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Abstract
Quantifying differences in species composition among communities provides important

information related to the distribution, conservation and management of biodiversity, espe-

cially when two components are recognized: dissimilarity due to turnover, and dissimilarity

due to richness differences. The ecoregions in central Mexico, within the Mexican Transition

Zone, have outstanding environmental heterogeneity and harbor huge biological richness,

besides differences in the origin of the biota. Therefore, biodiversity studies in this area

require the use of complementary measures to achieve appropriate information that may

help in the design of conservation strategies. In this work we analyze the dissimilarity of ter-

restrial vertebrates, and the components of turnover and richness differences, among six

ecoregions in the state of Hidalgo, central Mexico. We follow two approaches: one based

on species level dissimilarity, and the second on taxonomic dissimilarity. We used data-

bases from the project “Biodiversity in the state of Hidalgo”. Our results indicate that species

dissimilarity is higher than taxonomic dissimilarity, and that turnover contributes more than

richness differences, both for species and taxonomic total dissimilarity. Moreover, total dis-

similarity, turnover dissimilarity and the dissimilarity due to richness differences were posi-

tively related in the four vertebrate groups. Reptiles had the highest values of dissimilarity,

followed by mammals, amphibians and birds. For reptiles, birds, and mammals, species

turnover was the most important component, while richness differences had a higher contri-

bution for amphibians. The highest values of dissimilarity occurred between environmen-

tally contrasting ecoregions (i.e., tropical and temperate forests), which suggests that

environmental heterogeneity and differences in the origin of biotas are key factors driving

beta diversity of terrestrial vertebrates among ecoregions in this complex area.
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Introduction
Biodiversity is the result of a wide variety of factors, among which historical biogeographical
processes, and environmental heterogeneity play major roles [1], therefore there is a special
concern in disentangling the causes of high biodiversity in heterogeneous regions with a com-
plex history of its biota. Beta diversity is the extent of change in species composition between
sites, and is an important component, especially relevant to explain the factors determining
species diversity [2]. Thus, knowledge about the patterns and processes of beta diversity may
help us to design better environmental management plans to conserve biological diversity [3].

There are several measures available to assess variation in species composition between sites,
and there are some recent proposals of new methodological approaches that contribute to reach
a better understanding of beta diversity e.g., [4]. In this work we integrate two of these recent
methods: the partitioning of beta diversity into the components of turnover and richness differ-
ences [5], and the measurement of dissimilarity in the taxonomic structure of communities [6].

On one hand, partitioning of beta diversity solves the problem related to identical values in
traditional dissimilarity indices, for cases where different patterns of species composition occur
as a result of two processes: species turnover and nestedness due to richness differences [5, 7–
11]. Identifying which one of these processes is the responsible of beta diversity in a region
may be crucial to explain biodiversity patterns and to plan conservation strategies [5, 8, 10, 12].
For example, the partitioning of beta diversity has been used recently to identify management
strategies for regional biodiversity in boreal lake communities [13], and to assess patterns of
temporal beta diversity in agricultural landscapes as a function of long-term land use changes
[14].

On the other hand, traditional dissimilarity indices are based on species lists, with or with-
out considering data on their relative abundance, assuming that all species in a community are
equally distinct [4]. Taking this limitation into account, there are recent proposals that may
widen the scope of dissimilarity indices by including functional or morphological differentia-
tion, genetic distances, taxonomic relatedness or phylogenetic information, to infer about eco-
logical and/or evolutionary processes driving beta diversity e.g., [15]. In particular,
dissimilarity in the taxonomic structure (called taxonomic dissimilarity herein) explicitly
includes the hierarchical taxonomic classification above species level to measure taxonomic
relatedness, as a surrogate of phylogenetic information [6, 16–17]. Basically, taxonomic dissim-
ilarity considers the arrangement of taxa in the Linnaean taxonomic hierarchy as a crude
approximation to their evolutionary distinctness [6], and is based on the framework developed
by Warwick and Clarke [18]. Taxonomic dissimilarity has advantages over conventional simi-
larity indices, which utilize only data at the species level, since it makes comparisons between
sites or areas taking into account higher taxonomic levels (genera, families, orders, etc.). In a
hypothetical illustration with pairs of sites that have exactly the same species dissimilarity, two
sites may have lower taxonomic dissimilarity than another pair, if the former have more shared
higher taxa such as genera and families (Fig 1). Taxonomic dissimilarity also has advantages
over phylogenetic beta diversity because it only requires the taxonomical arrangement of spe-
cies, instead of fully solved phylogenies [6, 18]. In this sense, taxonomic dissimilarity is an eas-
ily available indicator of evolutionary dissimilarity between communities, called phylogenetic
beta diversity or phylobetadiversity [15, 17, 19–20], especially useful for cases where phyloge-
nies are not available. Both taxonomic and phylogenetic dissimilarity between ecological com-
munities have great potential in research about links between ecology, evolutionary biology,
and biodiversity conservation [21–23].

In this work we present a novel approach to study beta diversity patterns that divides the
dissimilarity of taxonomic structure between communities, into the components of turnover
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and richness differences. To accomplish this, we incorporate species and higher taxa composi-
tion following the proposal of Bacaro et al. [16]. Thus, the components of dissimilarity are 1)
taxon turnover, and 2) dissimilarity due to differences in taxa richness.

Our study is focused on the beta diversity of terrestrial vertebrates (amphibians, reptiles, birds
and mammals) in a highly heterogeneous area: the state of Hidalgo, in central Mexico. This area
has a complex geological and biogeographical history, as well as an enormous topographic and
climatic variation. Therefore, this region harbors high biological diversity and we expect to find
notable beta diversity. To assess it, our analyses are based on dissimilarity between ecoregions, as
they are spatial study units with potential to assess conservation priorities [24–26].

Fig 1. Hypothetical examples showing species and taxonomic dissimilarity. In both cases, the pair of sites has the same species dissimilarity (βcc), but
different taxonomic dissimilarity (βccT). For each site species presence (1) or absence (0) is shown. In the taxonomic trees, red circles represent the taxa
that are present only in site A, blue circles are taxa found exclusively on site B, and green circles are the taxa shared between sites. Taxonomic dissimilarity
is low (βccT = 0.423) when all the genera and families are shared, while it increases (βccT = 0.769) when only one genera and one family are present in both
sites.

doi:10.1371/journal.pone.0160438.g001
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Our objective is to compare species and taxonomic dissimilarity patterns for terrestrial ver-
tebrates in the ecoregions of Hidalgo, separating the components of turnover and richness dif-
ferences. In particular, we answer the following questions: 1) Do the dissimilarity due to
turnover, and the dissimilarity due to richness differences have the same contribution to total
species and taxonomic dissimilarity?, 2) Which ecoregions have the highest dissimilarity?, 3)
Do the same dissimilarity patterns between ecoregions occur for the four groups of verte-
brates?, and 4) Is there a correlation between species dissimilarity and taxonomic dissimilarity,
taking into account their components?

Materials and Method

Study area
We selected the state of Hidalgo, in central Mexico (Fig 2) as study area because of its high bio-
logical diversity, which results from the geologic, climatic and biogeographical heterogeneity.
The state covers 20,905 km2 and an elevation gradient that ranges from 46 to 3,358 m a.s.l.
[27]. For this area Morrone [28] proposed four biogeographical provinces: the Mexican Plateau
Province (also known as the Altiplano), which belongs to the Nearctic region, the Gulf of
Mexico Province that belongs to the Neotropical region, and two provinces of the Halffter’s
Mexican Transition Zone sensu [29]: the Sierra Madre Oriental, and the Trans-Mexican Volca-
nic Belt.

We based the analysis of beta diversity in the biotic composition of the ecoregions that
occur in the state of Hidalgo. Ecoregions are areas that comprise distinct assemblages of spe-
cies, with limits that approach the original extent of natural communities before main land use
changes [24]. We used the ecoregions delimited by Olson & Dinerstein [25], which correspond
to those promoted by the WWF [30] and are used worldwide to evaluate species diversity,
endemicity and vulnerability, as well as to identify priority areas for conservation [25, 26].

The ecoregions located in Hidalgo State are (Fig 2): Veracruz Moist Forests (shortened in
this work as Moist Forests), Veracruz Montane Forests (Montane Forests), Trans-Mexican
Volcanic Belt Pine-Oak Forests (Volcanic Belt), Meseta Central Matorral (Meseta Central),
Central Mexican Matorral (Mexican Matorral) and Sierra Madre Oriental Pine-Oak Forests
(Sierra Madre).

Databases
We used the databases of terrestrial vertebrates (amphibians, reptiles, birds, and mammals)
from the project Fomix Conacyt-Hidalgo “Biological diversity of the state of Hidalgo” first and
second stages (http://citnova.gob.mx/diversidad-biologica-del-estado-de-hidalgo-segunda-
fase/; S1 File). We updated those databases for taxonomy and nomenclature up to 2014. The
included information results from extensive field work from 2006 to 2010 carried out by spe-
cialists in each biological group from the UAEH, and can also be found in other publications
[31, 32, 33]. We geo-referenced all records and overlapped them with the ecoregions using the
ArcGis 10.1 program [34] to get species lists per ecoregion. We used these lists for all analyses
in this work.

We used different sources to determine the taxonomic structure of each vertebrate group
and the taxonomic levels used for calculating taxonomic beta diversity. For amphibians and
reptiles, we used the catalogs of taxonomical authorities of CONABIO [35, 36]; for mammals
we followed the classification of Ramírez-Pulido et al. [37]; and for birds we used the informa-
tion available in the AOU [38] web page and the phylogenetic arrangement of Stefan Hintsche
[39].
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Ethics Statement
Databases include records of field samplings done on public and private lands, with the corre-
sponding permission of owners. Field sampling was authorized by the Secretaría del Medio
Ambiente y Recursos Naturales (SEMARNAT, Mexican Council for the Environment and Nat-
ural Resources), which legislates scientific field samplings in Mexico, through permissions
FAUT-0052 and SGPA/DGVS/02726/10 for amphibians and reptiles, FAUT-0221 and FAUT-
0232 for mammals. Birds were not collected. We did not perform any other activities that
required specific permissions. For field sampling in Mexico, the approval by an Institutional
Animal Care and Use Committee (IACUC) or equivalent animal ethics committee is not
required.

Data analysis
To assess inventories’ completeness for each group of vertebrates at each ecoregion, we calcu-
lated the sample coverage [40], considering the total number of records per species, and the
number of species with one and two records.

We partitioned beta diversity following the procedure of Carvalho et al. [8, 9], which is
based on the approach of Baselga [5]. According to this method, total dissimilarity (βcc) is 1
minus the similarity coefficient of Jaccard. This total dissimilarity is divided into two compo-
nents: the dissimilarity due to turnover (β.3) and the dissimilarity due to richness differences
(βrich). We did this partitioning both for dissimilarity in species composition, and for dissimi-
larity in taxonomic structure considering the composition of higher taxa. For this last case, we
used the method of Bacaro et al. [16], so that total taxonomic dissimilarity, herein βccT (1-ΔT

sensu Bacaro et al. [16]) equals the dissimilarity of Jaccard coefficient but taking into account
higher taxa. Taxonomic dissimilarity is measured as: βccT = 1-(Ta/Ta+Tb+Tc), where Ta is the
total number of taxa shared between two communities, Tb is the number of taxa present only
in the first community but absent in the second, and Tc is the number of taxa present exclu-
sively in the second community (Fig 1). Values of βccT range from zero when the taxonomic
structure of both communities is identical, to 1 when the taxonomic structure is totally differ-
ent [6]. Taxonomic dissimilarity measures the proportion represented by not-shared taxa from
the total number of taxa in the two communities. Therefore, partitioning of βccT with the pro-
cedure of Carvalho et al. [8] gives one component of dissimilarity due to taxon turnover (β.3T)
and one component of dissimilarity due to difference in taxa richness (βrichT).

To calculate total taxonomic dissimilarity and its components we used as many taxonomic
levels as possible. For amphibians: order, family, subfamily, genus and species; and for reptiles:
subclass, order, suborder, infraorder, superfamily, family, subfamily, genus and species [35,
36]. For birds: subclass, infraclass, parvoclass, superdivision, division, subdivision, infradivi-
sion, superorder, order, suborder, superfamily, family, subfamily, genus and species [38, 39].
Finally, for mammals: order, suborder, infraorder, superfamily, family, subfamily, tribe, genus
and species [37].

We did all the analysis of dissimilarity partitioning in the R program [41], using the script
of Carvalho et al. [9]. First, to assess if the two components of total species and taxonomic dis-
similarity have equal contributions, we used multiple-site measures, sensu Diserud & Ødegaard
[42], including all the ecoregions that occur in Hidalgo. Second, to detect which ecoregions
have the highest values of species and taxonomic dissimilarity for each biological group, we

Fig 2. Study area. Spatial distribution of the species records used in this work for terrestrial vertebrates in the ecoregions located in
the state of Hidalgo, central Mexico.

doi:10.1371/journal.pone.0160438.g002
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used pairwise comparisons indices between ecoregions, as described above (βcc, βrich, β.3,
βccT, βrichT, and β.3T). Then, to spatially represent the values of these indices we used multi-
variate ordinations of non-metric multidimensional scaling (NMDS). Finally, we did Pearson
correlations between species and taxonomic dissimilarity, as well as their components, for each
biological group. The NMDS and correlations were done in the program Past 3.07 [43].

Results
Amphibians are the least represented group in our databases, with 1,564 records belonging to
50 species, while birds had the highest number of records: 31,827 from 515 species (Table 1).
The least complete inventories stand for reptiles and birds in the Moist Forests (76.72 and
90.64%, respectively). The rest of the inventories are at least 94% complete according to their
sample coverage, based on species records per ecoregion (Table 1). Overall, these results indi-
cate that a high proportion of the species that occur in the different ecoregions were recorded,
and therefore it is possible to do reliable analyses of beta diversity.

The four groups of vertebrates had high values of total dissimilarity among ecoregions, and
the dissimilarity based on their taxonomic structure was always lower than species dissimilarity
(Fig 3). Birds had the lowest dissimilarity (75.87 and 69.04% for species and taxonomic dissimi-
larity, respectively), while the highest values were recorded for reptiles (81.79 and 74.18% for
species and taxonomic dissimilarity, respectively, Fig 3).

For the first question, regarding the contribution of dissimilarity components, when we par-
titioned total dissimilarity in the four vertebrate groups, we found that turnover consistently
had a higher contribution than the richness difference component. This pattern occurred both
for species and taxonomic dissimilarity. Turnover accounted for 58.76 to 80.22% of species dis-
similarity, and for 64.99 to 82.14% of taxonomic dissimilarity. In both cases, the lowest values
corresponded to amphibians, and the highest to birds (Fig 3). Thus, the maximum contribution
of richness differences was 41% for amphibians.

With respect to the second question, as with multiple comparisons, in pairwise comparisons
between ecoregions species dissimilarity was higher than taxonomic dissimilarity. The highest
values of species and taxonomic dissimilarity correspond to reptiles and birds between the
Moist Forest and the Volcanic Belt ecoregions (S1 Table). The differences in composition
among ecoregions are clearly shown in the NMDS graphs (Fig 4). The NMDS showed similar
results for species and taxonomic dissimilarity, thus we only provide here the results of taxo-
nomic dissimilarity (Fig 4).

Regarding the third question about differences among vertebrates, we found that turnover
had a consistently higher contribution than richness differences for the four vertebrate groups,
in species and taxonomic dissimilarity (S1 Table). The results suggest analogous total

Table 1. Number of species (S) and records (R) of terrestrial vertebrates at each ecoregion in Hidalgo, Mexico, and the percentage of inventory
completeness (Com) calculated as the sample coverage [39].

Amphibians Reptiles Birds Mammals

S R Com S R Com S R Com S R Com

Montane Forests 29 405 98.50 66 613 94.30 267 4,125 98.25 69 1,270 98.74

Moist forests 21 131 94.70 53 146 76.72 217 939 90.64 32 237 97.49

Volcanic Belt 18 192 96.90 30 465 96.56 189 1,026 94.06 22 156 95.53

Mexican Matorral 13 166 99.40 47 1,012 97.82 211 4,009 98.83 48 554 97.84

Meseta Central 9 106 99.10 36 188 95.24 213 13,240 99.63 45 973 98.76

Sierra Madre 28 564 98.76 58 1,317 99.16 309 8,488 99.26 47 366 96.46

Total 50 1,564 131 3,741 515 31,827 104 3,556

doi:10.1371/journal.pone.0160438.t001
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taxonomic dissimilarity and turnover for amphibians, reptiles and birds, given that the spatial
distributions of ecoregions in the graphs are similar: Moist Forest and Montane Forest are
clearly different in composition from the other four ecoregions (Fig 4). However, the dissimi-
larity due to richness differences varies for these vertebrates. In contrast, mammals had differ-
ent trends in total, turnover and richness difference dissimilarities. For total dissimilarity the
scrublands (Meseta Central and Mexican Matorral) and the Sierra Madre had similar taxo-
nomic composition, while the Volcanic Belt, Montane Forest, and Moist Forest ecoregions dif-
fer. However, taxonomic turnover was low between Volcanic Belt and the Sierra Madre
ecoregions, but the Mexican Matorral and the Meseta Central have high turnover (Fig 4).

For the fourth question related to the relationship between dissimilarity types, we found
that species dissimilarity and the dissimilarity based on the taxonomic structure are positively
correlated (P<0.05) for the four vertebrate groups (Fig 5). The highest correlation coefficients
correspond to total dissimilarity and turnover dissimilarity in birds, while the lowest values
were found in total dissimilarity and its components for amphibians, as well as the two compo-
nents for reptiles (Fig 5).

Discussion
Our results show that species dissimilarity is higher than taxonomic dissimilarity for terrestrial
vertebrates in the ecoregions of our study area, because when incorporating higher taxa into
the analysis more shared elements are included, and communities tend to homogenize their
composition.

Fig 3. Multiple-site dissimilarity of terrestrial vertebrates. Species and taxonomic total dissimilarity, and their turnover and richness difference
components among six ecoregions in Hidalgo, Mexico.

doi:10.1371/journal.pone.0160438.g003
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Contribution of dissimilarity components
Not surprisingly, turnover has a more important contribution to total dissimilarity than rich-
ness differences, and birds had the highest turnover value while amphibians had the lowest
one. This prominence of turnover coincides with beta diversity patterns of vertebrates in the
Isthmus of Tehuantepec [44], amphibians in Brazilian Mata Atlantica [45], reproductive birds
and lizards in flooded islands of East China [11], and with temporal beta diversity of birds in

Fig 4. NMDS results for the four terrestrial vertebrate groups.Dissimilarity in the taxonomic composition (βccT, β.3T and βrichT) determines the
relative position of the six ecoregions of Hidalgo State, Mexico. Moist: Moist Forests, MF: Montane Forests, VB: Volcanic Belt, MC: Meseta Central, MM:
Mexican Matorral, SM: Sierra Madre.

doi:10.1371/journal.pone.0160438.g004
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agricultural fields in France [14]. The spatial scale may have an influence in all these results
because at small scales environmental filters exclude species that lack physiological tolerance to
climatic or environmental local conditions [46]. In contrast, when the study area is broader,
biogeographic processes influence species turnover and nestedness due to richness differences
[23]. This occurs for example in global patterns of amphibian distributions, where the relative
importance of beta diversity components changes with latitude: turnover is more important
below parallel 37, while above this richness differences become more important [47]. Also, in
America nestedness due to richness differences for amphibians increases as we approach to the
poles, but it decreases for birds and mammals [48]. However, in the Mexican Transition Zone,
biogeographic processes may influence turnover even in small areas.

Differences in species and taxa composition between ecoregions for reptiles, birds and
mammals may be more influenced by environmental heterogeneity (differences in ecological
conditions and vegetation types that lead to turnover) and historical factors than by differences
in the number of species. But for amphibians, richness differences are more important in deter-
mining beta diversity than turnover between ecoregions. Other studies with vertebrates have
explored possible causes. For example, in a global study with amphibians Baselga et al. [47]

Fig 5. Relationships between species and taxonomic dissimilarity. Pearson correlations for total dissimilarity and its components of turnover and
richness differences in pairwise comparisons of ecoregions, for each vertebrate group.

doi:10.1371/journal.pone.0160438.g005
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found that turnover was related to variation in elevation and temperature, while richness dif-
ferences were related to evapotranspiration, annual precipitation and mean temperature. Also,
Melo et al. [46] found that bird and mammal beta diversity in America is related to environ-
mental heterogeneity, measured as elevation range, and this variable is responsible for up to
52% of bird beta diversity and 21% of mammal beta diversity. Moreover, for mammals in
Europe beta diversity is related to topographic heterogeneity, mean annual temperature, as
well as real and potential evapotranspiration [49]. Similarly, for terrestrial mammals in Mexico
the highest beta diversity occurs in the Transvolcanic Belt, which is the most heterogeneous
region of the country, while the lowest beta diversity corresponds to the most homogeneous
region, i.e. the Yucatan Peninsula [50]. This pattern was later confirmed for terrestrial verte-
brates [51], supporting the idea that environmental heterogeneity is a key factor determining
beta diversity [46, 49]. Thus, although we do not have data on environmental heterogeneity at
the scale of ecoregions, we assume that this factor may be crucial in our study area given the
high proportion of turnover found in our results, and how turnover is related with heterogene-
ity as described in these studies.

Dissimilarity between ecoregions
The ecoregions in Hidalgo have different origins and geological histories, which result in the
current complex topography, climatic heterogeneity and variation in vegetation types [27–29].
For example, the Meseta Central ecoregion is isolated form other arid zones, and in Hidalgo it
is surrounded by the Sierra Madre Oriental. This Sierra Madre ecoregion harbors conifer for-
ests, mainly pine-oak forests, and goes from North U.S.A. to Southern Mexico, and connects
with the Volcanic Belt [30]. The Volcanic Belt is located in central Mexico and has several
active and inactive volcanoes, including 13 of the highest mountains in the country. This
intense volcanic and orogenic activity has allowed the formation of microhabitats, which pro-
moted taxa radiation and speciation [28–29]. The Mexican Matorral is one of the most exten-
sive ecoregions in the country, and the largest in Hidalgo. It emerged from superficial folds of
Cretaceous sediments, resulting in a region with abrupt topography that includes valleys, can-
yons and ravines [28]. In Hidalgo this ecoregion includes three types of scrubland. Finally, the
Moist Forest and Montane Forest ecoregions are located in the northeastern portion of the
state, and include tropical perennial and sub-perennial forests, as well as the northern moun-
tain cloud forests, that encompass high plant and animal richness and are currently threatened
by human activities [30].

In our results, these two ecoregions (Moist Forest and Montane Forest) resulted with similar
taxonomic composition because of the Neotropical affinity of their fauna, while they are
located on the other side than Meseta Central, Sierra Madre Oriental, Volcanic Belt and Mexi-
can Matorral in the NMDS graphs (Fig 3). These four ecorregions are more related with North
America and thus their fauna has Nearctic affinity [28–29]. Thus, dissimilarity is clearly influ-
enced by the biogeographic origin of the biota.

Differences among vertebrates
Contrary to previous studies [44, 46, 48, 51–53], we found that reptiles and mammals have the
highest values of dissimilarity, while amphibians and birds have the lowest, although differ-
ences are small. For example, in the Isthmus of Tehuantepec in southeastern Mexico, where
there are no altitudinal differences birds had the highest values of beta diversity, while amphib-
ians had the lowest values [44]. Also, at the scale of the American continent birds had higher
values of beta diversity than mammals [46]. Other studies show that beta diversity may be
higher for amphibians and reptiles than for mammals and birds [48, 51–53]. In most cases,
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these results seem to be related with the dispersal abilities and niche limitations, because exo-
thermal organisms (amphibians and reptiles) had in general lower dispersal capacities and
stronger niche limitations than birds and mammals [48, 52–53].

Relationship between dissimilarity types
Correlations between species and taxonomic dissimilarities indicate that the number of species that
may be considered in conservation efforts is related to the number of higher taxa. This is important
because it suggests that, in our study area, if we focus on the species level for conservation, we are
not only protecting current biological diversity, but also the taxonomic and evolutionary diversity
of each ecoregion will be preserved, which is the result of millions of years of evolution.

Izsac & Price [6] also found this relationship between beta diversity and taxonomic beta
diversity for different echinoderm communities in Asia. Furthermore, we think that it would
be possible to find positive relationships between taxonomic beta diversity, phylogenetic and
functional beta diversities for terrestrial vertebrates, in a similar way that has been found for
freshwater fish in watersheds [54], and for birds in environmental gradients in France [55].
However, sometimes, taxonomic beta diversity is not related in any way to other measures of
beta diversity, as occurs for estuarine tropical fish in Mexico, where functional beta diversity is
low even when taxonomic beta diversity is high, because of the dominance of few functionally
similar species and the low proportion of specialists [56].

Concluding remarks
This extraordinarily vast heterogeneity and environmental complexity requires complementary
approaches so current biodiversity can be understood form different perspectives. In this paper
we have shown trends in species and taxonomic beta diversity and their components. However,
including other aspects such as phylogenetic and functional diversity measures will give a
broader overview of biodiversity. Also, incorporating information of different biological groups
and spatial scales would be desirable. Our results for terrestrial vertebrates may be helpful to
assess risks and implications of beta diversity loss and the consequent homogenization of bio-
tas, especially for ecological integrity and functioning at each ecoregion. For example, Brazilian
Atlantic mixed forests have higher phylobetadiversity than other forest types because of the
presence of temperate and tropical taxa that make them unique, and therefore this region
requires the implementation of different conservation strategies [19]. This result from the Bra-
zilian mixed forest coincides with our results of vertebrate beta diversity in the Mexican Transi-
tion Zone, especially when we include the taxonomic structure and highlight the importance of
species and higher taxa turnover among ecoregions. As a conservation strategy of vertebrates,
we believe that its necessary to review in future research projects the design of the current sys-
tem of natural protected areas in Hidalgo, in order to guarantee the inclusion of relevant repre-
sentative areas at the ecoregion level. In particular, our results indicate that to conserve
amphibians the richest sites within each ecoregion require protection, because of the high con-
tribution of dissimilarity due to richness differences between ecoregions. But for the conserva-
tion of reptiles, birds and mammals a system of protected areas, that include most of the
heterogeneity within and among ecoregions, is needed. These local protection actions will war-
rant regional biological diversity.
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