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Abstract: Composite tissue-engineered constructs combining bone and soft tissue have applications
in regenerative medicine, particularly dentistry. This study generated a tri-layer, electrospun,
poly-ε-caprolactone membrane, with two microfiber layers separated by a layer of nanofibers, for the
spatially segregated culture of mesenchymal progenitor cells (MPCs) and fibroblasts. The two cell
types were seeded on either side, and cell proliferation and spatial organization were investigated
over several weeks. Calcium deposition by MPCs was detected using xylenol orange (XO) and the
separation between fibroblasts and the calcified matrix was visualized by confocal laser scanning
microscopy. SEM confirmed that the scaffold consisted of two layers of micron-diameter fibers with
a thin layer of nano-diameter fibers in-between. Complete separation of cell types was maintained
and calcified matrix was observed on only one side of the membrane. This novel tri-layer membrane
is capable of supporting the formation of a bilayer of calcified and non-calcified connective tissue.

Keywords: mesenchymal stem cells; maxillofacial surgery; bone tissue engineering; soft tissue
engineering; scaffold; electrospinning

1. Introduction

An important clinical goal in tissue engineering is to move beyond the reconstruction of single
tissue types to generate composite tissues, composed of two or more tissue types, which more closely
reflect the basic unit for healing in vivo. This is of particular significance in several clinical settings,
including cleft lip/cleft palate repair, trauma surgery and tumor removal. However, to date, only
a small number of studies have reported success in generating a scaffold capable of generating
distinct tissue layers for both soft tissue and bone repair. A suitable scaffold should allow for normal
development of both soft tissue and the slower growing bone tissue, while preventing soft tissue
intrusion into the bone formation site. The scaffold should also permit a good flow of nutrients
throughout the scaffold to facilitate cell proliferation. Electrospinning was selected for scaffold
production due to the level of control available in fiber size, fiber orientation and porosity [1].

Mesenchymal stem cells (MSCs) have been used for bone regeneration due to their ability to
differentiate into osteoblasts, osteocytes and adipocytes and have previously shown satisfactory
clinical outcomes [2,3]. Human embryonic cell derived mesenchymal progenitor cells (hES-MPs) [4]
and primary human MSCs derived from bone marrow mononuclear cells were employed in this
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proof-of-concept study as model cells for bone tissue. Primary human dermal fibroblasts were chosen
to represent the soft tissue layers.

The first aim of this preliminary study was to generate an electrospun tri-layer scaffold using
only one polymer, poly-ε-caprolactone (PCL). The second was to seed the tri-layer scaffold with cells
capable of generating bone and soft tissue, demonstrate localized mineral deposition and evaluate the
extent to which the scaffold could maintain spatial separation of the two layers.

2. Materials and Methods

All products are from Sigma Aldrich, Dorset, UK unless otherwise stated.

2.1. PCL Scaffold Fabrication

10 wt % solution PCL (molecular number 80,000) in dichloromethane (DCM) was used for
microfiber production, and 5 wt % solution PCL in methanol:DCM mixture (weight ratio 10.5:89.5)
for nanofiber production, stirred for 24 h at room temperature. Scaffolds were fabricated with
an electrospinning rig, at room temperature, as previously described [1,5], with one rotating drum
collector (126 mm diameter) and two syringe pumps, each with four needles, located on either side of
the collector. Fibers were fabricated at 17 kV, 40 µL/min flow rate, 300 revolutions/min drum rotation
speed. Microfibers and nanofibers were generated from the two pumps at 17 and 10 cm from the
collector respectively. 8 mL 10 wt % PCL solution was dispensed from the outer pump to generate the
initial microfiber layer, followed by simultaneous release of 4 mL solution from this pump and 4 mL
5 wt % PCL solution from the inner pump to generate the intervening nanofiber layer. The second
microfiber layer was generated in the same manner as the initial layer, dispensing 8 mL solution from
the outer pump. Scaffolds were allowed to dry at room temperature and cut using a circular cork borer
(15 mm diameter), prior to sterilization with 0.1 v/v % peracetic acid in PBS.

2.2. Scanning Electron Microscopy (SEM) Characterization of Scaffolds

Scaffolds without cells were prepared for SEM (Phillips XL-20 SEM, Eindhoven, The Netherlands)
by coating with an ultrathin gold layer. The pore size and fiber diameter (n = 100) were analyzed
from four recorded SEM micrographs in each layer (width 200 µm each layer) using ImageJ, (National
Institutes of Health, Bethesda, MD, USA) [6]. Each picture was overlaid by a square grid, size 900 µm2,
and the diameter determined for pores and fibers underneath the junctions of the squares. To determine
pore size area, a pixel bandpass filter was applied (minimum 3 pixels, maximum 20 pixels), the images
thresholded and the void space determined.

Cell-seeded scaffolds were removed from culture media, PBS washed ˆ3 and fixed (10 v/v %
formalin in PBS, 20 min, room temperature). Scaffolds were dehydrated by sequentially submerging
(15 min) in 35%, 60%, 80% and 90% v/v ethanol in distilled water, followed by 100% ethanol. Samples
were submerged in 1:1 ethanol:hexamethyldisilazane (HDMS) solution for 1 h, rinsed ˆ2 in 100%
HDMS for 5 min and dried in a dessicator for at least 1 h prior to gold-coating.

2.3. Cell Culture

hES-MPs (Cellartis, Gothenburg, Sweden) were cultured in α-MEM supplemented with 10 v/v %
fetal calf serum (FCS), 2 mM L-glutamine, 100 mg/mL penicillin, streptomycin (P/S), and 4 ng/mL
fibroblast growth factor-basic recombinant human (bFGF: Invitrogen, Paisley, UK) in 1% gelatin
pre-coated flasks. hBMSCs were isolated from mononuclear cells (Lonza, Basel, Switzerland); briefly;
mononuclear cells were transferred to basal culture media containing 0.1 mg/mL DNaseI (Stemcell
Technologies, Cambridge, UK) and plated (1.2 ˆ 105 cells/cm2). After 7 days non-adherent cells were
removed. The adherent cells (passage 0) were cultured in expansion media (EM—α-MEM, 10 v/v %
FCS, 2 mM L-glutamine, 100 mg/mL P/S) until 70%–80% confluent. hBMSC cells were seeded on
scaffolds at passage 2 or 3.
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Following cell inclusion on scaffolds, samples were cultured in supplementary media (SM), EM
supplemented with 50 µg/mL ascorbic acid-2-phosphate (AA) and 5 mM β-glycerolphosphate (β-GP),
or osteogenic induction media (OIM—SM with dexamethasone). The levels of dexamethasone were
optimized in previous studies (100 nM Dex for hES-MP cells [7], 10 nM for hBMSC cells [8]).

Fibroblasts were isolated from human dermis as previously described [4] (HTA license 12179).
The fibroblasts were cultured in DMEM, 10 v/v % FCS, 2 mM L-glutamine, 100 IU/mL P/S,
0.625 µg/mL amphotericin B and used between passages 3 and 5.

2.4. Assessment of Cell Viability of hES-MPs on Electrospun PCL Scaffold

Scaffolds were placed in a CellCrownTM assembly. 1 mL basal media was added, 105 cells in
100 µL media seeded on top of the scaffolds and left for 24 h in an incubator. The scaffolds were
removed to fresh wells containing SM or OIM culture media. Media was replaced every 2 to 3 days and
culture continued for 7, 14, 21 or 28 days. At the end the media was replaced with 0.1 mM resazurin
salt solution in basal media and incubated (4 h, 37 ˝C). Two hundred microliters of media was removed
and the concentration of resorufin determined with a spectrofluorometer (λex 540 nm, λem 630nm).

2.5. hES-MPs Cell Line Seeding and Proliferation on Tri-Layer Electrospun PCL Scaffold

Preliminary experiments were carried out using the hES-MPs cell line. Scaffolds were seeded
with 1 ˆ 105 hES-MPs (100 µL media) in a CellCrownTM assembly and grown in OIM, for 28 days.
Scaffolds were 10 v/v % formalin-fixed, permeabilised with 1% Triton X-100 and stained with
41-6-diamidino-2-phenylindole (DAPI). For actin staining, cells were incubated with 2 µg/mL
Phalliodin TRITC for 15 min prior to washing. Cell nuclei (Ti-Sapphire two-photon laser λex 800 nm,
λem 435–485 nm) and actin (λex 543 nm, λem 565–615 nm) were visualized. Differential interference
contrast (DIC) imaging was used to locate the scaffold.

2.6. Co-Cultured between hBMSCs and Fibroblasts on Tri-Layer Electrospun PCL Scaffold

Scaffolds were co-cultured with hBMSCs and human dermal fibroblasts. 1 ˆ 105 hBMSCs (100 µL
media) were seeded in a CellCrownTM and cultured in OIM for 21 days. The CellCrownTM was
then inverted and 1 ˆ 105 fibroblasts (100 µL media), stained with CellTrackerTMGreen (Invitrogen,
Paisley, UK), added to the opposite side of the scaffold. The entire construct was cultured, without
dexamethasone to minimize the risk of mineralization of the fibroblast layer [7], for 7 days. At the
end of the culture period, xylenol orange (C31H28N2O13SNa4) was used to indicate mineralization.
The scaffold was incubated in media containing XO (20 µM) for 12 h. The scaffolds were detached from
the CellCrownTM inserts, cut into 0.5 mm strips, orientated with the cut surface uppermost to facilitate
side-on viewing, and imaged with an LSM 510Meta upright microscope (Carl Zeiss, Cambridge,
UK) (λex 543 nm, λem 565–615 nm). The location of CellTrackerTM Green-stained fibroblasts was also
determined (λex 488 nm, λem 500–550 nm). Images (512 ˆ 512) were obtained using a 20ˆ, 0.5 NA, EC
Plan-Neofluar water-dipping objective. For co-culture experiments without the barrier layer fibroblasts
were labelled with CellTrackerTMGreen as above and hES-MPs with CellTrackerTMRed (Invitrogen,
Paisley, UK) (λex 543 nm, λem 565–615 nm) prior to incorporation into the scaffold.

3. Results and Discussion

3.1. PCL Tri-Layer Scaffold Fabrication

Scaffold structure and fiber diameters were characterized prior to cell seeding. Differences were
observed in the fiber size distribution throughout the layers (Figure 1). In the bottom layer >90%
fibers were microfibers, i.e., >1 µm (mean 7.7 ˘ 0.4 µm, Figure 1A,D). In the middle layer >40% were
nanofibers, ď1 µm (mean 3.6 ˘ 0.4 µm Figure 1B,E). In the top layer >95% were microfibers (mean
8.4 ˘ 0.5 µm, Figure 1C,F). Fiber diameter is directly related to polymer concentration, however low
concentration solutions form fibers with beads [9]. The addition of alcohol can greatly reduce bead



Polymers 2016, 8, 221 4 of 9

formation due to its higher permittivity [10]. Therefore, 5% PCL in methanol/DCM was used for
nanofiber and 10% PCL in DCM for microfiber production. The pore size also varied between the
nano- and microfiber layers (Figure 1G–L), with ~325 µm2 mean pore size for the two microfiber layers.
Figure 1J–L shows the frequency distribution of the pores with an area ď100 µm2. It showed that in
the upper and lower regions of this layer 29% and 28% of the pores were of 50 µm2 or less, and in the
middle layer 40% of these pores were of 50 µm2 or less suggesting that the middle layer could act as
a cell barrier since this is below the minimum pore size required for cell infiltration.
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3.2. Progenitor Cell Seeding and Proliferation on Tri-Layer Electrospun PCL Scaffolds 

Figure 1. SEM image of the tri-layer electrospun PCL scaffold in side view (top), scale bar: 200 µm.
Overall fiber diameter distribution (A–C) and the distribution specifically below 100 µm (D–F) in the
bottom (A,D), middle (B,E), and top (C,F) layers; overall fiber pore size distribution (G–I) and the
distribution specifically below 100 µm2 (J–L) in the bottom (G,J), middle (H,K) and top (I,L) layers
(n = 100 from 4 SEM images per layer, mean ˘ SE).
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3.2. Progenitor Cell Seeding and Proliferation on Tri-Layer Electrospun PCL Scaffolds

Preliminary studies to assess the response of osteogenic cells to the scaffold were performed using
hES-MPs. These have been used as a model cell line for bone tissue engineering [11]. The viability of
hES-MPs increased over time for 28 days in both SM and OIM media on single layer PCL scaffolds
(Figure 2A), demonstrating dexamethasone has no effect on cell proliferation. On tri-layer scaffolds, all
cells were located on the same side of the scaffold on which they were seeded, with no evidence of
cells crossing over the central nanofiber region (Figure 2B), supporting our hypothesis that cells are
unable to penetrate the nanofibrous layer due to its low porosity and demonstrating that the tri-layer
scaffolds can support hES-MP attachment and proliferation.
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Figure 2. (A) Cell viability of hES-MPs on single layer electrospun PCL scaffolds with SM and OIM
media, measured after 7, 14, 21, and 28 days, mean ˘ SE, n = 6; (B) Tri-layer scaffold, located by DIC
imaging, seeded with hES-MPs, labeled with DAPI (blue), showing no cells crossed the center of the
scaffold in 28 days. Red arrows indicate the edge of the scaffold (scale bar = 200 µm).

3.3. Co-Culture between hBMSCs and Fibroblasts on Tri-Layer Electrospun PCL Scaffolds

hBMSCs were used in subsequent tri-layer experiments as they are more clinically relevant.
To ascertain the behavior of both osteogenic and soft tissue forming cells on the same scaffold, they were
co-cultured with dermal fibroblasts. Xylenol orange was used to reveal osteogenic cell mineralization,
as it binds to newly laid down bone mineral [12]. This has been used for the visualization of mineralized
tissue in 3D scaffolds [13]. Primary human dermal fibroblasts represent the soft tissue layer and oral
fibroblasts can also be extracted from the buccal mucosa and used to generate soft tissue [14].

SEM imaging revealed calcium nodules on the hBMSCs side (Figure 3A). Fibroblasts were clearly
present in a dense layer on the opposing side, indicating that soft tissue can be cultured adjacent to
mineralized tissue (Figure 3B). A side view of the scaffold was obtained to ascertain if cells were present
in the central nanofibrous region (Figure 3C). Although few cells could be seen in this barrier region,
these images were hard to interpret so further analysis using fluorescent imaging was performed to
confirm this.
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Fluorescence imaging (Figure 4) revealed mineral deposition (red) on only one side of the scaffold
and fibroblasts (green) only on the other, confirming the SEM images. The absence of staining in the
central nanofibrous layer confirmed neither fibroblasts nor mineral depositing cells had penetrated
this region.
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hES-MPs seeded on one side of a monolayer PCL microfiber scaffold, fabricated without
a nanofiber barrier layer, were found to infiltrate throughout the whole scaffold after 28 days
culture (Figure 5A–E). Cell infiltration throughout a microfiber PCL scaffold was also confirmed by
immunolabeling of cells (Figure 5F,G). Furthermore, initial experiments with hES-MPs and fibroblasts
seeded on opposing sides of a PCL microfiber scaffold demonstrated a monolayer microfiber scaffold
was unable to maintain spatial segregation over the course of the culture period, resulting in the
intermingling of the two cell types (Figure 5H). Previous experiments from our laboratory using
PLA/PHBV [15] or PCL [16] electrospun microfiber scaffolds have also shown that fibroblasts and
MSCs fail to form two distinct spatial segregated layers in the absence of this nanofiber barrier
layer, with both cell types found in the same region. Furthermore the culture of MSC cells on a PCL
scaffold without the barrier layer resulted in mineralization being detected throughout the scaffold [16].
Our results showed no cell infiltration or mineralization occurs within this nanofiber barrier layer in
the tri-layer scaffold.

Fibroblast proliferation and MSC proliferation and mineralization were used as in vitro endpoints
of successful soft tissue and bone regeneration. However further studies will be required to confirm
that the scaffold will support full bone regeneration and soft tissue growth in vivo to determine the
suitability of the scaffold for future clinical use.

We propose that this tri-layered scaffold could be appropriate for composite tissue engineering
in a clinical procedure, particularly where bone defects are associated with defects in soft tissue.
This could be achieved, e.g., with the implantation of a scaffold seeded with autologous BMSCs and
buccal fibroblasts [17] on opposing faces for the treatment of cleft palate. The current practice is to
repair the soft tissue defect first before addressing the bone defect. However, a scaffold that provides
the opportunity to repair both defects simultaneously may have clinical benefits, including potentially
reducing the time taken to repair the defects, reducing the number of operations required or improving
the outcome for the patient. The successful regeneration of epithelialized soft tissues such as skin
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and oral mucosa on electrospun scaffolds has been demonstrated in vitro in our laboratory [17,18]
and these techniques could be also be employed to regenerate the soft tissue on this tri-layer scaffold.
In addition antibiotics could be incorporated into the electrospun scaffold [19,20] to help prevent
bacterial colonization during tissue regeneration.
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Although adult hBMSCs were used in this study, we expect that iliac crest MSCs derived from
a child would behave in a similar manner, and may form bone more rapidly, as the osteogenic potential
of hBMSCs decreases with age [21]. Other sources of osteoprogenitor cells could be employed that
avoid the need for bone marrow harvest, such as adipose derived mesenchymal stem cells or periosteal
cells [1,5]. We recently reported a method of electrospinning tri-layer PHBV/PLA scaffolds for the
spatially segregated co-culture of keratinocytes and fibroblasts [15]. However, this scaffold is likely
to be sub-optimal for clinical use with bone-forming tissue, due to the six-month degradation rate of
PLA in vivo [14,22]. Poly-ε-caprolactone (PCL) is FDA approved and can generate biocompatible and
porous electrospun scaffolds, with suitable mechanical properties to support both soft tissue and bone
growth. It also has a relatively slow degradation rate compared to other commonly used biodegradable
polymers [23,24]. Therefore, a PCL membrane is likely to maintain the initial fibrous structure and have
sufficient mechanical strength for at least the first six months of the tissue regeneration process [2].
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4. Conclusions

The strategy presented in this proof-of-concept study was to generate a tri-layer scaffold composed
of a nanofiber barrier layer between the two microfiber layers to support both soft tissue and bone
formation while maintaining spatial segregation of the two tissues. Although the results presented are
preliminary, they indicate that an electrospun PCL tri-layer scaffold can be generated reproducibly
that can support the fully segregated co-culture of hBMSCs cells and fibroblasts for at least 28 days
and allow osteogenic differentiation with demonstrated calcium deposition. This tri-layer membrane
may also be useful for other clinical situations that involve more than one type of tissue, such as
guided tissue regeneration for periodontal surgical treatment, alveolar ridge augmentation for tooth
implantation and surgical reconstruction following trauma or tumor removal.
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