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Abstract
The goal of this study is to reveal the hub genes and molecular mechanisms of the
coronavirus disease 2019 (COVID‐19) acute respiratory distress syndrome (ARDS) based
on the genome‐wide RNA sequencing dataset. The RNA sequencing dataset of COVID‐
19 ARDS was obtained from GSE163426. A total of 270 differentially expressed genes
(DEGs) were identified between COVID‐19 ARDS and control group patients. Functional
enrichment analysis of DEGs suggests that these DEGs may be involved in the following
biological processes: response to cytokine, G‐protein coupled receptor activity, ionotropic
glutamate receptor signalling pathway and G‐protein coupled receptor signalling pathway.
By using the weighted correlation network analysis approach to analyse these DEGs, 10
hub DEGs that may play an important role in COVID‐19 ARDS were identified. A total of
67 potential COVID‐19 ARDS targetted drugs were identified by a complement map
analysis. Immune cell infiltration analysis revealed that the levels of T cells CD4 naive, T
cells follicular helper, macrophages M1 and eosinophils in COVID‐19 ARDS patients were
significantly different from those in control group patients. In conclusion, this study
identified 10 COVID‐19 ARDS‐related hub DEGs and numerous potential molecular
mechanisms through a comprehensive analysis of the RNA sequencing dataset and also
revealed the difference in immune cell infiltration of COVID‐19 ARDS.
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1 | INTRODUCTION

Coronavirus disease 2019 (COVID‐19), named by the World
Health Organization, refers to pneumonia caused by the 2019
novel coronavirus infection. The International Committee on
Classification of Viruses also named this new type of coro-
navirus ‘SARS‐CoV‐2’ (Severe Acute Respiratory Syndrome
Coronavirus 2) [1]. At present, there are more than 100
million patients diagnosed with COVID‐19 worldwide, and
more than 3 million patients have died. There are still 30
million patients with COVID‐19. The clinical manifestations
of COVID‐19‐infected pneumonia patients include fever,

fatigue, and dry cough, which are its main manifestations [2].
Upper respiratory symptoms such as nasal congestion and
runny nose are rare, and hypoxia is present [3]. About half of
the patients have difficulty breathing more than a week later.
In severe cases, it leads to acute respiratory distress syndrome
(ARDS), septic shock, metabolic acidosis, and coagulation
dysfunction [4, 5]. ARDS is also the main cause of death for
COVID‐19 patients. However, it is still unclear which people
are more likely to develop ARDS, and which are the related
factors in patients who develop ARDS that lead to death.
Therefore, we urgently need a better understanding of
COVID‐19 ARDS.
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ARDS can originate on the gaseous side or the vascular side
of the alveoli. ARDS can occur in patients with severe COVID‐
19 and causes unique lung damage [6, 7]. COVID‐19 is a sys-
temic disease that mainly damages the vascular endothelium, and
this vascular damage may require treatment that is different from
the conventional approach to ARDS management [7]. Immune
activation may also be an important reason for patients to
develop ARDS [8–10]. Therefore, it is urgent to understand the
difference between COVID‐19 ARDS and conventional ARDS
so that we can develop more targetted treatment strategies. In
addition to clinical manifestations, we also need to further un-
derstand its potential molecular mechanisms and potential hub
genes. The goal of our study is to reveal the hub genes and
molecular mechanisms of COVID‐19 ARDS based on the
genome‐wide RNA sequencing dataset as well as the difference
of immune cell infiltration in COVID‐19 ARDS.

2 | MATERIALS AND METHODS

2.1 | Data processing

The raw count expression profiling by the high‐throughput
sequencing dataset of GSE163426 was downloaded from the
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163426). The
GSE163426 dataset contains a high‐throughput sequencing
dataset for 52 human tracheal aspirates samples, including 15
samples from COVID‐19 ARDS patients. The other 37 cases
were derived from subjects with ARDS due to other causes and
mechanically ventilated controls without evidence of pulmonary
disease, which we identified as control groups in the current
study. The original count data is normalised by edgeR, and
differentially expressed genes (DEGs) are screened [11, 12]. The
DEGs' standard is defined as |log2 fold change (FC)| > 1,
P < 0.05 and a false discover rate (FDR) < 0.05 [13, 14]. All the
datasets in the present study were downloaded from the GEO
public database and do not involve any animal or human study.
Therefore, no additional ethics committee approval is required.

2.2 | Function enrichment and gene
interaction analysis

In order to further understand the differences in molecular
mechanisms between COVID‐19 ARDS patients and control
patients, we used the database for Annotation, Visualisation
and Integrated Discovery (DAVID) v6.8 (https://david.ncifcrf.
gov/home.jsp) to enrich the functions of these DEGs [15, 16].
We also used gene set enrichment analysis (GSEA: http://
software.broadinstitute.org/gsea/index.jsp) to further explore
the mechanisms between COVID‐19 ARDS patients and
control group patients [17, 18]. GSEA results were set as
follows: |Normalised Enrichment Score (NES)| > 1, P < 0.05
and FDR < 0.25. In order to further understand the interac-
tion relationship between these genes, a gene‐gene interaction
analysis was conducted on these DEGs by using GeneMANIA

F I GURE 1 Volcano plot of differentially expressed gene between
COVID‐19 acute respiratory distress syndrome and control group patients

F I GURE 2 Heat map of differentially expressed gene between
COVID‐19 acute respiratory distress syndrome and control group patients
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(http://genemania.org/) [19, 20] and STRING (https://string‐
db.org) online tools [21–25]. Subsequently, we further verified
the gene‐gene interaction relationship between these DEGs
using the RNA sequencing dataset of COVID‐19 ARDS pa-
tients, and we used the weighted gene co‐expression network
analysis (WGCNA) approach to verify the co‐expression
interaction relationship between these DEGs [26]. Hub
genes in COVID‐19 ARDS were determined according to the
WGCNA network by using the degree. The concept of degree
in the WCGAN network is defined as the connectivity de-
gree of each gene, which is the sum of the edge attributes of
the genes connected to it. We then used these DEGs to predict
potential targetted drugs based on the Complement Map
(CMAP, https://portals.broadinstitute.org/cmap/) database
[27, 28]. Small molecule drugs with a negative mean connective
score and P < 0.05 were considered statistically significant and
had inhibitory effects. The chemical structures of these small
molecule compounds were obtained from the PubChem
(https://pubchem.ncbi.nlm.nih.gov) database [29–33].

2.3 | Immune cell infiltration analysis

In order to further understand the relationship between
COVID‐19 ARDS and immune cells, we used the established
computational approach (CIBERSORT) package to analyse

and compare the infiltration of immune cells between COVID‐
19 ARDS and control group patients, so as to understand the
immunological characteristics of COVID‐19 ARDS patients
[34, 35]. A violin plot and heat maps were drawn using the
ggplot2 package.

2.4 | Statistical analysis

A scatter plot of the mRNA expression was obtained using an
independent sample t test. The Wilcoxon test was used for
comparison of immune cells between COVID‐19 ARDS pa-
tients and control group patients. All statistical analyses were
carried out using SPSS version 22.0 and the R platform that
uses version R4.0.2. P < 0.05 was considered to be statistically
significant.

3 | RESULTS

3.1 | Screening of DEGs

We used edgeR to screen the differentially expressed genes
between COVID‐19 ARDS and control group patients. We
obtained a total of 270 DEGs, of which 208 DEGs were
down‐regulated and 62 DEGs were up‐regulated in the

F I GURE 3 Scatter plot of the top 10 up‐regulated differentially expressed genes (DEGs) and down‐regulated DEGs: (a) scatter plot of up‐regulated DEGs;
(b) scatter plot of down‐regulated DEGs
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COVID‐19 ARDS group. In the COVID‐19 ARDS group, the
most significantly up‐regulated DEG was the purinergic re-
ceptor P2Y14 (P2RY14, log2FC = 2.42, P = 1.05 � 10−7,

FDR = 0.0006, Table S1, Figure 1), and the most significantly
down‐regulated DEG was the coagulation factor VIII associ-
ated 2 (F8A2, log2FC = −10.15, P = 2.98 � 10−5,
FDR = 0.017, Table S1, Figure 1). Subsequently, the expression
level distribution of these DEGs in the two groups of samples
is shown in Figure 2 in the form of a heat map. In addition, the
top ten up‐regulated genes and the top ten down‐regulated
genes are also shown in the form of a scatter plot in
Figure 3a,b and Table 1.

3.2 | Function enrichment and gene
interaction analysis

Then, we explored the function of these DEGs. Gene
Ontology (GO) term analysis suggested that these DEGs are
significantly enriched in chemical synaptic transmission, cal-
cium ion binding, proteinaceous extracellular matrix, move-
ment of cell or subcellular component, response to mechanical
stimulus, secretory granule, G‐protein coupled receptor activ-
ity, extracellular‐glutamate‐gated ion channel activity, response
to cytokine, lysosome, platelet alpha granule lumen, ionotropic
glutamate receptor signalling pathway and G‐protein coupled
receptor signalling pathway (Figure 4). The Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analysis suggested that
these genes are significantly enriched in neuroactive ligand‐
receptor interaction (hsa04080) and nicotine addiction
(hsa05033) (Figure 4). In order to further understand the
molecular mechanism differences between the two groups of
patients, GSEA was also used for the analysis. When we used
c5 as the reference gene set (c5.all.v7.4.symbols.gmt), none of
the enrichment results reached statistical significance. When we
used c2 as the reference gene set (c2.all.v7.4.symbols.gmt,
Table S2), only one enrichment result reached statistical sig-
nificance (Figure 5, Table S3). Through the GSEA analysis, we
found that there was a statistically significant difference in

TABLE 1 The top 10 up‐regulated and down‐regulated DEGs

ID Log2FC P‐value FDR

F8A2 −10.15208739 2.98E−05 0.01676952

DEFB107B −9.346607155 9.31E−05 0.023688991

GAGE12B −8.454216021 0.000273381 0.037101321

GAGE12F −8.289891203 8.96E−05 0.023688991

USP17L11 −8.011558919 6.46E−05 0.021766209

OR4K5 −7.985552841 0.000125822 0.02717469

NPS −7.860072646 0.000380604 0.041830422

SUN5 −7.837855053 0.000130093 0.027774149

AKAP4 −7.729202685 0.000141693 0.028864229

PSKH2 −7.719765307 0.000117433 0.026434761

ZFYVE16 1.8512934 1.62E−06 0.002524835

AP000295.1 1.852209732 0.000700273 0.048340144

FAM98B 1.924358675 1.30E−07 0.000597912

TNFSF15 1.966295459 7.26E−05 0.0228549

CAB39L 1.992787287 1.61E−07 0.000597912

MUC2 2.065428132 0.000298573 0.037984264

HSFX3 2.096915061 0.000334409 0.039562487

FBXO39 2.113460379 0.000192157 0.031771397

FAM71A 2.253072759 1.63E−06 0.002524835

P2RY14 2.423663806 1.05E−07 0.000597912

Abbreviations: DEGs, differentially expressed genes; FC, fold change; FDR, false
discover rate.

F I GURE 4 Bar chart of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis results of differentially expressed genes
between COVID‐19 acute respiratory distress syndrome and control group patients
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longevity pathway (NES = −2.060, P < 0.001, FDR = 0.228,
Figure 5) between the two groups.

In order to understand the gene‐gene interaction re-
lationships among these DEGs, we used the STRING online
analysis tool to construct the DEGs gene–gene interaction
network (Figure 6). We found that there were complex gene–
gene interaction relationships among these DEGs, including
co‐expression, experimentally determined etc. Subsequently,
we also used GeneMANIA online analysis tool to verify the
co‐expression gene–gene interaction relationship of these
DEGs (Figure 7). Based on the above two online gene inter-
action analysis tools, we found that there was a complex co‐
expression interaction between these DEGs. In order to
further understand the co‐expression relationship of these
DEGs in COVID‐19 ARDS patients, we further explored the
co‐expression interaction relationship of these DEGs by
the WGCNA method. In the WGCNA analysis, according to
the data distribution, we choose soft threshold beta as four
(Figure 8a,b).

In the WGCNA network modular analysis of these DEGs,
we differentiated a cluster of genes defined as turquoise
modules (Figure 8c,d). In the WGCNA network, a total of 178
DEGs with 529 edges were included to construct a weighted
co‐expression gene‐gene interaction network (Figure 9).
Among them, 47 DEGs belong to the turquoise module, and
the remaining genes belong to the grey module, that is, these
DEGs do not belong to any module. Then, we performed a
functional enrichment of the DEGs of the turquoise module.
We did not obtain statistically significant KEGG results. We
obtained 1 GO TERM analysis result. The GO term analysis
suggested that these turquoise module DEGs are significantly
enriched in positive regulation of T cell tolerance induction.
Subsequently, hub DEG screening was performed using the
WGCNA co‐expression interaction network. The importance
of DEG in the network is evaluated by degree. Through
analysis, we found that the DEGs with the highest degree
in the WGCNA network were Erbb2 interacting protein
(ERBIN), pericentriolar material 1 (PCM1), zinc finger

F I GURE 5 Gene set enrichment analysis results between COVID‐19 acute respiratory distress syndrome and control group patients using the c2 reference
gene set
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FYVE‐Type containing 16 (ZFYVE16) and small nuclear
RNA activating complex polypeptide 1 (SNAPC1). Both of
them have degrees of 33 in the WGCNA network (Table 2). In
the WGCNA network, the second ranking DEGs for the de-
gree are calcium binding protein 39 Like (CAB39L), occludin
(OCLN), UV radiation resistance associated (UVRAG), major
histocompatibility complex, class I, G (HLA‐G), C‐type lectin

domain family 2 member D (CLEC2D) and zinc finger protein
117 (ZNF117), all of which have 32° (Table 2). Based on the
WGCNA network of DEG in patients with COVID‐19
ARDS, we identified a total of 10 hub DEGs that are
mentioned above and may have molecular characteristics spe-
cific to COVID‐19 ARDS patients. Among the 10 hub DEGs,
ZFYVE16 and CAB39L are the top ten up‐regulated DEGs in

F I GURE 6 Differentially expressed genes interaction network generated by the STRING online analysis tool
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fold change. Through the CMAP analysis, we obtained a total
of 67 small molecule drugs with a P‐value <0.05 and a negative
mean connective score (Table S4). Among them, there were 16
small molecule drugs with a negative mean connective score
less than −0.6, and they were camptothecin, alsterpaullone,
GW‐8510, doxorubicin, irinotecan, H‐7, 0175029‐0000,
8‐azaguanine, Gliclazide, Meticrane, 1,4‐chrysenequinone, 6‐
azathymine, azacitidine, ellipticine, mitoxantrone and apigenin
(Figure 10a–n, Table 3).

3.3 | Immune cell infiltration analysis

We all know that COVID‐19 is a viral infectious disease,
which will inevitably cause changes in the body's immune
system after infecting the human body. Therefore, we feel it
is necessary to compare the immune cells between COVID‐
19 ARDS patients and control patients. The CIBERSORT
software package can calculate the proportion of 22 immune
cells in the human body through the RNA sequencing
dataset. The 22 types of human immune cells include B cells
naive, B cells memory, plasma cells, T cells CD8, T cells
CD4 naive, T cells CD4 memory resting, T cells CD4
memory activated, T cells follicular helper, T cells regulatory
(Tregs), T cells gamma delta, NK cells resting, NK cells
activated, monocytes, macrophages M0, macrophages M1,
macrophages M2, dendritic cells resting, dendritic cells
activated, mast cells resting, mast cells activated, eosinophils,
and neutrophils. By drawing a histogram of the proportions
of 22 immune cells in the two groups of patients, we found
that B cells and mast cells accounted for a larger proportion
in COVID‐19 ARDS patients, followed by macrophages
(Figure 11). Then, we showed the activation levels of 22

immune cells through heat maps. We found that the acti-
vation levels of mast cells activated and neutrophils were
much higher than those of other immune cells in the two
groups of patients (Figure 12). In addition, we also
compared the differences in immune cells between the two
groups of patients. The violin plot revealed that the level of
T cells CD4 naive in COVID‐19 ARDS patients was
significantly lower than that in the control group patients
(Figure 13). The levels of T cells follicular helper, macro-
phages M1 and eosinophils in COVID‐19 ARDS patients
were significantly higher than those in the control group
patients (Figure 13).

4 | DISCUSSION

A multicentre study suggests that ARDS may serve as an
important clinical subtype for the classification of different
treatment strategies and outcomes in patients with COVID‐
19. They divided COVID‐19 patients into four sub-
phenotypes. One of the subtypes is characterised by high
C‐reactive protein, early need for mechanical ventilation, and
the highest rate of ARDS, and has different outcomes and
treatment strategies [36]. Patients with ARDS associated with
COVID‐19 often have different clinical characteristics than
those with ARDS due to other causes, and case‐control
studies have shown that ARDS is a major cause of mor-
tality in patients with COVID‐19 [37]. Therefore, there is an
urgent need to understand the molecular mechanism and
core genes of COVID‐19‐related ARDS, so as to develop
targetted drugs for the diagnosis of COVID‐19‐related
ARDS. There is a need to develop new drugs against
COVID‐19 and reduce the mortality. Through this research,

F I GURE 7 Differentially expressed genes co‐expression interaction network generated by the GeneMANIA online analysis tool

DENG ET AL. - 211



we have screened the molecular mechanisms of multiple
COVID‐19‐related ARDS hub genes through whole‐genome
RNA sequencing data and screened a batch of potential
targetted small molecule drugs. Previous studies have also
used RNA sequencing methods to perform functional
enrichment on specimens of patients with COVID‐19
ARDS to understand the molecular mechanisms of this
disease, in order to develop new therapeutic drugs or stra-
tegies. Wu et al. analysed the RNA‐sequence dataset of

ACE2‐expressed‐A549 and NHBE cells with SARS‐CoV‐2
infection and found the genes associated with it by bioin-
formatics enrichment analysis with immune‐related pathways,
responses of host cells after an intracellular infection, ste-
roid hormone biosynthesis, receptor signalling, and the
complement system, which are closely related to a COVID‐
19 infection [38]. Amira Mohammed et al. used staphylo-
coccal enterotoxin B to induce ARDS a mouse model
through single‐cell RNA sequencing and transcriptome

F I GURE 8 Weighted gene co‐expression network analysis analysis results of differentially expressed genes (DEGs) between COVID‐19 acute respiratory
distress syndrome and control group patients: (a) soft threshold screening plot; (b) scale‐free topology plot; (c) clustering dendrograms of DEGs; (d) TOM plot
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analysis and found that ARDS is involved in the apoptosis
of immune cells in the mitochondrial pathway. The gene
expression dataset of bronchoalveolar lavage fluid of
COVID‐19 patients shows that there are some similarities in
the cytokine and apoptosis genes in the ARDS sequencing
results induced by Staphylococcal enterotoxin B [39]. Single
cell RNA sequencing of bronchoalveolar lavage fluid from
COVID‐19 patients revealed significant amplification of
transmembrane 4 L six family member 1 (TM4SF1)+ and
keratin 5 (KRT5)+ lung progenitor cells in severe COVID‐
19 patients, suggesting a synergistic role of lung progenitor
cells in the prevention and supplementation of alveolar loss
in COVID‐19 patients [40].

Among the selected hub genes, we found that HLA‐G and
OCLN genes were reported to be related to COVID‐19 in
previous studies. Lung progenitor cells of KLT5 + can

differentiate into HOP homeobox (HOPX)+ OCLN+ alve-
olar barrier cells to supplement alveolar loss after SARS‐CoV‐2
infection, restore epithelial barrier and effectively prevent
infiltration of inflammatory cells [40]. Zhang et al. found that
the proportion of HLA‐G+ T cells showed a high‐low‐high
trend by detecting the expression level of HLA‐G in the pe-
ripheral blood of COVID‐19 patients in the convalescent stage
of severe pneumonia [41]. The researchers also prospected the
application of HLA‐G in COVID‐19, suggesting that the tar-
getted treatment of HLA‐G may be effective against COVID‐
19 [42]. Among the top drugs screened by CMAP, we also
found multiple drugs that have been reported to have antiviral
effects in previous studies. Previous studies based on RNA
sequencing data and bioinformatics analysis found that
camptothecin had a potential antiviral effect against SARS‐
CoV‐2 [43, 44]. The potential mechanism by which Campto-
thetin acts against SARS‐CoV‐2 may be through the possible
blocking of the spiking glycoprotein interaction with the
angiotensin‐converting enzyme 2 (ACE2) receptor found on
host cells [43]. Fadhl M Alakwaa have developed a bioinfor-
matics pipeline for screening COVID‐19 targetted therapeutics
by using bioinformatics analysis methods [44]. Qazi et al. used
Autodock to conduct computer simulations of the antibiotic
class of viral proteases and peptidases and found that doxo-
rubicin can be used to inhibit viral proteases that may prevent
entry into host cells to control the COVID‐19 disease [45].
Bragi Lovetrue built an accurate COVID‐19 disease model.
The combination therapy of Irinotecan + Etoposide discov-
ered by AI may be an effective method to protect critically ill
COVID‐19 patients from death caused by COVID‐19‐specific
cytokine storm [46]. Prabhat Pratap Singh Tomar et al.
screened two compounds inhibiting E protein based on the
library of ion channel blockers—gliclazide and metadine,
which may exert an antiviral effect by inhibiting the E protein
of SARS‐CoV‐2 [47]. Kiran Bharat Lokhande et al. based on
Selleckchem Inc. Through molecular docking and molecular
dynamics simulation, it was found that Mitoxantrone can be
used as a potential inhibitor of SARS‐CoV‐2 MPRO and has a

F I GURE 9 Weighted gene co‐expression
network analysis co‐expression networks of
differentially expressed genes between COVID‐19
acute respiratory distress syndrome and control
group patients

TABLE 2 Hub DEGs list of COVID‐19 ARDS patients in WGCNA
network

ID log2FC P‐value FDR
Degree
in WGCNA

ERBIN 1.758416 1.58E−06 0.002525 33

PCM1 1.495209 8.43E−07 0.002525 33

ZFYVE16 1.851293 1.62E−06 0.002525 33

SNAPC1 1.410232 0.000183 0.03095 33

CAB39L 1.992787 1.61E−07 0.000598 32

OCLN 1.603824 6.94E−05 0.022209 32

UVRAG 1.105065 8.43E−05 0.023689 32

HLA‐G 1.418098 0.000274 0.037101 32

CLEC2D 1.178746 0.000572 0.046022 32

ZNF117 1.220263 0.000654 0.047449 32

Abbreviations: ARDS, acute respiratory distress syndrome; COVID‐19, coronavirus
disease 2019; DEGs, differentially expressed genes; FC, fold change; FDR, false
discover rate; WGCNA, weighted gene co‐expression network analysis.
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potential antiviral effect [48]. Based on the bioinformatics
analysis of the present study, we screened the hub genes and
targetted drugs for COVID‐19 ARDS, which had some over-
lap and consistency with the previous reports. At the same
time, we also identified several hub genes and drugs related to

COVID‐19 ARDS that have not been reported in previous
studies. Based on a review of the literature, it was previously
reported that the new coronavirus is closely related to the
imbalance of immune cells. In this study, by analysing the dif-
ference in the degree of infiltration of immune cells, we found

F I GURE 1 0 The chemical structure of
these small molecule compounds that is
identified by CMap analysis with the mean
connective score that is less than −0.6: the
compound structure of (a) camptothecin;
(b) alsterpaullone; (c) GW‐8510;
(d) doxorubicin; (e) irinotecan; (f) 8‐azaguanine;
(g) gliclazide; (h) meticrane; (i) 1,4‐
chrysenequinone; (j) 6‐azathymine;
(k) azacitidine; (l) ellipticine; (m) mitoxantrone;
and (n) apigenin
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that there were significant differences in multiple immune
cells between patients of COVID‐19 ARDS and control
groups.

There are still some limitations of this study that need to be
noted. First, this study is a single queue study based on the
GEO public database and lacks additional validation cohort.
Second, the samples used in this study are tracheal aspirates,
which are not as representative of the disease as lung tissue.
Third, a large number of potential molecular mechanisms and
drugs screened in this study are yet to be further verified by in
vivo and in vitro experiments. Despite the above research
limitations, this study is the first study to identify the potential

molecular mechanism of COVID‐19 ARDS and the hub gene
through whole‐genome RNA sequencing, which can provide a
theoretical basis for future COVID‐19 ARDS prevention and
treatment strategies.

5 | CONCLUSIONS

In conclusion, a total of 270 DEGs were screened related
to COVID‐19 ARDS, and 10 (ERBIN, PCM1, ZFYVE16,
SNAPC1, CAB39L, OCLN, UVRAG, HLA‐G, CLEC2D and
ZNF117) of them were identified as hub genes of COVID‐19

TABLE 3 CMap analysis results with mean connective score less than −0.6

CMap name
Mean
connective score n Enrichment P‐value Specificity

Percent
non‐null

Camptothecin −0.859 3 −0.998 <0.001 <0.05 100

Alsterpaullone −0.811 3 −0.988 <0.001 0.0214 100

GW‐8510 −0.797 4 −0.907 0.0001 0.0992 100

Doxorubicin −0.739 3 −0.859 0.00563 0.1278 100

Irinotecan −0.7 3 −0.861 0.00543 0.087 100

H‐7 −0.683 4 −0.841 0.00117 0.1667 100

0175029‐0000 −0.674 6 −0.852 0.00002 0.0282 100

8‐Azaguanine −0.628 4 −0.878 0.00052 <0.05 100

Gliclazide −0.626 4 −0.801 0.00304 0.01 100

Meticrane −0.612 5 −0.841 0.00028 <0.05 100

1,4‐Chrysenequinone −0.612 2 −0.863 0.03746 0.0859 100

6‐Azathymine −0.607 4 −0.761 0.00668 0.0115 100

Azacitidine −0.607 3 −0.714 0.04795 0.1827 100

Ellipticine −0.605 4 −0.719 0.01261 0.0763 100

Mitoxantrone −0.603 3 −0.796 0.01729 0.1064 100

Apigenin −0.602 4 −0.738 0.00937 0.0815 100

Abbreviation: CMap, Complement Map.

F I GURE 1 1 Histogram of all samples based on the ratio of 22 immune cells
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ARDS. Response to cytokine, G‐protein coupled receptor
activity, ionotropic glutamate receptor signalling pathway and
G‐protein coupled receptor signalling pathway, and longevity
pathway may be the potential molecular mechanisms of
COVID‐19 ARDS. Sixty‐seven targetted drugs of COVID‐19
ARDS were screened by CMAP analysis. Immune cell infil-
tration analysis revealed that the levels of T cells CD4 naive,
T cells follicular helper, macrophages M1 and eosinophils in

COVID‐19 ARDS patients were significantly different than
those in control group patients. Through our current study, we
have identified COVID‐19 ARDS‐related hub DEGs and
molecular mechanisms through a comprehensive analysis of
the RNA sequencing dataset and also revealed the difference in
immune cell infiltration of COVID‐19 ARDS. However, our
results still need to be verified in additional cohorts as well as
in vivo and in vitro experiments verification.

F I GURE 1 2 Heat map of all samples based on the level of 22 immune cells

F I GURE 1 3 Violin plot of the level of 22 immune cells between COVID‐19 acute respiratory distress syndrome and control group patients
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