustic impedance. Results of a pilot study on four patients showed the 
potential of image intensity to quantify the stage of bone healing. However, further assessments and applications 
of this methodology are not available in the literature. Moreover, a few groups explored the quantitative char-
acterization of constructs in the field of orthopedic tissue engineering. Gudur et al.20 validated high-resolution 
spectral parameterization as a method to characterize a developing mineral phase in three-dimensional collagen 
hydrogels. Spectral parameters extracted from a calibrated power spectrum of RF signals were able to identify 
hydroxyapatite concentrations, particle size and mineral distribution. Mercado et al.21 showed the capability of 
the integrated backscatter coefficient (IBC) to recognize different densities and diameters of collagen fibers in 
three-dimensional collagen gels. However, in all the mentioned studies, a reference signal is always needed to 
normalize the tissue power spectrum and remove artifacts from the systems. In view of an in-vivo translation 
of this measurement, the clinical ultrasound device has to be equipped with a reference phantom with known 
acoustic properties in order to calibrate the system, thus performing a time-consuming and vulnerable to errors 
procedure before extracting the spectral parameters. Moreover, this method has specific requirements for the 
acoustic properties of the reference phantom: its speed of sound and attenuation must be similar to those of the 
investigated  tissue22.

To the best of our knowledge, nobody has systematically studied the acoustic contributions of the single 
mineral components of the bone during the healing phases. We hypothesized that both phase and amplitude 
information of RF ultrasound signals could provide objective metrics for discriminating different concentrations 
of hydroxyapatite (HA) and calcium carbonate  (CaCO3), which are the main components of the bone mineral 
extracellular matrix. Notably, in this study, we proposed a novel index extracted from raw RF data, without the 
need for a normalization step with respect to a reference signal, able to discriminate changes in HA and  CaCO3 
concentrations in bone-mimicking phantoms.

Materials and methods
Phantom preparation. Agarose-based hydrogels were chosen as an ultrasonically-neutral matrix in which 
adding the inorganic components of interest. They were prepared by dissolving low-melt agarose powder (9414, 
Sigma Aldrich) in deionized water at a concentration of 2% w/v. Solutions were kept at 60 °C for 1 h under 
continuous stirring and then cooled down at room temperature to allow material reticulation. HA and  CaCO3 
were then included in the agarose matrix at different concentrations to reproduce the inorganic phase of bone 
callus during the healing process. The maximum concentrations of HA (50%) and  CaCO3 (6%) reflected the ones 
found in the healthy human  bone23,24.

Composite agarose-HA hydrogels were fabricated, adding HA powder (900204, Sigma Aldrich) to the agarose 
solution, yielding a final concentration of 10%, 20%, or 50% w/v. The solution made of agarose and HA powder 
was kept in an ultrasonic bath for 30 min at 60 °C to promote a homogenous particle dispersion. Then, the mixed 
solution was cooled at room temperature and stored at 4 °C.

Composite agarose-CaCO3 hydrogels were prepared starting from a surface coating of  CaCO3 particles, by 
using glycol-chitosan (GC) (G7753, Sigma Aldrich). This step was needed to improve particle dispersion in the 
aqueous  solution25. Solutions of GC at different concentrations (0.1%, 0.5% and 1% w/v) were prepared by adding 
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GC powder to deionized water under continuous stirring for 1 h. First, to evaluate the dispersion ability of such 
different concentrations,  CaCO3 powder (C6763, Sigma Aldrich) was added to the GC solution at a concentra-
tion of 4% w/v. The compound was sonicated through an ultrasonic homogenizer Sonopuls HD 4050 (Bandelin, 
Berlin) for 30 min in pulse mode (30 s on and 30 s off) at 35% of the maximum power. Then, visual inspection 
allowed assessing the presence or absence of particle precipitation, 30 min after sonication. The deposition of 
particles on the bottom surface of the vial was not observed even for the highest concentration of GC (1% w/v), 
as reported in Figure S1 of the supplementary material.

To prepare the target composite agarose-CaCO3 hydrogels, the  CaCO3 powder was added to the GC solu-
tion achieving particle concentrations of 4%, 8%, or 12% w/v. Then the compound was sonicated as described 
before. Finally, the GC solution with  CaCO3 particles was mixed with the agarose solution, yielding composite 
agarose-CaCO3 samples at concentrations of 2%, 4%, or 6% w/v.

A schematic representation of the sample preparation procedure is depicted in Fig. 1.

Experimental setup for US data acquisition. The experimental setup used to acquire US data from the 
different hydrogels is shown in Fig. 2.

Figure 2a shows a schematic representation of the experimental setup, which includes a tank filled with deion-
ized and degassed water at room temperature, a support for the US probe and a sample holder. The support for 
the probe and the sample holder were printed using a M200 Plus 3D printer (Zortrax, Poland), choosing acryloni-
trile butadiene styrene (ABS) as the material. Then, the single components were mounted and fixed to the tank 
through nuts and screws. A high-frequency acoustic absorber (Aptflex F28, Precision Acoustics, UK) was used 
to prevent signal reflection from the bottom of the tank, which may affect the acquisition. As shown in Fig. 2c 
(panel i), the sample holder was composed of two interlocking parts with a polystyrene film (thickness: 29 µm) 
in the middle (panel ii) to hold up the sample poured on such a membrane (panel iii). The hydrogel-containing 
holder was fixed through screws to the support in the water tank Fig. 2b, for US measurements.

US measurements were carried out using an ArtUS EXT-1H system (Telemed, Italy) equipped with a 192 
elements linear probe L15-7H40-A5 working in the frequency range 7.5–15 MHz. The acquisition of raw RF 
data was performed using a dedicated software interface developed by the company. The interface allowed set-
ting the US scanner parameters, such as scanner power, scanning depth, focus, transmission frequency, size and 
position of the acquisition window and collecting RF data for off-line analyses. First, the probe was moved in 
the z-direction (see Fig. 2B) to set the distance (Δz) between the sample and the probe, allowing to get the best 
resolution in B-mode images. A distance of 1 cm was found as the most suitable one for all the samples and was 
thus fixed for subsequent analyses. Data were collected at 35% of the scanner power, with a scanning depth of 
20 mm and a transmission frequency of 15 MHz, adjusting the focus in the middle of the samples. The scanning 
parameters and the acquisition window were fixed in the software interface and used over all the experimental 
sessions. Backscattered RF measurements from each hydrogel in the sample holder were conducted. Five inde-
pendent samples were analyzed for each hydrogel type. For each sample, five measurements were carried out, by 

Figure 1.  Phantom preparation process. The procedure used for phantom preparation is depicted for agarose 
hydrogels (a), agarose-HA hydrogels (b) and agarose-CaCO3 hydrogels (c). Agarose (Ag), Hydroxyapatite 
(HA), Calcium carbonate  (CaCO3).
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removing and then placing the holder and the sample in the setup again before each measurement, to take into 
account possible variations in sample holder positioning. After RF acquisition of Ag 2% samples, a reference RF 
acquisition of the polystyrene film without any sample was also made, to validate the setup.

Validation of the experimental setup. Before starting the experimental session, a validation of the 
experimental setup was performed by comparing the speed of sound (SoS) calculated on a known material (Ag 
2% samples) and the ones available in the  literature26. Three independent agarose samples were tested and five 
different measurements for each sample were performed. Agarose SoS was calculated through Eq. (1)

where SoSs is the speed of sound of the sample, d is the sample thickness, Δt is the delay between the time of flight 
measured in the presence of the sample and the time of flight measured in the absence of the sample, and SoSw is 
the speed of sound of water, which depends on temperature, as reported by Marczak et al.27. For each sample, the 
thickness was measured through a caliber. The cross-correlation between the envelope signal from the sample and 
the envelope signal from the reference (i.e., the polystyrene membrane) was calculated for each scanning line. The 
lag in terms of the number of samples corresponding to the maximum cross-correlation signals was considered 

(1)SoSs =
2 ∗ d

2∗d
SoSw(◦T)

−�t

Figure 2.  Experimental setup for US acquisition. (a) Schematic representation of the setup; (b) images of the 
real experimental setup, including the acquisition system and the pc; (c) structure of the sample holder: in i) the 
two interlocking parts and the polystyrene membrane are shown, in ii) the assembled system is reported and in 
iii) the sample holder also containing a hydrogel is shown.
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as ΔN. The time shift Δt between sample and reference signal was obtained by dividing ΔN for the sampling 
frequency of the acquisition system (i.e., 40 MHz). For each sample and each repetition, the average value of  SoSs 
was calculated along the 101 RF lines. To exclude the outliers, we used the median absolute deviations (MAD) 
technique, according to which the values more than three scaled MAD from the median were removed. Finally, 
a single value of  SoSs was calculated by averaging fifteen values, obtained from the three samples and the five 
measurements done on each sample. An example of the signal envelopes used for SoS measurement acquired in 
the presence and the absence of the sample for the central scanning line is shown in Fig. 3.

The results showed a SoS value of 1494 ± 6.8 m/s, which is in line with previous results reported in the litera-
ture (1490 ± 2.0 m/s) obtained through a different experimental  setting26. This demonstrated the ability of the 
proposed set up to investigate the acoustic properties of known materials in a reliable and repetitive way, due to 
a smart design able to reduce artifacts and reflection not associated with the sample.

SEM imaging and EDX spectroscopy. Scanning electron microscopy (SEM) and energy dispersive 
X-ray (EDX) spectroscopy were used to analyze the morphology and content of each sample, respectively. 
Immediately after performing US measurements, samples were fixed and dehydrated, as reported  in28. Samples 
were immersed in a 4% w/v paraformaldehyde solution (30 min) and then in a 2.5% w/v glutaraldehyde solution 
(30 min) at room temperature. Then, samples were dehydrated through an ethanol gradient (0%, 25%, 50%, 75% 
and 100%, 10 min for each ethanol concentration), dried overnight and gold-sputtered. Both SEM and EDX 
analyses were conducted using a dual-beam microscope Helios (Hillsboro, OR, USA). SEM scans were carried 
out by setting a beam voltage of 5 kV and a current of 43 pA, while for EDX analysis, a beam voltage of 15 kV, a 
current of 0.17 nA, and an acquisition time of 90 s were set. SEM images were taken at two magnifications (700X 
and 2400X), while EDX analysis was performed at 700X.

RF data processing. As mentioned, five independent samples were analyzed for each concentration and 
three concentrations for each group of mineral components were considered. Overall, fifteen samples of com-
posite agarose-HA hydrogels and fifteen samples of composite agarose-CaCO3 hydrogels were tested. Five inde-
pendent samples of agarose hydrogels were also included as a control. For each sample, five measurements were 
performed, as previously described (see “Experimental setup for US data acquisition”).

RF data were processed off-line in the Matlab environment. Since the measurements were made in static 
conditions and we were not interested in motion-related effects, a single RF frame was acquired for all the 
analyses. Each recorded RF frame resulted in a matrix in which the columns (101) represented the number of 
RF scanning lines in a specific RF window, while the rows (727) constituted the number of samples in a single 
scanning line, with a sampling rate of 40 MHz. B-scan images were then generated by calculating the grayscale 
envelope and log-compression of the RF signal.

To take into account the quantity of energy reflected at the first interface (between water and sample) and at 
the second interface (at the polystyrene membrane), the maximum amplitude value of the RF signal at the two 
interfaces was calculated for each RF line of each data matrix. Then, a mean amplitude value along all the RF 
lines was computed for the first and the second interface, obtaining the indices peak1 and peak2, respectively.

Figure 3.  Example of signal envelopes for SoS measurement of Ag 2% samples. The envelopes of the signal in 
the presence of the sample (black line) and in the absence of the sample (red line) are shown in the figure for the 
central scanning line.
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The instantaneous phase signal was calculated from the imaginary part of the Hilbert transform for each RF 
line of each sample. The phase of RF backscattered signal includes information on the characterization of the 
scattering medium. In particular, it is known that scatters can be detected by monitoring variations in the phase 
profile of the RF  signal29. Hence, we aimed at investigating the degree of irregularity of the instantaneous phase 
series by computing the sample entropy (SampEn)30 of the phase signal in bone mimicking materials. Indeed 
SampEn is a measure of the predictability of a series and it is defined as the negative natural logarithm of the 
conditional probability that two sequences that are similar for m points, also match at the subsequent point, 
according to Eq. (2):

where m (named embedding dimension) is the length of the sequences to be compared, r is the tolerance for 
accepting matches, N is the length of the time series, whereas B and A are the probabilities that two sequences 
in the input are similar for m and m + 1 points respectively. In order to investigate irregularities in time-series, 
a single SampEn parameter was calculated for each RF line, setting the embedding dimension (m) to 3 and the 
tolerance (r) to 0.2 times the standard deviation of the original signal. Then, a mean along the RF lines was 
computed in order to manage one index for each measurement made on each sample.

A combination of the parameters peak1, peak2 and SampEn was investigated according to Eq. (3):

where s is the backscattered signal, SampEn is the sample entropy of the phase signal calculates as in (2), and 
peak1 and peak2 are the average amplitude values at the first and second interface, respectively.

This model aims at concurrently quantifying the degree of predictability of the instantaneous phase signal 
(through the SampEn parameter) together with the US energy that crosses the sample (through the term peak2peak1).

Statistical analyses. Group-wise descriptive statistics were expressed as median ± interquartile range and 
graphically shown as boxplots. Non-parametric statistical differences were investigated between seven samples 
including  CaCO3 2%,  CaCO3 4%,  CaCO3 6%, HA 10%, HA 20%, HA 50%, and Ag 2% (control). Each sam-
ple comprises 25 estimates from the five measurements performed on the five independent material samples. 
Because of the non-normality of data distribution (SampEn values are always positive; therefore they are Non-
Normally distributed), the statistical comparison between all samples was performed using a non-parametric 
Kruskal–Wallis test, whereas a post-hoc test between samples was performed using non-parametric Mann–
Whitney test for unpaired data. Statistical significance was corrected for multiple comparisons following the 
Bonferroni–Holm rule, and a corrected p value lower than 0.05 was deemed as significant.

Results
SEM imaging and EDX spectroscopy. The morphology and content of one representative sample for 
each sample type, obtained through SEM and EDX analyses, are shown in Fig. 4.

SEM images at two magnifications (700X and 2400X) are reported in Fig. 4 (left panel), showing peculiar 
microstructural properties for each sample. The images demonstrated a homogeneous distribution of particles 
in the agarose matrix, thus demonstrating the suitability of the techniques used for both HA and  CaCO3 particle 
dispersion. Agarose matrices with higher concentrations of particles appear more compact and regular, whereas 
samples at low concentrations present a higher discontinuity in their microstructure.

The EDX microanalysis (Fig. 4, right panel) confirmed the expected changes in particle contents, correlated 
with the dopant concentrations. Images of composite agarose-CaCO3 hydrogels showed a homogenous distribu-
tion of particles inside the agarose matrix and an increased content of calcium (Ca) as a consequence of the higher 
particle concentration. In composite agarose-HA hydrogels, the changes in Ca and phosphorus (P) content were 
analyzed and were also coherent with increasing particle concentrations. The agarose matrix, without any type 
of particles, did not present traces of Ca and P, as expected.

B‑mode images. In Figure S2 (Supplementary Material), B-mode images of one representative sample at 
different transmission frequencies were shown. A slight change in the resolution was observed with increasing 
the transmission frequency and a more focused image was obtained using data acquired at 15 MHz. As a higher 
frequency is associated with a higher resolution, we decided to choose RF data acquired with the transmission 
frequency of 15 MHz for all the analyses.

Representative B-scan images of composite agarose hydrogels are shown in Fig. 5. It can be observed that 
two bright horizontal lines were displayed in each B-scan image. The top horizontal line corresponded to the US 
wave reflection at the water—sample top interface due to the mismatch in acoustic impedance of these materials. 
The bottom horizontal line corresponded to the reflection due to the interface at the polystyrene membrane. The 
echogenicity of the first horizontal line increased with increasing particle concentration, thus indicating a higher 
reflection index. Coherently, the echogenicity of the second horizontal line decreased with increasing particle 
concentration due to a higher energy attenuation within the material. B-scan images provided only a qualitative 
visualization of particle distribution within the agarose gels.

RF data analysis. Figure 6 displays the boxplot statistics for the three parameters extracted from the RF 
data analysis: the sample entropy (SampEn), the reflection peak at the first interface (peak1) and the reflection 

(2)SampEn(m, r,N) = −log
A

B

(3)f (s) = (SampEn)4 ×
peak2

peak1
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peak at the second interface (peak2). peak1 showed an increasing trend concerning the concentration of parti-
cles, thus showing a higher reflection in the case of higher concentrations. Conversely, peak2 decreased when the 
particle concentration increased. Indeed, as the concentration increases, less energy crosses the sample and thus, 
less energy is reflected back from the second interface. Thirdly, the SampEn parameter showed an increasing 
trend with respect to the content of particles, except for the control value (Ag 2%, which has no embedded parti-
cles). The SampEn value for the control group was associated with the highest SampEn value, thus indicating the 
highest irregularity in the instantaneous phase signal of RF data from agarose samples not doped with particles.

Figure 4.  SEM images and EDX analysis for samples containing different concentrations of  CaCO3 and 
HA particles. SEM images (left panel) are reported at 700X (first column) and 2400X (second column) 
magnifications. EDX microanalysis (right panel) is reported at 700X magnification for agarose matrix (2% w/v) 
and for hydrogels doped with  CaCO3 and HA particles at different concentrations. For EDX microanalysis, the 
first image (Ag 2% w/v) reports the main elements automatically found by the system, merged with the SEM 
image channel; the other images show the single elements analyzed. For samples doped with  CaCO3 particles, 
Ca is reported in green. For samples doped with HA particles, P is reported in green and Ca is reported in red. 
In the agarose matrix without particles, no traces of Ca and P were found, but only C, O and Au.
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Aiming to the definition of a comprehensive index characterizing bone-mimicking phantoms without the 
need for reference measurements, a combination of the SampEn, peak1, and peak2 parameters was investigated 
according to Eq. (3). This equation results from a thorough regression analysis, also varying the exponent of 
the power, whose goodness-of-fit results are reported in the supplementary material Tables S1, S2, Figure S3. 
Figure 7 shows the trends and boxplot statistics for the regression analysis using f(s) (Eq. 3) for Ag 2% (control). 
The model presented an exponentially decreasing trend with increasing concentrations, further confirmed by the 
regression analysis. Since values obtained with  CaCO3 samples were much higher with respect to those obtained 
from HA values (see Fig. 7, panel a) they were also displayed independently in two different scales (second-row 
Fig. 7). The regression analysis based on an exponential model was also computed separately for  CaCO3 and HA, 
obtaining a  R2 value of 0.6375 and 0.7249, respectively. The relatively low values of  R2 obtained can be due to 
the large data dispersion, especially for Ag 2%. The control values (Ag 2%) were one order of magnitude higher 
than HA values. Hence they were not considered in the HA regression.

The post-hoc analysis from Mann–Whitney tests were also performed and showed in the supplementary 
material Table S2. All the possible pairs of concentrations were tested for the model f(s) at a significance level 
of 0.5.

Discussion
In this study, we investigated the possible use of the raw RF signals for extracting information about bone mineral 
composition during the fracture healing process. Hence, mimicking bone-phantoms containing HA and  CaCO3 
particles at different concentrations were first prepared chemically and then scanned with US.

In Fig. 5 agarose hydrogels showed acoustic properties and echogenicity similar to water, as proved  in26. 
Increasing the concentration of particles included in the agarose matrix, in addition to an higher attenuation 
within the sample due to absorption and scattering phenomena, a large part of the energy is reflected back at 
the first interface (see HA 50% in Fig. 5). Hence, the echogenicity within the sample at the highest concentra-
tion (e.g., HA 50%) was observed to be very similar to Ag 2% and water. Since B-mode images can provide only 
qualitative information about the material composition, we focused on the analysis of RF data and in particular 
we investigated the SampEn of the phase signal. In Fig. 6, SampEn results were reported, showing lower values 
at lower concentrations of particles. The inclusion of particles within the agarose matrix can change the phase 
of the signal and thus the irregularity of its time series (i.e., SampEn). The highest and more similar values of 
SampEn were associated with the two extreme concentrations of particles: 0% (Ag 2%) and 50% (HA 50%). 
Although this behavior may seem confusing, also the morphology shown by SEM images in Fig. 4 (left panel) 
demonstrated a similar (compact) structure for Ag 2% and HA 50%, especially at 700X magnification. Moreover, 
this result can be related to the different levels of energy crossing the samples, due to the different reflections at 
the top and bottom interfaces. Indeed, as the SampEn parameter is calculated from the phase of the RF signal in 
the time-domain, it does not take into account changes in the signal amplitude. To consider the impact of this 

Figure 5.  B-mode images of hydrogels. Representative B-scan images of agarose gels without particles (Ag 2%), 
and with particles at different concentrations:  CaCO3 2%,  CaCO3 4%,  CaCO3 6%, HA 10%, HA 20% and HA 
50%. Data were acquired using a transmission wave frequency of 15 MHz. For each image, the color bar shows 
the pixel brightness.
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Figure 6.  Boxplot statistics for the reflection at the first interface (peak1), the reflection at the second interface 
(peak2) and SampEn for samples related to different concentrations of  CaCO3 and HA particles. The symbol * 
indicates p < 0.05 for the comparison of the groups to the control group, the symbol + indicates p < 0.5 for the 
comparison of the groups to each other.
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Figure 7.  Boxplot and regression analysis of f(s) for samples containing different concentrations of  CaCO3 
and HA particles. The panel (a) shows the trend associated to the model including all the previous parameters 
(SampEn, peak1 and peak2) for: Ag 2% (control),  CaCO3 at different concentrations (2%,4% and 6% w/v) and 
HA at different concentrations (10%, 20% and 50%). The statistical comparisons of the closest groups are also 
presented: the symbol * indicates p < 0.05 for the comparison of the groups to the control group, the symbol 
+ indicates p < 0.5 for the comparison of the groups to each other. In panel (b), the trend of the combined 
parameter is provided, separating  CaCO3 (left image) and HA (right image). Since agarose values were 
much higher than HA ones (at least a difference of one order of magnitude), they were excluded from HA 
representation. Finally, panel (c) shows the regression analysis for both  CaCO3 (left) and HA (right) at different 
concentrations.
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phenomenon, we calculated the maximum amplitude of reflection at the first and second interfaces. The param-
eters peak1 and peak2 changed according to an expected trend (see Fig. 6): the amplitude of the first reflection 
increased with increasing concentration due to more significant differences in acoustic impedances, whereas the 
amplitude of the second reflection decreased with increasing concentration because of less ultrasound energy 
that crosses the sample.

Very few studies have been conducted concerning QUS in the context of bone fracture. The US data from bone 
were mainly processed to analyze changes in the SoS during callus  development18. Other few studies focused on 
the characterization of tissue components for orthopedic applications. Gudur et al.20 explored the high-frequency 
spectral parametrization for the characterization of collagen hydrogels doped with HA particles. Their results 
demonstrated that the MBF corresponded to HA concentration and thus, it could be used to characterize the 
distribution of mineral content in the construct. Mercado et al.21 investigated the IBC (an estimation of the 
backscattered intensity) for the characterization of collagen-based hydrogels. They found that the IBC increased 
linearly with increasing collagen concentration, indicating that collagen can act as an acoustic scatterer in acel-
lular constructs. However, in all the mentioned studies, a reference signal was needed to normalize the tissue 
signal and to remove artifacts associated with the US system. At a clinical level, such a normalization process 
requires the use of a reference phantom with acoustic properties that are known and similar to the investigated 
tissue in order to calibrate the measurement  system22.

A substantial advantage of the method proposed in this study is that it does not need such a normalization 
step. To the best of our knowledge, the proposed method is the first combining RF phase entropy and amplitude 
information, thus weighing SampEn parameter through a sort of transmission index ( peak2peak1 ). The results in Fig. 7 
showed an evident exponential decay from 0 to 50% of particles in the agarose matrix, also confirmed by the 
regression results. The exponent equal to 4 in the Eq. (3) was chosen according to the results of the regression 
analysis presented in the supplementary material Table S1, Figure S3. The regression analysis for the aggregated 
index f(s) (Eq. 3) was validated with  R2 statistics as high as 0.7249. This result is very satisfactory considering 
the high inter-, and intra-sample variability, as well as the absence of reference sample statistics. The potential of 
this new model in discriminating the different concentrations of particles was also evaluated.

In Table S2 (see Supplementary Material), the results of the statistical comparison showed excellent statistical 
behavior associated with the model f(s). More in detail, the results between all the possible pairs of concentra-
tions demonstrated the ability of the model f(s) to discriminate most of the tested concentrations, even ones that 
were close to each other. No statistically significant differences were found only between the groups  CaCO3 4%, 
 CaCO3 6% and the groups HA 20% and HA 50%. These results reflect those obtained from the microanalysis in 
Fig. 4 (right panel). Indeed, the content of Ca was comparable for  CaCO3 2% and  CaCO3 4% samples. Similarly, 
we observed a coherent behavior in the content of P and Ca for HA 20% and HA 50%.

We used SampEn to estimate the entropy of the RF instantaneous phase. We are aware that SampEn is one of 
the many indices quantifying entropy in a series generated by dynamical systems. We chose SampEn because it 
is an improved version of the so-called approximate  entropy29. Previous studies using RF data exploited the theo-
retical definition of Shannon entropy.  In30 the Shannon entropy performance was evaluated for the assessment 
of fatty liver diseases. The authors showed that fatty infiltration increased the uncertainty of the backscattered 
signal, thus leading to higher values of entropy. Tsui et al.31 worked to increase the resolution of entropy imaging 
by reducing the size of the window. The results showed a higher performance of small-window entropy imag-
ing compared with the Nakagami parametric imaging for breast tumor classification. Tsui et al.32 also proposed 
a weighted entropy method using signal amplitude as weighted factors. They demonstrated the advantages of 
the weighted entropy with respect to the standard Shannon entropy (calculated using the raw RF data and not 
envelope data) for detecting the number density of scatterers in a scattering medium. Klimonda et al.33 devel-
oped multi-parametric classifiers using weighted entropy, shape parameters and texture parameters extracted 
from RF signals and assessed their ability to distinguish between malignant and benign tumors. Entropy images 
from envelope data showed higher performance than conventional methods in risk evaluation for metabolic 
syndrome in patients with nonalcoholic fatty liver  disease34. On the other hand, Fang et al.35 applied Shannon 
entropy to US parametric imaging based on log-compressed backscattered signals, obtaining good results in 
assessing hepatic steatosis.

It is important to remark that previous works focused on the computation of entropy on either raw backscat-
tered data or the envelope data. In this study, we investigated the phase content of the RF signal by calculating 
the SampEn parameter using the phase of the backscattered signals. The instantaneous phase of the RF signal 
reflects the continuity of the reflection waveforms, which characterizes the tissue composition. By exploiting the 
theory of complex systems, we used SampEn to quantify the irregularity of the instantaneous phase series and 
combined it with other features defined in the time domain for an effective, reference-free tissue characterization. 
As far as we know, only one study has been conducted aimed at exploring the complexity of phase US  signal36. 
The authors analyzed the distribution of the phase differences in US data acquired from areas of the premature 
baby’s brain tissue. This information was used to create entropy images, which showed the possibility of identi-
fying anatomical tissue structures even if qualitatively. Thus the aim and the methods used in the above paper 
were very different from the ones proposed in this study.

The proposed method, including SampEn and amplitude reflection information, demonstrated the capability 
to discriminate different mineral concentrations, which are typical of bone healing phases after a fracture. The 
healing of bone fracture is a continuous process that evolves through three main phases in which the bone cal-
lus composition  changes37. Indeed, the bone mineral matrix evolves, leading to an increase in HA and  CaCO3 
content. An objective parameter able to discover these composition changes may help the surgeons to follow the 
healing process in a quantitative and non-invasive way, also giving the possibility to prevent problems related to 
incomplete healing. To the best of our knowledge, this is the first time that the phase entropy of the backscattered 
US signals is explored as a metrics for monitoring changes in bone mineral content.
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In-vitro models are intrinsically limited, due to the impossibility to reproduce the complexity of full natural 
tissues. In this study, we focused on the main mineral components of the bone callus, but other elements are 
also present, such as organic matrix elements (mainly type I collagen) and blood. Hence, the in-vivo translation 
of this technique implies some challenges (such as the high inhomogeneity of natural tissues) which have to be 
faced in future ex-vivo and in-vivo experiments to assess the suitability of this approach in the clinical scenario. 
On the other hand, the system that we used in our study presents some features that are promising in view of 
a future in-vivo application. First, we used a certified clinical probe with a frequency range commonly used in 
diagnostic sonography. Second, the acquisition system allows to easily select the region of interest of a target 
tissue from B-mode images, thus acquiring RF data selectively. So, whenever a target tissue can be displayed 
by B-mode images, it is possible to acquire RF data in a specific region of interest of such tissue. The acquired 
RF data can then be investigated offline to extract the metric of interest and last to give quantitative data to the 
physician.Third, in our proposed method of analysis the commonly used normalization step by using a refer-
ence signal is not needed. This could simplify and speed up the in-vivo application: indeed the US system has 
not to be equipped with a calibration phantom specific for each clinical treatment. Moreover, this approach may 
be extended in the future to the assessment of other tissues, e.g., cartilage. This would enable to verify cartilage 
status at different levels of traumas or degenerative diseases (such as osteoarthritis) and to have a metrics to 
evaluate tissue healing overtime after a treatment, without recurring to the current gold standard methods, 
namely radiographic  images38.

Conclusion
In this work, in vitro experiments were conducted to investigate the performances of ultrasound phase entropy 
in detecting changes in bone mineral content, such as hydroxyapatite and calcium carbonate. For this purpose, 
we developed and validated an ad-hoc experimental setup using known materials. Then, bone-mimicking phan-
toms with increasing particle concentrations were prepared and successfully tested using SEM microscopy and 
EDX spectroscopy. The analysis of RF data indicated that the phase of backscattered signals from mineralized 
constructs contain essential information about the internal microstructure of the samples. We proposed a new 
model based on a combination of phase entropy information and amplitude information. This metric was able 
to discriminate most of the tested mineral concentrations, showing a clear trend with respect to the particle 
concentrations. The proposed method avoids the normalization step, proving advantages for the in-vivo transla-
tion. Overall, these results pave the way for the use of quantitative ultrasound in the diagnosis and monitoring 
of bone fracture healing. Besides, the proposed method could also be applied in the future for the quantitative 
assessment of other degenerated tissues (such as the cartilage during the osteoarthritis process), that can be 
displayed by US imaging.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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