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Abstract: Extracellular vesicles (EVs) have been widely investigated as promising biomarkers for the
liquid biopsy of diseases, owing to their countless roles in biological systems. Furthermore, with the
notable progress of exosome research, the use of label-free surface-enhanced Raman spectroscopy
(SERS) to identify and distinguish disease-related EVs has emerged. Even in the absence of specific
markers for disease-related EVs, label-free SERS enables the identification of unique patterns of
disease-related EVs through their molecular fingerprints. In this review, we describe label-free SERS
approaches for disease-related EV pattern identification in terms of substrate design and signal
analysis strategies. We first describe the general characteristics of EVs and their SERS signals. We
then present recent works on applied plasmonic nanostructures to sensitively detect EVs and notable
methods to interpret complex spectral data. This review also discusses current challenges and future
prospects of label-free SERS-based disease-related EV pattern identification.

Keywords: extracellular vesicles; surface-enhanced Raman spectroscopy; nanostructures;
signal analysis

1. Introduction

Extracellular vesicles (EVs) are secreted by most cells and contain cytosolic and membrane
substances of their parent cells [1–3]. They include exosomes, ectosomes, and exomeres. The cargo
and membrane substances of EVs can provide useful clues regarding the in vivo status [4–6]. Thus,
EVs are widely investigated and have been highlighted as a promising biomarker for various diseases,
including cancers [7]. To analyze EVs, various techniques are employed, including transmission
electron microscopy (TEM) [8], nanoparticle tracking analysis [9,10], and surface plasmon resonance
sensors [11–13].

Raman spectroscopy is an optical and analytical technique that can offer useful information about
EVs. Raman spectroscopy has been used to observe the inelastic scattering of light from analytes using
laser irradiation [14]. Molecules within the focused volume of the laser produce narrow and sharp
bands that are related to the chemical bonds of their organic compounds. Raman spectroscopy has
excellent advantages in non-destructive and label-free methods, but it also suffers from the critical
drawback of delivering extremely low signal intensity [15]. SERS is a powerful method to overcome
this obstacle and enables the identification of molecules by intensively enhanced electromagnetic
(EM) fields within metallic nanogaps [16]. When laser light irradiates the metallic nanogap substrate,
the Raman spectrum of molecules at the proximity of the nanogap can be highly amplified up to
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an order of 108 [17]. Since SERS signals offer molecular fingerprints of unique chemical structures,
many research groups have reported SERS-based detection of EVs [18–31].

Typically, SERS-based approaches can be categorized into indirect and direct [32,33]. The indirect
SERS relies on chromophore-based Raman dyes that produce unique and strong intensities at certain
spectral bands [34]. Typically, the Raman dyes are tagged with the hotspot of plasmonic nanoparticles,
and these nanoparticles are induced to attach to the target molecules using specific linkers such as
antibodies [35–37] and aptamers [38–40]. This approach selectively identifies the target molecules by
monitoring the emitted light from the Raman dyes. Owing to its high sensitivity, indirect SERS has been
widely implemented in the detection of biomolecules such as EVs [18–27]. Even though genetic and
molecular profiling of disease-related EVs has been continuously investigated, unfortunately specific
and effective markers of disease-related EVs have not been found to be evident in many cases [41–44].
Thus, tracking disease-related EVs using a specific linker is quite challenging.

In contrast, direct SERS detects the intrinsic Raman spectrum of the analyte and is also called
label-free SERS because it does not require any labeling using Raman dyes [32,45–47]. This approach
makes it possible to directly detect molecular fingerprint signals that originate from the surface
molecules of EVs [48]. Many research groups utilizing label-free SERS to analyze EVs focus on
detecting intrinsic signals of the target, ultimately aiming to identify disease-related EVs [29,49–59].
Label-free SERS has several advantages. First, it does not require a specific marker. Given that label-free
SERS explores signal patterns that can be derived from either undiscovered or from substances of no
interest, it can analyze EVs that are difficult to distinguish by other analytical methods targeting a
unique marker [60,61]. Second, the Raman spectrum contains a large amount of information regarding
detected EVs. Because the scattering bands in the EV-derived Raman spectrum present information
regarding the chemical structure, it can provide clues about the molecular composition of EVs [55].

Typically, label-free SERS approaches for biomolecules can be divided into two major parts:
(1) detection of SERS signals and (2) analysis of the signals. In this review, we summarize recent studies
concerning label-free SERS for EV analysis in terms of SERS substrate and signal analysis strategies
(Figure 1). First, we describe the background of EVs and the characteristics of their SERS signals. Then,
we summarize the recent methodologies for nanostructures and signal analysis for the label-free SERS
of EVs. Moreover, challenges and prospects associated with label-free SERS are also discussed.
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The label-free SERS approach can be categorized into two major strategies of signal detection
and analysis.
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2. Characteristics of EVs and Their SERS Signals

Since EVs were discovered in 1983, they have been one of the most widely investigated extracellular
vesicles [62]. EVs have a size of 30–150 nm, arise from the multivesicular bodies in a cell, and have
a phospholipid bilayer [2]. EVs play countless roles in cell-to-cell interactions and in the transfer
of biochemical substances from parent cells to other cells [63]. Many studies have reported that
EVs are associated with the mechanisms of cancer metastasis [64], tumor growth [65], and immune
activation [63]. EVs exist in biological fluids, such as blood, urine, and saliva. Thus, they have been of
great interest as potential biomarkers for liquid biopsies [66–68].

EVs have been widely investigated, given that they contain many biomolecules, including DNA,
miRNA, proteins, and lipids. In particular, the surface composition of EVs is of special interest.
Unique substances on the surface of EVs facilitate their non-destructive capture and close examination.
Furthermore, the EV surface is coated with dense glycans attached to surface proteins and outer
lipids [69,70]. Recently, it has been reported that monitoring of surface glycans can be used to
identify EVs from different biological events [70]. Membrane proteins are one of the most significantly
investigated substances on the surface of EVs. Escola et al. [71] reported that several tetraspanin
proteins are enriched in EVs. Additionally, CD81, CD9, and CD63 are the representative tetraspanin
proteins that are highly enriched on the EV surface and are quite common as EV markers [72]. Notably,
various membrane proteins that are enriched in disease-related EVs have been reported, which offer the
possibility of EVs as potential prognostic and diagnostic biomarkers for diseases such as cancer [73–78].
Lipid molecules such as lysophospholipids, cholesterol, sphingolipids, and ceramides are also enriched
in the EV membrane [69]. Skotland et al. [79] reported the potential use of lipid composition of
urinary EVs as a biomarker for prostate cancer. Moreover, several studies have shown that nucleic acid
(NA)-like DNA can be present on the surface of EVs [80–82]. Considering the physiological roles of
EV-derived DNA, it is expected to be a useful biomarker [69].

The most straightforward method to obtain the SERS signal from EVs is to attach pure and
non-destructive EVs onto SERS substrates. The signal intensity in SERS decays exponentially as an
analyte drifts away from the hotspot [83]. Thus, to obtain the SERS signal sensitively, EVs must be
located in proximity to a SERS hotspot. Considering the thickness of the lipid bilayer covering the EVs,
a significant portion of the SERS signal may originate from the outer surface of EVs. The EV-derived
SERS spectrum has bands that can be assigned to various amino acids, lipids, and NAs [29,53].
The emerging results demonstrate that label-free SERS detection of EVs makes it possible to identify a
comprehensive signal from the EV-derived surface composition [55].

However, to employ label-free SERS for EV analysis, several obstacles need to be resolved. First,
EVs typically produce extremely low signal intensities (Figure 2a). Because EVs are mainly composed
of non-chromophore biomolecules, detecting their unique signal patterns is more challenging than
in molecules with chromophores [84]. Additionally, EVs are relatively larger than SERS hotspots;
thus, it is difficult to locate EVs abundantly in the SERS-effective hotspot. Accordingly, a specialized
strategy for EV detection should be developed to sensitively obtain their signals. Second, the Raman
spectrum of biomolecules like EVs is heterogeneous and complex; thus, it is often difficult to interpret
(Figure 2b) [48,59]. The molecular fingerprint signal can involve an abundance of information
regarding the biomolecule but is also a fiendish puzzle. Because EVs are larger than monomers or
small biomolecules, the relative position of EVs on the surface of a metal nanostructure has an absolute
effect on the signal intensity. Moreover, the complicated composition of EVs in biological samples
(e.g., blood and urine) renders analysis against human samples harder. Therefore, effective methods to
interpret and analyze complex and heterogeneous signals are required.
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3. Label-Free SERS to Identify EVs

3.1. EV Detection Methods Using Label-Free SERS Substrate

As noted earlier, the low signal intensities and heterogeneous nature of EVs hinder label-free
SERS EV detection. To overcome these problems, researchers need to place EVs onto the SERS
hotspot. Accordingly, researchers have focused on inducing EVs to affix themselves to the surface of
plasmonic nanoparticles or nanostructures, by utilizing the chemical and physical properties of EVs.
These approaches can be categorized into two groups depending on the EV-capturing method.

3.1.1. Drying-State Detection Methods

The most straightforward method for label-free SERS detection is drying EVs onto the SERS
substrate. After evaporation of the solvent, the vesicles in the solution can be coated onto the substrate
and captured in the proximity of the hotspot. For this purpose, Park et al. [59] reported that the
coffee-ring effect induced a gold nanoparticle (AuNP)-based SERS substrate. They employed CuSO4 to
aggregate the AuNPs to form a SERS hotspot on the substrate and then dried it. Next, an EV solution
was dried on the substrate coated with aggregated AuNPs. Consequently, they sensitively obtained
the intrinsic SERS signal of exosome-like EVs (ELVs). This method has been used in many studies,
since it is simple and easy to use. However, owing to the non-uniformity of the hotspot due to the
coffee-ring effect and position of the EVs, this method is unsuitable for uniform SERS substrates.

To solve the non-uniformity issue related to the nanoparticle-based SERS substrate, Lee et al. [29]
established a drying method using a nanobowl platform substrate. The nanobowls were fabricated by
employing polydimethylsiloxane using a polystyrene latex particle layer as a mold. Then, the surface
of the nanobowl platform was sputtered using a silver nanofilm for plasmonic effects. This metallic
nanobowl structure has two advantages: (1) The nanobowl platform uniformly enhances the EM field
inside the structure (Figure 3a); (2) by means of the petal effect, which enables the EV solution to spread
over the nanobowl structures (Figure 3b). With these advantages, the nanobowl structure induces the
entire vesicles to be positioned within the SERS-active area. In another study, Sivashanmugan et al. [49]
fabricated a plasmonic gap-mode SERS substrate using an Au nanorod (AuNR) array of high-density
hot rings. Then they captured silver nano-cubes (AgNCs) using a dithiol coating (Figure 3c). Owing to
the secured AgNCs on the AuNR pattern, the substrate forms a narrow bimetallic nanogap (<2 nm).
Furthermore, it increases the SERS enhancement factor by approximately 9.11 × 108 times higher than
that of the spontaneous Raman signal (Figure 3d). After the ELV solution was dried on the substrate,
ELVs were stuck to the top of the AuNR array and bimetallic nanogap, allowing them to obtain SERS
signals even from 104–105 times diluted solutions (the concentration of the original solution was from
1.1 × 106 to 1.2 × 108 particle·ml−1).
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internal EM field of graphene (Figure 4b). In addition, graphene provided another advantage. 
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Figure 3. Nanostructures for the label-free SERS of dried EVs. (a) Electromagnetic field enhancement
factor (EFEF) simulation results of the 3D plasmonic nanobowl when the laser is focused on the center of
the nanobowl (left) and the outer wall of the nanobowl (right). (b) Scanning electron microscopy (SEM)
image of a nanobowl platform with 100 nm polystyrene beads trapped inside the bowls. Reproduced
from Ref. [29] with permission from The Royal Society of Chemistry. (c) Schematic concept of bimetallic
plasmonic gap-mode SERS. (d) Surface plasmon resonance spectrum of the AuNR and AgNC-AuNR
structures. The inset images show the local EM field distribution of bimetallic nanogaps (left: top view,
right: side view). Adapted from Ref. [49], Copyright 2017, with permission from Elsevier.

These studies showed that label-free SERS detection by the drying method could guarantee the
amplification of the EM field for signal detection. However, randomly posited EVs and the narrow size
of the EM field enhancement are obstacles to dried-state detection. In particular, the narrow amplified
EM field makes it difficult to obtain the entire range of SERS signal of the EVs. Moreover, EVs must
be positioned in the amplified area. To overcome these problems, the amplified EM field must be
expanded or the EVs must be physically captured in the hotspot.

To generate a broadened and amplified EM field, Yan et al. [51] utilized a hybrid substrate of a
graphene-covered-nanopyramid array for EV detection (Figure 4a). To verify uniformly amplified EM
field generation, they simulated a graphene-covered-nanopyramid array using the finite-difference
time-domain (FDTD) method. According to the simulation results, this substrate increased the EM
field by more than 1012 times and generated a uniform EM field along the surface due to the internal
EM field of graphene (Figure 4b). In addition, graphene provided another advantage. Graphene
is a bioinert material; thus, it protects metallic nanostructures from corrosion, oxidation, and direct
absorption of biological samples. Consequently, they successfully established SERS mapping against
dried EVs suspended on the substrate, even with diluted samples (Figure 4c,d).

Moreover, a novel strategy for trapping EVs using the physical properties of vesicles was
introduced. Dong et al. [50] fabricated an Au-coated TiO2 beehive structure for trapping and measuring
EVs. They trapped EVs within the structure and enhanced SERS by means of the “slow light effect,”
which is a property of the TiO2 beehive structure. The beehive structure (known as macroporous
inverse opal; MIO) absorbs sound waves by means of multi-scattering processes. Moreover, TiO2 is
an anisotropic material with a high refractive index and has high scattering properties that allow the
trapping of light. Additionally, TiO2 beehive structures have an optical stopband that traps light inside
the pores. Therefore, the slow light effect enhances the SERS signal of not only small molecules but
also large particles, which is quite different from the general EM field enhancement. Thus, Dong et al.
attempted to optimize the TiO2 MIO structure for suitable SERS applications. For this, they fabricated
TiO2 MIO structures of various sizes (Figure 5a) and confirmed that the 290 nm TiO2 MIO structure
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effectively traps light and enhances the EM field through near-field and FDTD simulations (Figure 5b,c).
Furthermore, they compared the methylene blue-specific SERS peak (at 1623 cm−1) intensity to the
optimized thickness of the gold film (Figure 5d). Consequently, the SERS effect increased by more
than 1.25 × 103 times compared to that of the spontaneous Raman effect when using 80 nm Au-coated
290 nm TiO2 MIO. Moreover because of its beehive-like structure, MIO can isolate EVs from biofluids
using its nanopores (Figure 5e), making it possible to obtain label-free EV-derived SERS signals without
further EV isolation.Molecules 2020, 25, x FOR PEER REVIEW 6 of 22 
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the effective detection of EVs. Label-free SERS approaches for vesicle-like analytes, including viruses 
and spherical nanoparticles, have been continuously reported. These methods can be adopted for EV 
detection to significantly improve signal sensitivity [85,86]. 

The SERS techniques mentioned above obtained the SERS signal by drying the EV solution on 
the substrate. This method can place EVs near the SERS hotspot without any chemical processes. 
However, this study has several limitations. The drying process involving solvent evaporation is 
usually time-consuming. Additionally, EVs can be damaged during the drying process because of 

Figure 4. Hybrid SERS substrate-based EVs detection. (a) The schematic illustration and SEM image of
the hybrid SERS substrate. (b) The EM field distribution result was calculated using a finite-difference
time-domain (FDTD) simulation. (c) SEM image of EVs attached to the hybrid SERS substrate.
The yellow circles represented attached EVs within this area. (d) Mapping result using SERS peak of
EVs. The red, yellow, and blue represent 1012, 1509, and 1613 cm–1 peaks in the Raman spectrum.
The black pixels indicate points where all three Raman bands were detected and were regarded as
containing EVs. Adapted with permission from Ref [51]. Copyright 2019 American Chemical Society.

This type of method using physical trapping has been rarely reported, but it has potential for
the effective detection of EVs. Label-free SERS approaches for vesicle-like analytes, including viruses
and spherical nanoparticles, have been continuously reported. These methods can be adopted for EV
detection to significantly improve signal sensitivity [85,86].

The SERS techniques mentioned above obtained the SERS signal by drying the EV solution on
the substrate. This method can place EVs near the SERS hotspot without any chemical processes.
However, this study has several limitations. The drying process involving solvent evaporation is
usually time-consuming. Additionally, EVs can be damaged during the drying process because of
osmotic shock. Furthermore because the entire substance in the solution can be concentrated and coated
onto the substrate, SERS signals of impurities can also be detected and produce undesired signals.



Molecules 2020, 25, 5209 7 of 22

Molecules 2020, 25, x FOR PEER REVIEW 7 of 22 

 

osmotic shock. Furthermore because the entire substance in the solution can be concentrated and 
coated onto the substrate, SERS signals of impurities can also be detected and produce undesired 
signals. 

 
Figure 5. Au-coated TiO2 beehive structure substrate for exosome detection. (see [50]) (a) SEM images 
of the TiO2 MIO structure (i) 290 nm, (ii) 680 nm, and (iii) 1800 nm. The scale bars represent 1 μm. (b) 
Near-field simulation for the light trapping result at (i) 290 nm, (ii) 680 nm, and (iii)1800 nm sizes of 
TiO2 MIO structures. (c) FDTD simulation results for EM field enhancement at the 80 nm-thick Au-
coated TiO2 beehive structures with pore sizes of (i) 290 nm, (ii) 680 nm, and (iii) 1800 nm. (d) SERS 
intensity of methylene blue at 1623 cm–1 with different thicknesses of the Au layer on the 290 nm 
beehive structures. (e) SEM image of EVs captured by the 80 nm Au-coated 290 nm TiO2 beehive 
structures. Circled areas are the EVs. The scale bar represents 300 nm. Adapted with permission from 
Ref [50]. Copyright 2020 American Chemical Society. 

 

Figure 5. Au-coated TiO2 beehive structure substrate for exosome detection. (see [50]) (a) SEM images
of the TiO2 MIO structure (i) 290 nm, (ii) 680 nm, and (iii) 1800 nm. The scale bars represent 1 µm.
(b) Near-field simulation for the light trapping result at (i) 290 nm, (ii) 680 nm, and (iii)1800 nm sizes
of TiO2 MIO structures. (c) FDTD simulation results for EM field enhancement at the 80 nm-thick
Au-coated TiO2 beehive structures with pore sizes of (i) 290 nm, (ii) 680 nm, and (iii) 1800 nm. (d) SERS
intensity of methylene blue at 1623 cm–1 with different thicknesses of the Au layer on the 290 nm
beehive structures. (e) SEM image of EVs captured by the 80 nm Au-coated 290 nm TiO2 beehive
structures. Circled areas are the EVs. The scale bar represents 300 nm. Adapted with permission from
Ref [50]. Copyright 2020 American Chemical Society.
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3.1.2. Liquid-State Detection Methods

For fast and non-destructive detection of EVs, some research groups have attempted to obtain
EV-derived SERS signals in the liquid state. To obtain such signals in the liquid state, it is necessary
to capture EVs near the SERS hotspot with ligands or linkers. Since phospholipids and various
surface proteins cover EVs, they usually have a negatively charged surface [87,88]. Therefore,
several researchers have used chemical ligands or linkers, such as antibodies that bind to phospholipids
or surface proteins to form the EVs-SERS substrate complex.

Among the studies using ligands, Stremersch et al. [56] used positively charged AuNPs coated
with 4-dimethyl aminopyridine (DMAP). The DMAP acts as a cationic substance on the AuNP surface,
thereby absorbing the negatively charged EV surface. Because of the absorption of DMAP-coated
AuNPs, the surface of EVs covered by DMAP-coated AuNPs resulted in the formation of DMAP,
in order to mediate AuNPs-EV complexes. Moreover, to ensure signal uniformity and effective SERS
hotspot formation, the absorption was controlled by adjusting the AuNP/EV ratio (Figure 6a). Notably,
they were able to effectively coat AuNPs on individual EVs without aggregation by controlling the
ratio of AuNP to EV. TEM results showed that DMAP-AuNPs covered over 40% of the EV surface at an
optimal ratio. They then obtained an individual EV-derived SERS signal. Although the strongest signals
were predominantly derived from capping DMAP on the AuNP surface, several peaks originating
from EVs were found in the EV samples, indicating the viability of the single vesicle SERS detection
(Figure 6b). However, the capping reagents can interfere with the signal because they mediate the
connection between the SERS hotspot and the vesicles (Figure 6c). Thus, the same research group
also demonstrated a method to overcome the problem of capping reagents [57]. To achieve this, they
replaced DMAP on the EV surface with silver through reduction and consequently succeeded in
inducing closer access to the plasmonic surface and the lipid bilayer. According to the simulation
and electric field enhancement factor (EFEF) calculation, they expected a 6.9-times improved SERS
signal sensitivity (Figure 6d). Additionally, they confirmed that distinct EV-derived SERS signals were
obtained compared to the typical ligand-based nanoparticles (Figure 5e). These methods take only
0.5 s to obtain the SERS signal from an individual EV, owing to the significantly enhanced EM field
around the EV surface.

In addition to inducing nanoparticles to be adsorbed on vesicles, a method was also introduced to
induce vesicles to be coated on a substrate [55]. To achieve this, AuNP-aggregated substrates coated
with cysteamine were employed. Furthermore, given that cysteamine has a thiol and an amine group
in its structure, it can bind to the Au surface using the thiol group and induce electrostatic binding
with negatively charged vesicles using the amine group. After exosome treatment of the substrate,
EV-derived SERS signals could be obtained in the liquid state. These assays were faster than the dry
state detection method and did not destroy the EVs, so that a stable signal of the surface protein could
be obtained. In particular, Stremersch’s et al. method showed the advantage of obtaining the entire EV
surface signal because of the surface being covered with nanoparticles. However, it has not been able
to solve the heterogeneity issue caused by the signal difference between individual EVs. This problem
arises because of the existence of multiple EVs in the SERS measurement area. To solve this problem,
it is necessary to acquire a clear SERS signal through stronger amplification as well as trapping of
individual EVs using external force.

Despite the abovementioned efforts, it is difficult to clearly identify the difference in signals of
EVs because of the interference from various substances, like proteins, nucleotides, and phospholipids,
during a simple peak analysis of the SERS signal. Therefore, to use the SERS signal of EVs as a
fingerprint for disease diagnosis, a more precise signal analysis method is required.
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Figure 6. Positively charged particle-based EVs detection (a) TEM images of DMAP-AuNPs-coated EVs
by each ratio. The scale bars represented 100 nm. (b) SERS measurements of DMAP-AuNP coated EVs.
Red arrows indicate the DMAP-AuNP peaks, and green arrows indicate EV peaks. Ref. [56]. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission (c) EM field enhancement
results. The zoom-in image shows single DMAP-AuNP attached to the vesicle surface. The blue
dashed line indicates DMAP molecules present area. (d) Theoretical relation between EV coverage
ratio and EFEF before Ag shell-forming (black square) and after Ag shell formed (red dot). (e) SERS
characterization of EVs coated with Ag shell-AuNPs or DMAP−AuNPs. (i) 40% coverage with Ag
shell-AuNPs, (ii) 40% coverage with DMAP−AuNPs, and (iii) 100% coverage with DMAP−AuNPs.
The blue arrows indicate the peaks of the DMAP. Adapted with permission from Ref. [57]. Copyright
2019 American Chemical Society.

3.2. Signal Analysis of the Label-Free SERS of EVs

3.2.1. Conventional Method

The most conventional approach to interpret the SERS signal of EVs is to explore specific Raman
bands and analyze recognizable differences in terms of intensity and Raman shift when compared to a
control group. Typically, since biological analytes, including EVs, differ in the organic compositions
that consist of proteins, lipids, and NAs, the difference in the fingerprint region from 400 to 1800 cm−1

is observed.
Sivashanmugan et al. [49] focused on meaningful differences in Raman bands between

healthy cells (NL-20, BEAS-20, and L929)-derived normal EVs and lung cancer cells (PC-9, H1975,
and HCC827)-derived EVs. All normal lung EVs exhibited strong peaks in the Raman spectra at 625,
1254, and 1404 cm−1 (Figure 7a). These peaks can be assigned to C-C twisting, amide III, phosphate
stretching, and CH rocking, related to proteins, lipids, and NAs. Additionally, they reported a
comprehensive assignment associated with the numerous major bands observed from EVs, which are
derived from each cancer cell line. These results confirm that the intrinsic SERS signals of cancerous
EVs may be different because of different biomolecule compositions.

Since the specific Raman bands are deeply correlated with molecular bonds in an analyte, it is
imperative to identify the status of a certain protein. Recently, Dong et al. [50] detected bands
associated with P-O bonds by phosphoproteins in cancerous EVs through label-free SERS. The protein
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phosphorylation status of RWPE-1 cell (Healthy cell)- and LNCaP cell (prostate cancer cell)-derived EVs
were analyzed. They first established the specific signal of phosphorylated protein and determined the
strong intensity at 1087 cm−1 assigned to the P-O bond. Notably, in a comparative study of EV signals,
LNCaP cell-derived exosomes showed high signal intensity at the peaks (Figure 7b). Interestingly,
in EVs derived from other cancer cell lines, the signal intensity related to protein phosphorylation was
stronger than their corresponding normal cell line EVs. This indicates that protein phosphorylation in
cancerous EVs is more abundant than in healthy cell-derived normal EVs, and comparing intensities
at the Raman band can allow us to identify cancerous EV samples. Moreover, comparative analysis
between ten healthy controls and 15 prostate cancer patients showed that the EVs of all healthy controls
had a low signal intensity at 1087 cm−1 (Figure 7c). Notably, EVs of other cancer patients, including
lung, liver, and colon cancer, also have a relatively high protein phosphorylation status. Although a
correlation between this signal and cancer-specific antigens has not been found, it is significant that
qualitative analysis of Western blotting can be improved by quantitative analysis with label-free SERS.

Conventional methods employing the assignment of specific bands of EVs have been able to
provide useful information regarding specific molecular structures that lead to differences between
EVs. However, in SERS measurements, the fluctuation of the Raman signal intensity can cause a
problem of poor reproducibility [89]. In particular because the molecular orientations and positions in
the SERS hotspot are closely related to the generated signal intensity, a heterogeneous signal pattern
may be produced [89]. Additionally, even a slight difference in SERS substrates can generate large
fluctuations in both peak position and signal intensity [90,91]. Therefore, statistical methods have been
applied to derive differences across an entire spectral range rather than using a specific signal band.
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Figure 7. Optical tweezer-based single EV Raman detection system and the Raman signal and PCA
results obtained using it. (a) Overview of Raman-enabled nanoparticle trapping analysis (R-NTA)
system. (b) Raman signal of the HN4 cell line-, HN4 TRPP2 knock-down cell line-, and NP69 cell
line-derived EVs. (c) PCA-based Raman signal clustering result. (d) Raman signals clustered by PCA
and the average peak signal of single EVs. Adapted with permission from Ref [92]. Copyright 2020
American Chemical Society.
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3.2.2. Principal Component Analysis (PCA)

Because the spectrum can be regarded as a multidimensional datum having intensity values
along the range of the Raman shift, multivariate statistical methods can be utilized for interpretation.
PCA is a classical multivariate statistical method to analyze spectral data such as Fourier-transform
infrared spectroscopy and Raman spectroscopy [92–94]. Typically, PCA has been employed for
dimensionality reduction and feature extraction [95]. With PCA, principal components (PCs) can be
extracted from the spectral data in the order of highest covariance. If the difference between other
data groups is significant, the variation of data distribution along the PC axis can be maximized for
each group. In the case of high-dimensional data such as a spectrum, it is possible to visualize the
observed spectra in 2D or 3D through a score vector, which is dimensionally reduced through PCA.
In general, data with significant differences can be clustered into independent groups. Because PCA is
a linear transformation, it provides valuable information about the dominant pattern of the clusters.
Park et al. [59] distinguished SERS signals of the normal alveolar cell line- and lung cancer cell
line-derived EVs through PCA and investigated cancerous EV-specific signal patterns for lung cancer
EV diagnosis. The EV SERS signals from 470 to 1800 cm−1 were clustered. In the PCA score plot,
control (Bare SERS substrate), normal alveolar cell EVs, and lung cancer cell EVs were distinguished.
Lung cancer EVs were classified based on PC1, with the largest variance (Figure 8a). In cross-validation,
this approach showed outstanding classification performance with a sensitivity of 95.3% and specificity
of 97.3%. To examine which spectral ranges affected the classification, investigation of PC loading
data was performed. As a result, several spectral ranges dominant to the cancerous EVs and their
corresponding normal EVs were demonstrated (Figure 8b). The dominant peaks were associated with
NAs and membrane proteins. Furthermore, to test unknown samples, independent cell EV data were
projected onto the PCA score plot. By evaluating the location of new data on the score plot, a sensitivity
of 85.7% and a specificity of 90.0% was obtained. However, clinical samples tended to be located in the
middle plane. The authors discussed the reason for the diverse origins and different proportions of
EVs in the clinical samples.

In another study on cancer diagnosis using a combination of PCA and EV-derived SERS signals,
Ferreira et al. [52] demonstrated the classification of nontumorigenic breast epithelium- and breast
cancer-derived EVs. By using PCA, they classified SERS signals obtained from phosphate buffered saline,
cancer, and non-tumoral cell EVs. To prove the concept of real-time diagnosis, tumoral/non-tumoral
samples were analyzed, and both samples belonged to the reasonable 95% confidence ellipses,
suggesting feasibility for real-time diagnosis (Figure 8c). PCA can also be used for the discrimination
of different samples by EV signals. Yan et al. [51] reported that PCA of SERS could discriminate
EVs originating from different biological sources. EV data were collected from four different sources,
including lung cancer cell lines (HCC827, H1975), human serum, and fetal bovine serum. The data
were clustered into different groups with a sensitivity of over 84%. These studies showed the practical
results of classifying EV samples by PCA. They established sensitivity and specificity through 95%
confidence ellipses bordering biologically different groups, suggesting a successful prediction for
newly collected samples.

PCA can be strengthened through a combination of supervised analytical methods. For example,
linear discriminant analysis (LDA) is a widely applied framework, and the PCA plus LDA approach
is one of the popular combinations in many classification problems [96–98]. PCA is used for
dimensionality reduction prior to LDA, which can reduce the computational difficulty of LDA
effectively. Zhang et al. [53] demonstrated the discrimination of different cancer cell-derived EVs by
PCA and LDA. Similar to other studies, different cancer cell-derived EVs were clustered in the PCA
score plot. When PCA was applied to a local range of 600–760 cm−1 Raman shift, the esophageal
cancer EVs were distinguishable and identified by LDA, showing a prediction accuracy of 97.1%.
For the same approach using 940–1100 cm−1, breast cancer EVs were also classified with 90.6%
accuracy. The classification accuracy of the EV signals in the range of 500–1600 cm−1 reached 96.7%
and sensitivity above 95% in order to distinguish the different EV samples. In a different study,
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Carmicheal et al. [54] reported an EV SERS application using PCA and differential function analysis.
First, the original spectra of 1004 variables (719–1800 cm−1) were dimensionally reduced to 20 PCs.
Then, the discriminant function analysis (DFA) allows the classification of the reduced PCs into
independent categories depending on the similarities and differences [99]. For classification, 121 data
were collected from pancreatic epithelial cells (HPDE) and pancreatic cancer cells (MiaPaCa and
CD18/HPAF). The classification efficiency in PCA was not significant, but the control group was clearly
separated from the EV groups in the PC-DFA plot (Figure 8c). Additionally, individual EV groups
formed discrete clusters; thus, each cell EV data were well classified with an accuracy of 90.0%. In the
classification of EVs derived from normal cell lines and cancer cell lines, the sensitivity and specificity
reached 90.6% and 97.1%, respectively. Additionally, EVs isolated from ten healthy individual serum
controls and ten pancreatic cancer patients were also analyzed using the pre-trained PC-DFA algorithm
with cell line EVs. However, the prediction accuracy was moderate compared to the cell line EV
data owing to the diverse normal EVs in the patient sample. Nevertheless, this study suggested the
feasibility of EVs-SERS and statistical analysis as a novel cancer detection method.
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Figure 8. Specific bands-based EV-derived signal analysis. (a) The signal difference between normal
lung cell line-derived EVs (NL-20, BEAS-20, and L929) and lung cancer cell lines-derived EVs (PC-9,
H1975, and HCC827). Adapted from Ref. [49]., Copyright 2017, with permission from Elsevier.
(b) The signal difference at the Raman band is associated with protein phosphorylation (P-O bond)
between healthy cell- and prostate cancer cell-derived EVs. (c) Prostate cancer patients’ EVs tend to
show higher protein phosphorylation status in the SERS result. Adapted with permission from Ref. [50].
Copyright 2020 American Chemical Society.

3.2.3. Partial Least Square Discriminant Analysis (PLS-DA)

PLS-DA was introduced as a powerful method to analyze the SERS signals of EVs. Similar to the
discrimination methods combined with PCA described earlier, PLS-DA is applied for dimensionality
reduction and discriminant analysis of multivariate data [100]. PLS-DA has been widely applied
to spectral data and has often reported powerful performances [100–103]. Stremersch et al. [56]
demonstrated a quantification method that distinguished cancerous EV-like vesicles using PLS-DA.
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SERS signals of EV-like vesicles isolated from B16F10 melanoma and red blood cells (RBCs) were
analyzed and discriminated by PLS-DA with high sensitivity and specificity.

Interestingly, the combination of PLS-DA and SERS showed reasonable quantification performance
in mixed samples. By SERS detection of individual vesicles in two different mixtures of B16F10 and RBC
vesicles in different portions, 38% and 6.3% of cancerous vesicles were predicted, respectively. This value
was reasonably consistent with the proportions of 51% and 15% verified through a fluorescence method,
suggesting the promising potential of label-free SERS for actual biomedical diagnosis.

4. Challenges and Prospects of Label-Free SERS for EVs

4.1. Challenges of Label-Free SERS for EVs

As discussed above, the detection method using EV capture and a statistical analysis method
using PCA and PLS-DA increased the feasibility of EV diagnosis using label-free SERS. In particular,
in the classification and identification of single-type cell line-derived EVs, many research groups have
successfully established highly precise discrimination by the distinct signal pattern of cancerous EVs.
However, in actual body fluids, a large fraction of disease-related EVs are released from diseased
cells. However, most of them are secreted from healthy cells, including endothelial cells, platelets,
lymphocytes, and other immune cells [92,104–106]. Therefore, various origins of EVs lead to the
diversity of EVs, complexity due to various surface proteins, and heterogeneity in individual EVs.
Thus, we need to overcome the diversity, complexity, and heterogeneity of EVs for practical clinical
application of the label-free SERS technique. Additionally, the difference between in vitro and in vivo
sources present significant challenges in upscaling current research progress from cell line EVs to the
actual clinical field [7].

4.2. Prospects for Label-Free SERS for EVs

4.2.1. Prospect of the Detection Methods

As a result of the various studies mentioned above, the EV detection technology using label-free
SERS has made a great stride. However, for the commercialization and development of precision
medicine using label-free SERS technology in the EV detection field, researchers still investigate
(1) integration of EV isolation and detection, (2) more stable capturing of EVs, and (3) detection of
single EVs.

For these purposes, many researchers use “microfluid.” Microfluidic technology has been in the
spotlight of the precision medical field because it uses a small number of samples and enables various
analyses. Particularly, microfluidic technology is used in the field of EV isolation because it can control
particles of various sizes in a fluid by using a dielectric force or acoustic force [107–109]. In addition,
microfluidic technology has been developed in the form of a bio-chip and is commercially used in
various diagnostic fields, such as in SERS grafting [110–112]. Furthermore, research to construct a
portable SERS system by miniaturizing the optical system required for the detection of SERS and
utilizing it in the clinical field is underway [113]. Therefore, if microfluidic technology, which involves
the use of small samples, nanoparticle collection technology, and portable SERS technology, are applied
to label-free SERS, it will be applicable in commercial and precision medical fields.

As a part of these “Single EV detection” is a representative EV detection technology [48,114–117].
Single EV detection is being researched to obtain signals by preventing aggregation of EVs through
surface treatment or trapping of EVs in a specific area using an external force. The simplest way to
detect single EVs is to use an optic tweezer. An optic tweezer can control micro- and nano-sized
particles using a focused laser. Several techniques have been recently studied to obtain information on
a single exosome using optic tweezers. In particular, Dai et al. obtained signals of individual EVs using
a “Raman-enabled nanoparticle trapping analysis” (R-NTA) method that combines optical forceps and
label-free Raman detection (Figure 9a) [117]. However, they acquired a spontaneous Raman signal,
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rather than performing SERS, and confirmed morphological-chemical heterogeneity through Raman
spectroscopy and confirmed heterogeneous signals between EVs derived from cancer cells and healthy
cells. Additionally, they obtained Raman signals of EVs derived from two different carcinoma cell lines
and cell lines in which TRPP2 was knocked down (Figure 9b) and classified them through numerical
analysis (Figure 9c). As a result, it was possible to form clusters expected to contain TRPP2, a specific
biomarker of the HN2 cell line, and a clear difference was observed between the averages of the signals
from different clusters (Figure 9d).Molecules 2020, 25, x FOR PEER REVIEW 14 of 22 
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Figure 9. Principal component analysis (PCA) and combination with the discrimination method for
EVs-SERS signal analysis. (a) PCA score plot of normal alveolar cell- and lung cancer cells-derived EVs.
(b) The dominant spectral pattern of each EVs group was determined by means of PCA loading data.
Adapted with permission from Ref. [59]. Copyright 2017 American Chemical Society. (c) Prediction of a
tumoral test sample by projection to the pre-classified PCA plot. The projected spectrum of the tumoral
test sample was located within the 95% confidence ellipse of tumoral EVs. Adapted with permission
from Ferreira, N.; Marques, A. et al., Label-free nanosensing platform for breast cancer EVs profiling.
ACS sensors 2019, 4, (8), 2073-2083. Copyright 2020 American Chemical Society. (d) Classification of
pancreatic epithelial cell (HPDE)- and pancreatic cancer cells (MiaPaCa and CD18/HPAF)-derived EVs
using PC-DFA. Adapted from Ref. [54]., Copyright 2019, with permission from Elsevier.

Another research team captured an EV in a dielectric field using a dielectric pyramid structure.
The Raman signal of the single EV was detected using a strong EM field generated by a laser at the spire
of the pyramid structure. However, the “single EV detection” technologies have not yet been actively
studied in SERS. Therefore, it could combine with the diversity and heterogeneity of individual EVs.

4.2.2. Prospects of the Analysis Methods

Due to the progress of detection strategies, studies have been successfully conducted to obtain
distinct spectral patterns of EVs derived from different sources. These achievements are expected to be
developed with outstanding progress in computer science for multidimensional data and machine
learning techniques. Recently, research using a convolutional neural network (CNN) to classify
the Raman signals of EVs was performed [118]. The CNN-based algorithm was able to classify
Raman signals obtained from EVs without background signal correction. Additionally, the algorithm
showed better prediction accuracy than statistical methods, such as PCA-LDA. In addition to having
the advantage of high accuracy, machine learning models can solve the heterogeneity problem
of SERS signals. Machine learning algorithms, such as deep learning, have been widely applied
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to overcome the heterogeneity issue in the analysis of biological samples [119,120]. Additionally,
many studies using artificial intelligence algorithms for Raman spectra of various biomolecules have
been reported [121–126]. However, an enormous amount of data are inevitably required to train the
models. For actual diagnosis, it is necessary to analyze many samples of healthy controls and patients
to train and verify the artificial intelligence model. However, even if several clinical samples are
obtained, isolating EVs and measuring enough SERS data is an extremely time-consuming process.
To overcome this issue, the analysis of SERS data of plasma EVs in clinical samples by means of a CNN
algorithm trained using cell line EV data was demonstrated recently [58]. The CNN model was trained
with more than a thousand SERS signals from cell line EVs and presented a quantitative similarity
between 63 plasma EVs and pre-trained lung cancer cell line EVs (Figure 10a). Lung cancer patients
showed a significant difference in similarity compared to the healthy control group (Figure 10b).
Notably, even the samples of stage I patients were successfully discriminated, suggesting the feasibility
of early cancer diagnosis (Figure 10c). Since the development and verification of artificial intelligence
technologies are continuously emerging, the introduction of artificial intelligence into EVs-SERS is
expected to serve as a key to solving the current problems.
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5. Conclusions

We have reviewed recent studies and progress in EVs label-free SERS. First, we discussed the
characteristics of EV-derived SERS signals and current issues for detection and signal analysis. Then,
we summarized the EV detection strategy for acquiring label-free SERS signals of EVs. The detection
strategies were categorized and summarized in terms of how to capture the EVs at the SERS substrate.
In the case of the conventional label-free SERS detection strategy, it could be categorized into a dry
method and a liquid state method. In the case of using the dry method, a signal of EVs was obtained
by drying the EVs solution on the substrate. This method has the advantage of being able to close the
physical distance of EVs. Unfortunately, in the case of using a simple substrate, the problem is that it is
difficult to measure even signals due to the non-uniformity of the substrate itself and the coffee-ring
effect that occurs when the EVs solution dries. To solve this problem, many studies have produced a
substrate having an even electromagnetic field amplification characteristic, and among them, structures
capable of stably confining EVs such as a Bee-hive structure have also been proposed. In addition,
in the case of the liquid state method, which was attempted as part of the liquid biopsy, label-free SERS
signals could be obtained using quantitative nanoparticle coating of individual EVs. These methods
succeeded in obtaining SERS signals of weak EVs but these did not solve the heterogeneous signal of
EVs. Single EV detection technology is emerging as a technology that can solve this problem, and the
main technology among them is a method using Raman Spectroscopy Optical tweezers. Therefore,
if this is applied to SERS, it will be possible to use it as a precision medical technology suitable for
liquid biopsy. Also, the method by which signals were obtained and interpreted was discussed in
aspects of classification. Notable progress in dealing with the complex and multivariate signals of
EVs are then presented. In particular, it is expected that the analysis method of SERS signal through
machine learning, not the existing statistical analysis method, can solve the heterogeneous by analyzing
the SERS pattern of EVs, unlike peak-based analysis. It is expected that the development of various
detection techniques and progress in computer science will accelerate the advancement of label-free
SERS detection of EVs.
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