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Aqueous Two-Phase Systems (ATPSs) have been extensively studied for their ability

to simultaneously separate and purify active pharmaceutical ingredients (APIs) and key

intermediates with high yields and high purity. Depending on the ATPS composition, it can

be adapted for the separation and purification of cells, nucleic acids, proteins, antibodies,

and small molecules. This method has been shown to be scalable, allowing it to be used

in the milliliter scale for early drug development to thousands of liters in manufacture for

commercial supply. The benefits of ATPS in pharmaceutical separations is increasingly

being recognized and investigated by larger pharmaceutical companies. ATPSs use

identical instrumentation and similar methodology, therefore a change from traditional

methods has a theoretical low barrier of adoption. The cost of typical components used to

form an ATPS at large scale, particularly that of polymer-polymer systems, is the primary

challenge to widespread use across industry. However, there are a few polymer-salt

examples where the increase in yield at commercial scale justifies the cost of using ATPSs

for macromolecule purification. More recently, Ionic Liquids (ILs) have been used for ATPS

separations that is more sustainable as a solvent, and more economical than polymers

often used in ATPSs for small molecule applications. Such IL-ATPSs still retain much

of the attractive characteristics such as customizable chemical and physical properties,

stability, safety, and most importantly, can provide higher yield separations of organic

compounds, and efficient solvent recycling to lower financial and environmental costs of

large scale manufacturing.

Keywords: aqueous two-phase systems, biphasic systems, ionic liquids, pharmaceutical extractions,

pharmaceutical separations

INTRODUCTION

The adoption of methods from the scientific literature into industrial applications often follows
a period of dormancy. While ATPSs have experienced a recent prolific rise in applications
in microfluidics, cellular engineering, bioprinting, and biopatterning since the 2000s (Teixeira
et al., 2017), the industrial applications of ATPSs are typically separations and purification, first
described in the 1950s (Albertsson, 1956, 1958). Such ATPSs popularized by Albertsson are
polymer-polymer or polymer-salt emulsions that have been well-studied for viral (Norrby and
Albertsson, 1960; Liu et al., 1998; Effio et al., 2015), cellular (Walter et al., 1976; Sharp et al.,
1986; Kumar et al., 2001), nucleic acid (Ribeiro et al., 2002; Gomes et al., 2009; Nazer et al., 2017),
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protein (Schmidt et al., 1994; Balasubramaniam et al., 2003), and
antibody (Desbuquois and Aurbach, 1971; Selber et al., 2004;
Rosa et al., 2007b; Azevedo et al., 2009a) separations. Examples
can be found for batch (Tavana et al., 2009; Frampton et al.,
2011, 2014; Lai et al., 2011) or continuous (Yamada et al., 2004;
Nam et al., 2005; SooHoo and Walker, 2009; Tsukamoto et al.,
2009; Rosa et al., 2012) processes. While polymer ATPSs are
limited to partitioning of macromolecules due to size of the
polymers used, the isolation and separation of small molecules
(<900 Daltons) in ATPSs, especially those developed in the
pharmaceutical industry, commonly employ ionic liquids (ILs).

Polymer-Based ATPS Separations
and Considerations
The mechanism for purification of a material using ATPSs
is driven by physical and chemical affinity toward a select
phase and the contaminant’s affinity toward the other liquid
phase. Accurate prediction of partitioning is complicated by
several factors. Physical and chemical properties of each phase,
such as viscosity, relative volume, density, charge, pH, and
volatility are known to impact performance, and thus the
choice of polymer or salt is used to tune the systems for
effectiveness (Albertsson, 1960). In general, the process of
ATPS separations and purification occurs in three major steps:
molecular partitioning, physical separation, and isolation of
phase of interest (Figure 1). The use of ATPSs was shown to be a
high-yield and environmentally sustainable alternative to some
current pharmaceutical purification and extraction processes
(Chen et al., 2005). Although its adoption in the pharmaceutical
industry is relatively early for manufacturing, it currently has
its niche applications in pharmaceutical development as well
as other industries (Diuzheva et al., 2018; Mocan et al., 2018).
Clear documentation of advantages in cost savings, yield and
sustainability combinedwith ease of adoption is needed to ease its
widespread use in biopharmaceutical or vaccine manufacturing
process (Chen et al., 2005).

Selective partitioning is the first step of separation design.
It is advantageous to increase the liquid-liquid interface to
accelerate molecular partitioning by producing a fine emulsion
of the dispersed aqueous phase inside the continuous aqueous
phase. The ability to selectively partition is dependent on the
affinity differences for the material of interest for each phase.
Polyethylene glycol (PEG) is a widely used component of
ATPSs due to its high biocompatibility, biodegradability, water
solubility, and low cost. Aside from changes in molecular weight,
the properties of PEG with respect to partitioning are limited.
To overcome this challenge, multiple groups have functionalized
PEG in PEG/salt and PEG/dextran ATPSs with glutaric acid to
improve extraction yields of immunoglobins from 28 to 93%
(Rosa et al., 2007a), and 23 to 97% (Azevedo et al., 2009b) as
well as increasing extraction efficiencies of penicillin up to 96%
using imidazole-terminal PEG (Jiang et al., 2009). The addition
of a small percentage of a biospecific ligand to ATPSs was
shown to increase purification efficiency and yield by several
fold (Kula et al., 1991) in a concentration-dependent manner
that can be optimized for manufacturing scale of monoclonal

antibodies. The use of ATPSs present an opportunity to simplify
the manufacturing process of plasmid DNA by allowing for
the lysis, recovery, purification and extraction in a single high
yield step (Frerix et al., 2005). Polymer ATPSs have been
shown to extract plasmid DNA and RNA up to 90 and 70%
respectively (Frerix et al., 2006).

The second step is physical coalescence of the emulsion
into two continuous, phase-separated, liquids. While numerous
physical and chemical properties drive selective partitioning,
coalescence of ATPS is simply driven by interfacial tension,
density and viscosity. ATPSs will spontaneously coalesce
into two continuous phases over time by sedimentation
according to Stoke’s Laws, and physical characteristics such
as viscosity slow the process (Asenjo and Andrews, 2012).
Centrifugation is often used to accelerate the natural coalescence
and sedimentation.

Lastly, the liquid phase containing the purified material
is isolated. The interface between the two liquid phases is
avoided to prevent contamination, thus resulting in a yield
loss. Multi-stage ATPS separations can improve recovery
(Benavides et al., 2006) and may be justifiable depending on
the relative ATPS cost and compound value. Vessels with a
high aspect ratio are recommended to minimize the liquid-liquid
interface where compound loss occurs, however homogenization
in a high aspect ratio vessel generally has longer mixing
times or suffers from undesirable fluid compartmentalization
(Magelli et al., 2013). Furthermore, tall vessels result in long
centrifugal distances and longer sedimentation times to achieve
complete separation.

Polymer-Based ATPS Pharmaceutical
Industry Applications
After fermentation, separation of API from cells and cell debris
is often achieved via centrifugation, however centrifugation
becomes increasingly complex on scale up from bench (50mL) to
industrial scale (1,000 L) (Majekodunmi, 2015). Thus, there exists
a need to explore advanced scalable separation processes that
maintain yield for a single-step extraction. Polymer-based ATPSs
are showing promise for a wide range of commercially valuable
molecules, however their versatility also complicates its adoption.
The principles governing high-value molecule partitioning has
been investigated (Willauer et al., 2002) and the consultation of
such toolboxes (Huddleston et al., 1999) to assist in ATPS design
and development is highly encouraged.

One other factor that prohibits the attractiveness of polymer-
polymer ATPSs is the cost of high molecular weight polymers
at industrial scale (Torres-Acosta et al., 2018). As a result,
cheaper phosphate or sulfate salts as replacements for polymer-
polymer ATPSs to become polymer-salt ATPSs are more
attractive. Such polymer-salt ATPSs were demonstrated to
have high yield and scalability from bench to industrial scale
(Hart et al., 1994). The substitution of a high molecular
weight polymer with a salt, introduces an osmotic pressure
concern which limits ATPS application in some cellular and
biomolecular recoveries (Kühn, 1980; Zijlstra et al., 1996; Li
et al., 2000). Despite this, in certain products with challenging
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FIGURE 1 | The use of polymer-based or IL-based ATPSs for separations critically depends on selective partitioning of the molecule over impurities. Impeller agitation

is often employed to speed up equilibrium partitioning. Depending on viscosity and density differences and interfacial tension values, physical separation can be as

simple as sedimentation or as complex as industrial centrifugation to isolate the liquid phase containing the molecule of interest.

yields, ATPSs have financial justification at the industrial scale
especially with the reduced costs of polymer-salt ATPSs and
IL-ATPSs (Torres-Acosta et al., 2018).

IONIC LIQUID ATPS

Ionic liquids have similar tunable properties such as
hydrophobicity, polarity, solvation, and phase separation
(Greaves et al., 2006; Moreno et al., 2015; Anderson and Clark,
2018). The stark similarities of polymer-based and IL-based
ATPSs have facilitated the adoption of IL-based ATPSs. IL-
ATPSs provide improvements in separation performance,
selectivity, and broader design opportunities for a diverse range
of molecules, including small molecules and biomolecules. IL-
ATPSs also possess lower molecular weight and viscosity which
enables faster separations making them industrially attractive.
We note that the separation of cells, which is frequently
performed in drug discovery experiments, and an obvious area
for improvement through use of IL-ATPSs is not possible or
demonstrated with IL-ATPSs, to the best of our awareness, likely
due to osmotic pressure effects.

While this review provides a pharmaceutical focus, the
reader is encouraged to reference other IL-ATPS reviews
that informatively summarize properties for partitioning (Li
et al., 2010; Oppermann et al., 2011; Ma et al., 2018),
phase behavior and IL recovery (Freire et al., 2012), enzyme
separations (Nadar et al., 2017), deep eutectic solvents (DES)
(Shishov et al., 2017; Zainal-Abidin et al., 2017), and capillary
electrophoresis applications (El-Hady et al., 2016). A review

of various roles of ILs in pharmaceutical applications is also
recommended (Huddleston et al., 1998).

Except where noted, all processes, physical properties and
performance information described were generated at 25◦C.

TYPES AND PROPERTIES OF IL-ATPS

Phase separation can be controlled by the differing nature
of the IL and second phase hydrogen bonding properties
(Bridges et al., 2007). The IL-rich environment, often the
upper phase, is relatively more hydrophobic thus attracting
hydrophobic molecules. Phase separation is thus understood
to be solvophobic and driven by electrostatic attractions
and hydrophobic interactions. Several different systems have
been discovered, characterized, and investigated for their
potential applications in the pharmaceutical industry. IL-
ATPSs can be tuned to improve solubility and thus extraction
efficiency and partitioning properties which in turn improves
speed and completion of phase separation. Generally, the
lower the salt concentration required, the stronger the
phase separation ability of the ILs from aqueous solutions
of salts.

IL Cation
Cn-methyl-imidazolium based ILs, where n = 2, 4, 6, and 8,
are the most frequent systems studied in the literature, along
with other functionalized imidazolium cores (Gutowski et al.,
2003; Wu et al., 2015). Other systems such as cholinium based
carboxylate ILs (oxalate, malonate, succinate, L-malate, fumarate,
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glutarate, and citrate), and pyridinium based -ILs are described
with PEG 400 and 600 as the second phase former (Passos
et al., 2012; Mourão et al., 2014). Varying CH2 length resulted
in the coexistence of distinct types of self-assembly in the IL-
ATP system. The behavior was inconsistent on changing the
IL anion. For example, increasing the imidazolium alkyl chain
length increased phase separation for a series of BF−4 ILs and
decreased for the same series as Br− ILs (Wei et al., 2013). IL-
ATPS and their applications were also demonstrated for dodecyl
trimethylammonium-based (Flieger et al., 2013), functionalized
amino acid and nucleotide ILs, for example glycine and guanidine
(Wu et al., 2013; Zeng et al., 2013; Ding et al., 2014; Yao et al.,
2016). Phosphonium-based ILs have the advantage of being
less dense than water and less viscous than imidazolium based
ILs, thus prospectively facilitating the separation of the aqueous
waste stream of biomolecule separations in production scale
equipment (Louros et al., 2010).

IL Anion
Several different IL counterions have been described in the IL-
ATPS literature, although simple anions such as bromide and
chloride are most typical. Amino acid anions, L -serine, L-glycine
L-alanine, and L-leucine with [bmim] cations formed IL-ATPS
with K3PO4 (Wu C. et al., 2011). The ability to form IL-ATPS was
related to hydrophobicity of the amino acid anion such that phase
formation occurs with increasing hydrophobicity of the anion.
Formate, acetate, propionate, lactate, chloride, and bromide salts
of functionalized guanidinium ILs were shown to be effective
at protein partitioning (Ding et al., 2014). Antioxidant anions
(butanoate, propanoate, acetate, lactate, glycolate, bitartrate,
dihydrogen phosphate, chloride, dihydrogen citrate, gallate,
syringate, vanillate, and caffeate) of cholinium ILs were effective
in separating immunoglobulin G (Ramalho et al., 2018).

ATPS-Forming Salts
IL-ATPSs can be formed with conventional kosmotropic salts
(potassium sulfate, citrate, ammonium sulfate), common salts
(citric, fumaric, succinic, and tartaric acid sodium salts), amino
acids, PEG and surfactants (3-p-nonylphenoxy-2-hydroxypropy
trimethyl ammonium bromide, NPTAB and sodium dodecyl
sulfonate, SDS), and combinations (Wu C. et al., 2011; Passos
et al., 2012; Wei et al., 2013; Abdolrahimi et al., 2015; Dai et al.,
2015; Pereira et al., 2015). The size of the biphasic region can
be controlled by functionalizing the PEG terminal groups with
–OH, –OMe, or –NH2 to change the hydrogen bonding donor
or acceptor. Improvements in the extraction performance for a
hydrophobic molecule, tryptophan was demonstrated in citrate-
based IL-ATPSs for use in continuous extraction of amino acids.
The incorporation of surfactants decreased the viscosities of both
phases and flipped the IL-rich phase to the bottom phase as a
result of density changes (Wei et al., 2013; Dai et al., 2015).

The molecular mechanisms that govern the ability of salt
ions to induce IL-ATPS formation was studied using a wide
range of salts with diverse combinations of cations and anions,
with [bmim][CF3SO3] a hydrophilic ionic liquid (Shahriari et al.,
2012). The ions’ trend to salt-out the IL into an ATPS follows the

Hofmeister series and demonstrates the molar entropy of salt ion
hydration as the driving force.

Additives
Addition of a third component to create an IL-ATPS is
another tactic used to enhance separation, presumably by
increasing the solvophobic nature of the systems. For example,
addition of SDS to [bmim]Br/NaCl IL-ATPS enhanced antibiotic
extractions into the surfactant-rich upper phase (Yang et al.,
2014). Addition of CO2 into aqueous solutions of ILs and
amines was shown to be effective in recovering ILs from
aqueous mixtures (Xiong et al., 2012). Simply by bubbling CO2

at atmospheric pressure into aqueous IL forms an IL-ATPS
and allowed up to 99% recovery of the IL. Interestingly, these
systems also modified densities such that the IL-rich phase is
at the bottom. They also found phase separation of ammonium
salts and the recovery efficiency for ILs are predominantly
driven by the pKa of the amine, following the order: 1,2-
propylenediamine > monoethanolamine > diethanolamine
> N-methylmonoethanolamine > N-ethyldiethanolamine >

triethanolamine, except for > N-methyldiethanolamine.
Application of an electrokinetically stable three-phase

IL-ATPS, [bmim]Cl/ K2HPO4, [bmim]BF4/ NaH2PO4, and
[bmim]BF4/ Na3(citrate) enabled electrokinetic de-mixing
(Li et al., 2017). Increased salt concentration and decreased
IL concentration were observed to phase separate faster and
have a higher efficiency of electrokinetic demixing due to a
salting-out effect, whereas electric field had no impact on
protein distribution.

In addition, pH-dependent reversible partitioning of IL-ATPS
systems at ambient conditions offers dual functionality as a
catalytic medium and separation extraction (Ferreira et al.,
2017). Adjustment of pH was achieved through changes in salt
speciation or bubbling in CO2 or NH3.

IL EXTRACTIONS

Small Molecule Separations
Several types of small molecules such as antioxidants,
flavonoids, alkaloids, sulfonamides, functionalized amino acids,
antibiotics such as tetracycline, oxytetracycline, cephalexin, and
chloramphenicol effectively partition and extract in IL-ATPSs
(Li et al., 2005; Freire et al., 2010; Louros et al., 2010; Han et al.,
2011; Berton et al., 2012; Lin et al., 2012; Wu et al., 2013; Mourão
et al., 2014; Yang et al., 2014; Abdolrahimi et al., 2015; Yao
and Yao, 2017). In general, small molecules partition into the
IL-rich upper phase. These systems are advantageous as a sample
pre-treatment technique offering reduction of steps, materials
and volatiles, and a sample concentration method (Basheer et al.,
2008). IL-ATPSs have broad application in selective separation
and extraction of small molecules and biomolecules through
simple modifications of the IL structure and composition
along with parameters that affect the extraction efficiency, such
as the salt concentration, pH and extraction temperature, to
appropriately modulate the IL-rich phase.

Pei et al. determined the partition coefficients for a series of
amino acids in [Cnmim]Br (n = 4, 6, 8)/ K2HPO4 IL-ATPS
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and showed that they increased with increasing hydrophobicity
of the amino acids and ionic liquids, solution pH value,
tie-line length of the ATPSs and temperature (Pei et al.,
2012). Pre-treatment of aqueous solutions for trace analysis
of chloramphenicol with a 147-fold concentration enrichment
and high recovery was achieved by applying an electric field
across the IL-ATPS (Yao and Yao, 2017). A simple and sensitive
method for selective extraction of quinine from human plasma
was developed with [bmim]Cl/potassium phosphate buffer
(Flieger and Czajkowska-Zelazko, 2015).

Extraction of pharmaceutical molecules (active ingredients or
intermediates) is often from plant materials. The isolation of
high purity secoisolariciresinol diglucoside, a multi-functional
pharmaceutical, from flaxseed, was simplified and improved with
an ultrasonic-assisted extraction followed by IL-ATPS formation
by the addition of Na2SO4 (Tan et al., 2015). A similar example
where fractionation and recovery of bioactive hydroxycinnamic
derivatives from stressed carrotmass using IL-ATPS formed from
[emim]acetate/potassium buffers gave a different phenolic ratio
than conventional ATPS (Sánchez-Rangel et al., 2016).

Enantiomeric separation of 7 racemic amino acid
mixtures was achieved by designing task-specific
hydrophilic hexafluorophophate IL-ATPSs (Wu et al.,
2015). Enantioselectivity was dependent on IL structure
with energetically-favored intermolecular interactions between
the IL cation, water and the D-enantiomer, allowing separation
of the D-enantiomer to the bottom IL-rich phase. The IL-ATPS
extraction efficiency was further improved for D,L-phenylalanine
using chiral tropine-based ILs, [CnTropine]proline (n = 2,
3, 4, 5, 6, 7, 8) with Cu(acetate)2 and potassium phosphate
buffers (Wu et al., 2015).

Macromolecule Extractions/Analytical
Biochemistry
The introduction of IL-ATPSs is a significant advancement in
analytical biochemistry in terms of time, materials, complexity
and efficiency for purification and separation of macromolecules
in aqueous fluids. Due to the high water content in both phases,
they are biocompatible media for the extraction and purification
of a wide range of biomolecules by offering protection from
denaturation. Separation is attributed to electrostatic potential
differences between the coexisting phases, hydrophobic, and
hydrogen bonding interactions of the biomolecules with the IL
components in the upper IL-rich phase, and the salting-out effect.

Proteins, such as hemoglobin, ovalbumin, bovine serum
albumin (BSA), bovine hemoglobin proteins, lysozyme,
cytochrome c, and trypsin appear to require task-specific
ILs per entity for successful separation and efficiencies as
high as 99.6% (Lin et al., 2013; Wu et al., 2013; Zeng et al.,
2013; Ding et al., 2014; Wang et al., 2015; Xu et al., 2015;
ČíŽová et al., 2017). Extraction efficiencies are influenced
by the amount of IL, the concentration of salt solution,
temperature, and protein concentration. Separations were driven
by hydrophobic interactions between IL cations and the proteins
with minor contributions from electrostatic interactions and the
salting-out effect.

In addition to separation, IL-ATPS were also used to improve
binding constant estimation by stabilizing the protein of interest
(El-Hady et al., 2015; Abd El-Hady and Albishri, 2018). For
example, binding constants of (+)-propranolol, methotrexate
and vinblastine to human alpha (a1)-acid glycoprotein,
the plasma protein were determined by combining affinity
capillary electrophoresis with reversible temperature-dependent

FIGURE 2 | IL assisted polymer recovery for ATPS extraction proposed by Jiang et al. (2009). The recent merge between IL and conventional ATPSs creates new

opportunities to further decrease the carbon footprint of ATPS extractions which also result in cost savings. Such financial and environment drivers are key to industrial

adoption.
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phase separation using [bmim]Cl/ phosphate IL-ATPS with
improved precision.

The antibody, immunoglobulin G (IgG) was extracted from
serum samples using cholinium based IL-ATPSs (Ramalho
et al., 2018). Although some systems had superior IgG
recovery values to conventional techniques, improvement
in IgG purity levels was insignificant. IL-ATPS represents a
far simpler separation method when compared to current
multistep methods for antibody isolation from serum
samples. Such technology is worth further development
and optimization.

CATALYTIC ENHANCEMENT

IL-ATPS also found utility as catalyst performance enhancers
that offer a dual advantage in synthetic processes when selective
separation is considered (Dyson et al., 2001; Wu D. X.et al., 2011;
Mai and Koo, 2014). The bioconversion of the steroid 16a,17-
epoxyprogesterone to 11a-hydroxy-16a, 17-epoxyprogesterone
catalyzed by free R. nigricans cells was improved when performed
in an IL-ATPS without the addition of salt, and demonstrated in
semi-continuous production for 60 h at ∼5mL (total) scale (Wu
D. X.et al., 2011). A temperature-dependent reversible IL-ATPS
was demonstrated as a medium for transition metal catalyzed
hydrogenation of a water-soluble substrate, offering potential
re-use of the high-value catalyst and avoidance of product
metal contamination (Dyson et al., 2001). Similarly, temperature-
controlled reversible phase separation offers the advantage of
product recovery and maintaining catalytic activity of an in-situ
penicillin G hydrolysis (Mai and Koo, 2014). In keeping with the
well-known trends of enzymatic activity in ILs, catalytic activity
was found to increase in IL hydrophobicity.

CONVENTIONAL AND IL-ATPS
CROSSOVER

There are a few examples of note where polymer-based
ATPS were combined with ILs. Extraction efficiency of three
antioxidants, gallic, vanillic, and syringic acids, was further
improved by tuning the polarity of the PEG-rich bottom phase
with the addition of an IL (Almeida et al., 2014). The relationship
between hydrogen bonding of the IL with the phenolic acids and

extraction was found to be more important than the total amount
of IL and increasing the polymer molecular weight increased the
likelihood of phase separation. Tropine-salt IL-ATPSs were used
to remove or recover hydrophilic ILs that cannot form IL-ATPSs
with kosmotropic salts, polymers or carbohydrates, in an attempt
to provide a means to reduce environmental contamination (Wu
et al., 2016). The ILs preferentially partitioned to the tropine-
rich upper phase, which is then further processed to complete
the recovery. IL-ATPSs have also been employed for polymer
recovery and recycling (Jiang et al., 2009) which offers the
benefits of cost and carbon footprint reduction and may be key
to wider industrial adoption (Figure 2).

FORWARD STATEMENT

ATPSs have already found industrial use in niche areas
of pharmaceutical development and possibly manufacturing.
Meanwhile, ILs are simultaneously emerging as sustainable
alternatives for small molecule pharmaceutical extractions.
The recent development of IL-based ATPSs provides new
opportunities for decreasing the carbon footprint and costs of
pharmaceutical extractions which are important drivers for wider
industrial adoption. The body of literature is clear that IL-based
and polymer-based ATPSs are suitable sustainable alternatives to
organic solvents and produce higher or equivalent yields. We
believe the barriers to industrial adoption have been cracked
due, in part, to the scientific works highlighted in this review,
and that there is a bright pharmaceutical future for polymer and
IL-based ATPSs.
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