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Abstract

Measles is an acute systemic viral disease with initial amplification of infection
in lymphoid tissue and subsequent spread over 10-14 days to multiple organs.
Failure of the innate response to control initial measles virus (MeV) replication
is associated with the ability of MeV to inhibit the induction of type | interferon
and interferon-stimulated antiviral genes. Rather, the innate response is
characterized by the expression of proteins regulated by nuclear factor kappa B
and the inflammasome. With eventual development of the adaptive response,
the rash appears with immune cell infiltration into sites of virus replication to
initiate the clearance of infectious virus. However, MeV RNA is cleared much
more slowly than recoverable infectious virus and remains present in lymphoid
tissue for at least 6 months after infection. Persistence of viral RNA and protein
suggests persistent low-level replication in lymphoid tissue that may facilitate
maturation of the immune response, resulting in lifelong protection from
reinfection, while persistence in other tissues (for example, the nervous
system) may predispose to development of late disease such as subacute
sclerosing panencephalitis. Further studies are needed to identify mechanisms
of viral clearance and to understand the relationship between persistence and
development of lifelong immunity.
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Introduction

Measles is a highly contagious systemic viral disease that
remains one of the most important causes of worldwide
morbidity and mortality in children'. Although progress has been
made in measles control through the implementation of a two-dose
strategy for delivery of the live attenuated vaccine’, measles
remains, or has again become, endemic in many countries™’.
Research into the pathogenesis of infection and the immune
responses required for recovery from infection has been con-
ducted primarily in macaques. Macaques develop a rash disease
very similar to that of humans, and investigation of this animal
model system continues to highlight interesting and important,
but poorly understood, aspects of this viral infection. For instance,
there is a need to define the relationship between measles virus
(MeV) and the immune system, including the sites of virus
replication and the mechanisms, rapidity, and effectiveness of
immune-mediated virus clearance as well as the importance
of persistent viral RNA when clearance is incomplete™*.

New insights into the pathogenesis of acute infection
MeV, the causative agent of measles, is transmitted by aerosol
or respiratory droplets and spreads from the respiratory tract to
local lymphoid tissue. Studies facilitated by the development
of recombinant viruses expressing reporters such as green
fluorescent protein have shown that a major target for MeV
replication is the immune system. Peribronchial lymphoid
tissue and local draining lymph nodes initially amplify incoming
virus and then export infected mononuclear cells to the blood and
lymphatics for the spread of infection to more distant lymphoid
tissues of the thymus, spleen, gastrointestinal tract, and periph-
eral lymph nodes. Virus-infected mononuclear cells in circulation
also infect epithelial and endothelial cells in multiple non-lym-
phoid organs (for example, skin, conjunctivae, kidney, lung,
and liver)’~". This period of virus amplification and systemic
spread lasts for 10-14 days after infection and is clinically
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silent. The onset of disease with presentation of fever and rash,
a manifestation of the MeV-specific cellular immune response,
coincides with the process of infectious virus clearance'.
Soon after the rash resolves, infectious virus can no longer be
recovered, but the clearance of viral RNA occurs slowly over
the next several months®'*'* (Figure 1).

Failure of the innate immune response to prevent
virus dissemination

Virus amplification and spread are rapid and, in contrast
with most other acute viral infections, occur without induc-
ing signs and symptoms of acute infection or detectable
amounts of type I or III interferon (IFN)'" (Figure 2). Therefore,
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Figure 1. Schematic diagram of viral and immunologic features
of measles during the first 3—4 months after infection. Viremia
is the period during which infectious virus can be recovered from
peripheral blood mononuclear cells (PBMCs). Viral RNA is cleared
from PBMCs within 2-3 months but persists in lymph nodes (LNs)°.
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Figure 2. Innate immune responses to wild-type measles virus infection in humans and macaques Measurement of levels of cytokines
indicative of nuclear factor kappa B activation (A) and inflammasome activation (B) in plasma of children and interferon (C) in monkeys at

the time of rash onset'" .
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failure of early host control of virus replication allows wide-
spread infection. This observation raises questions as to the
nature and effectiveness of the innate cellular response to MeV
infection and the reason(s) for failure to induce IFN.

Cells have several mechanisms for sensing and respond-
ing to virus infection that can be initiated at the cell surface
(for example, Toll-like receptors [TLRs]) or after entry and
initiation of replication (for example, RNA helicases such as
RIG-I and MDAS and RNA-binding proteins such as PKR and
IFIT1)". Analyses of the cytokine and chemokine profiles of
children with natural measles and experimentally infected
macaques early after infection suggest activation of the nuclear
factor kappa B (NF-kB) (for example, interleukin-6 [IL-6], CCL2,
and tumor necrosis factor alpha [TNFo]) and inflammasome
(for example, NLRP3, IL-1, and IL-18) pathways but not the IFN
(for example, IFNo, IFN, and IFNA) response'”* (Figure 2).

MeV belongs to the morbillivirus genus of the family Para-
myxoviridae, negative-sense RNA viruses with non-segmented
genomes and a lipid envelope. The envelope has surface pro-
jections composed of the viral hemagglutinin (H) and fusion
(F) glycoproteins. H interacts with the virus receptor for
attachment, and F interacts with H and with the cell mem-
brane for fusion and entry. MeV targets several types of cells
(for example, B and T lymphocytes, dendritic cells, monocytes,
endothelial cells, and epithelial cells) and uses multiple recep-
tors in a virus strain and cell type-specific manner, determined by
the H protein*'~*. Two receptors used by wild-type (WT) strains
of MeV have been identified: signaling lymphocytic activa-
tion molecule (SLAM) or CD150, present on activated immune
cells*, and poliovirus receptor-related 4 or nectin 4, present on
epithelial cells”’. H interaction with SLAM-expressing immune
cells results in preferential infection of activated cells and antigen-
experienced memory T cells™.

The H proteins of WT strains of MeV also interact with TLR2”,
a transmembrane pathogen recognition receptor expressed on
epithelial cells and most immune cells**'. TLR2 signals through
adaptor proteins MyD88 and IRAK4 to activate NF-xB, induce
the transcription of mRNAs for IL-6 family member proteins,
IL-1B, and TNFo, and increase the expression of SLAM®.
A role for TLR2 engagement during MeV infection is suggested
by increases in plasma levels of soluble TLR2 as well as IL-1,
IL-6, and TNFo/'**** (Figure 2).

In contrast, MeV has evolved multiple mechanisms for inhib-
iting the induction of IFN, and IFN is not detectable in
response to infection'’**, At the cell surface, interaction with
DC-SIGN on dendritic cells both facilitates MeV infection and
suppresses RIG-I and MDAS activation by preventing the PP1
phosphatase-mediated CARD domain dephosphorylation required
for the induction of IFNB*. In addition, after entry and dur-
ing replication, the synthesis of non-structural proteins V and
C encoded within the P gene occurs. The V/C/P proteins block
the induction of type I IFN. The V protein binds PP1 to inhibit
RIG-T and MDAS dephosphorylation”” and the helicase domain
of MDAS5, but not RIG-I, to inhibit MDAS5 activation*—*.
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V indirectly inhibits the activation of RIG-I by interacting
with the related RNA helicase LGP2 to induce an inhibitory
association with RIG-I". In case any IFN is produced despite
this blockade of induction, the V protein also inhibits IFN recep-
tor-induced JAK-STAT signaling and the expression of antiviral
IFN-stimulated genes (ISGs) by interfering with STAT2
activation®*~*°, In addition, the N protein prevents nuclear import
of activated STATS to induce the transcription of ISGs*’.

In general, innate responses control virus replication directly
or indirectly by inducing the expression of proteins with antivi-
ral activities such as degradation of viral RNA and inhibition of
virus translation, assembly, or release®. Although this has not
been thoroughly investigated during measles, there is little evi-
dence for increased expression of ISGs*. Although the MeV V
protein can also interfere with the activation of the NF-xB and
inflammasome response pathways'~', this appears less success-
ful than interference with IFN induction, as there is abundant
evidence that these effector products are produced during measles
(Figure 2). Therefore, the main outcome of the innate response
to MeV appears to be not early control of virus replication and
spread but preparation for induction of the adaptive immune
response’” that suppresses virus replication and clears infectious
virus after dissemination has occurred.

Adaptive immune response and measles virus
clearance

After systematic MeV infection has been established, the
adaptive immune response becomes the main mechanism for
infectious virus control and clearance. Evidence suggests that
MeV-specific T cells play a more important role than antibod-
ies in controlling established infection. Children with agamma-
globulinemia recover from measles, whereas those with impaired
cellular immunity have difficulty clearing the virus, particularly
from the lung and the central nervous system™~°. Consistent with
these human clinical observations, depletion of CD8* T cells from
experimentally infected rhesus macaques leads to more severe
disease and prolonged viremia’’.

The T-cell response after MeV infection in immune-competent
humans and animals generally leads to efficient control of
recoverable infectious MeV. However, how MeV persists in the
face of an established adaptive immune response remains an open
question. In general, RNA viruses use several strategies to estab-
lish persistence, which include replication in immunologically
privileged sites, downregulation of virus replication and protein
synthesis, and suppression of adaptive effector responses.
As MeV RNA persistence can be detected in humans and
macaques that are asymptomatic, replication in immunologically
privileged sites is likely to be very limited. On the other hand,
antibody to the MeV H protein can reduce viral protein
expression on the cell surface and within cells’®. Antibody might
then enhance viral persistence by preventing MeV-induced cell
death and reducing immune elimination of infected cells.

Unlike CD8* T cells during chronic virus infection that develop

an exhausted phenotype with dampened effector functions
and upregulated inhibitory receptors®, exhausted or anergic
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MeV-specific T cells have not been identified during infection.
However, several lines of evidence suggest that T-cell immunity to
MeV is suppressed after the peak of clonal expansion (Figure 1).
The MeV-specific T-cell response correlates with the control of
infectious virus but wanes rapidly before virus-infected cells
have been eliminated. Mathematical models simulating viral
replication and RNA elimination that include MeV-specific
effector T cells, antibody, target cell elimination, and regulatory
T-cell immunosuppression indicate that T cells alone are
insufficient to eliminate viral RNA and that antibody is required".

A subsequent macaque study demonstrated that MeV RNA
clearance is accelerated when the T-cell response is augmented
by prior immunization that selectively primed the T-cell but
not the B-cell response®’. The mechanism or mechanisms by
which the MeV-specific T-cell response is suppressed after
the initial clonal expansion remain unclear. It is possible that
mechanisms involved in MeV-induced immune suppression of
global T-cell responses, such as skin test responses to tuberculin,
mitogen-induced proliferation, and increases in susceptibil-
ity to other infections®-*, are also affecting the maintenance
and function of MeV-specific T cells. It is also possible that the
dampened MeV-specific T-cell response is a consequence of
selective infection and deletion of activated memory T cells,
which express higher levels of the MeV receptor SLAM, as has
been proposed as an explanation for impaired responses to other
infections™.

Measles virus RNA persistence: is it important?
During acute infection, MeV replicates in multiple types of
cells. Infectious virus is cleared within 14-18 days, but RNA can
be detected in respiratory tract secretions, urine, and peripheral
blood mononuclear cells for at least 3—4 months and lymph
nodes for more than 6 months after infection®'*" (Figure 1).
Therefore, viral RNA likely persists in both epithelial cells and
cells of the immune system. However, it is not clear how long
RNA persists, the specific sites of persistence, or the impor-
tance of persistence for either the virus or the host. For the virus,
persistence might provide the possibility of late reactiva-
tion with transmission that would perpetuate the virus in the
human population. For the host, persistence poses a risk of
progressive disease or reactivation of infection, as well as the
potential advantage of prolonged stimulation of the MeV-specific
immune response’. Recent advances in understanding the interac-
tions of MeV with the immune system and the late consequences
of infection have both improved understanding of this disease and
raised new questions and controversies for further investigation.

Chronic/late disease

Although there are reports of detection of MeV RNA from
multiple tissues of normal adults®, the importance of these
observations is unclear. Perhaps lengthy persistence is typical
and without adverse consequences. However, it is not always
benign with continued replication and spread. Persistent infec-
tion of the nervous system results in the fatal disease subacute
sclerosing panencephalitis in about 1 in 2,500 children who
develop their primary WT MeV infection before the age of 5.
Though not without controversy, MeV persistence has also been
implicated in the pathogenesis of other late-appearing chronic
diseases such as Paget’s disease and otosclerosis®=".
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Maturation of the immune response

MeV-specific antibody and T cells appear with the onset of the
prodrome (fever, cough, and Koplik’s spots) and rash about
10-14 days after infection. This adaptive immune response
to MeV then matures over many months. MeV-specific IgM
antibody can be detected during the rash, has neutralizing
capacity in standard assays, and is routinely used to confirm
the diagnosis of measles. There is then a shift to production
of IgG, first IgG3 and then IgGl, with specificity for most
structural proteins’”’!. However, the IgG produced early binds
MeV with low avidity and neutralizes SLAM-dependent WT
virus infection of lymphocytes poorly’”. IgG avidity then gradu-
ally matures over several months”, resulting in sustained levels
of high-avidity antibody in circulation and protection from
re-infection. Thus, there are progressive changes in both antibody
isotype and avidity with time after recovery.

The T-cell response to infection also matures over time. The
acute effector response consists of IFNy-secreting type 1 CD4*
and CD8" T cells and their appearance correlates with the
clearance of recoverable infectious virus and a decrease in viral
RNA® (Figure 1). T cells appear in circulation in multiple waves
consistent with ongoing stimulation in lymphoid tissue, but the
functional capabilities change. After the initial type 1 response,
T cells begin to produce type 2 and type 17 cytokines, suggest-
ing changing stimulatory conditions in persistently infected
lymphoid tissue’”.

Summary

Major advances in the understanding of the pathogenesis of
measles have come through detailed investigation of MeV infec-
tion in rhesus macaques using reporter viruses to identify infected
tissues, reverse transcription—quantitative polymerase chain reac-
tion to detect and quantify viral RNA in tissue, cellular assays to
analyze T and B lymphocyte function, and mathematical mod-
eling of clearance over an extended time during recovery. These
studies have shown that lymphoid tissue is targeted, that MeV
RNA is persistent, and that immune response maturation is
ongoing for many months. A better understanding of germi-
nal center selection of antibody-secreting cells, the process
by which high-quality MeV-specific antibody develops, and
the role of persistent antigen stimulation in driving T-cell and
B-cell development is of interest. Identification of the cells in
secondary lymphoid tissue that harbor viral RNA and protein, and
likely low levels of replicating virus, for long periods of time as
well as the sites of, and cells responsible for, continued viral
antigen stimulation of MeV-specific B and T cells will be
required for understanding the induction of lifelong immunity.
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