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Editorial on the Research Topic

Beta-Cell Fate: From Gene Circuits to Disease Mechanisms

Diabetes represents a group of energy metabolism pathologies where the most common forms of
the disease exhibit a polygenic and multifactorial aetiology (American Diabetes Association,
2005). Diabetes has truly reached worldwide epidemic proportions with 537 million people
living with diabetes worldwide (International Diabetes Federation, 2021). While diabetes can be
managed, for many people the onset of life-threatening complications including blindness,
kidney failure, heart attacks, stroke, and lower limb amputation further exacerbates the impact
on mortality and morbidity (6.7 million deaths related to diabetes complications were reported
in 2021). The major difficulty is distinguishing from the plethora of modulations the ones
directly responsible for disease initiation. To date it remains largely unknown what are the
external factors and cellular signals leading to insulin-producing β-cells decay or dysfunction are
and what molecular mechanisms and cellular processes characterize this transition. Identifying
the mechanisms governing the onset and progression of these complex conditions is exceedingly
challenging, due to their multifactorial environmental component and the intricate genetic
susceptibility interaction. Nevertheless, the past decade registered important advances towards
understanding these issues. Moreover, the role of the other pancreatic cell populations in the
onset, progression, and treatment of diabetes started to be revealed (Chera and Herrera, 2016).
These advances contribute towards a more comprehensive demultiplexing of the large diversity
of diabetes mechanisms, which is expected to critically contribute to an unambiguous diabetes
reclassification.

The aim of this Research Topic was to provide a snapshot of current studies focused on molecular
circuits and cellular processes involved in the development, function, and dysfunction of β-cells,
touching multiple aspects of islet niche and disease progression.

MOLECULAR LEVEL/NOVEL MOLECULAR PLAYERS

Both T1D and T2D have a complex polygenic and multifactorial aetiology, hence providing a highly
variable cellular and molecular readout, even between genetically related individuals. Due to this
intrinsic high level of complexity, caused by the overlap between environment and intricate genetic
susceptibility, there are still not clearly defined molecular and cellular mechanisms of disease onset
and progression. Conversely, monogenic disorders are caused by single gene defects occurring in all
cells of the organism. Therefore, the characterization of the causative genes and their associated
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molecular mechanisms involved in monogenic diabetes onset
contribute to understanding the complex non-inherited T1D or
T2D disorders.

To date, the genetic predisposition for monogenic diabetes was
mostly studied in populations from western countries. To bridge
this gap, Zhong et al. analyzed the clinical and genetic
characteristics of 200 diabetic patients from Northern China
to map the monogenic diabetes prevalence and identify
putative novel mutations responsible for MODY. The study
pinpointed a heterozygous missense mutation in the coding
region of FOXM1 (rs535471991) as a potentially pathogenic
variant, most likely affecting the risk of MODY. In the same
line, Lin et al. described a case of ABCC8-MODY, previously
unreported in China.

Furthermore, by analyzing 160 Egyptian patients, Kassem
et al. investigated the correlation between two SERPINB1
SNPs and type 2 diabetes risk. They revealed that SERPINB1
SNP rs152826 can potentially predict glycemic control in diabetic
patients while suggesting that the AA genotype of this SNP can be
associated with an overall better glycemic regulation. In contrast,
the G allele might be a “risk allele” for poor glycemic control.

Although numerous human participants were recruited for
genome-wide association studies (GWAS), the genome and
environmental factors (lifestyle) variability usually confound
datasets, especially when studying a complex trait like blood
glucose homeostasis. Hence, meticulous animal model studies are
still a critical tool in diabetes research allowing accurate
manipulation of both environment and genetic variance. In an
original research article, Aga, Hallahan et al. crossed
normoglycemic lean inbred DBA mouse with the diabetes-
prone New Zealand obese (NZO) strain to identify novel
potential T2D genes by using positional cloning. Focused on
the most prominent diabetes quantitative trait loci (QTL) Nidd/
DBA on chromosome 4, this study identified Kti12, Osbpl9,
Ttc39a, and Calr4 as potential T2D candidates.

Interestingly, the associated loci for T1D and T2D seem to be
almost completely separated, despite a partially shared
phenotype. However, some genes from the risk loci for T1D
and T2Dmight actually interact in common networks in order to
mutually regulate crucial pancreatic islet functions. In order to
investigate this avenue, Kaur et al. used a dual systems genetics
approach by analyzing 57 T1D and 243 T2D established GWAS
loci. This study identified a number of novel plausible common
candidate genes and pathways for T1D and T2D: nine genes in
common T1D and T2D loci that harbor islet eQTLs in linkage
disequilibrium with disease-associated variants (GSDMB,
CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3,
PLEKHA1, and HEMK1), and four genes in common T1D
and T2D loci mutually regulated by palmitate and cytokines
(ASCC2, HIBADH, RASGRP1, and SRGAP2).

Prolonged chronic hyperglycemia is a leading risk factor for
developing micro- and macrovascular complications.
Interestingly, some individuals do not develop these
complications, despite long disease duration suggesting the
involvement of protective mechanisms in these patients or,
alternatively, the presence of risk factors in the patients that
do progress to complications. Keindl et al. studied a panel of

inflammatory markers in the plasma of long-term T1D patients
with and without vascular complications and found that
increased plasma level of a cytokine, soluble interleukin-2
receptor alpha (sIL-2R), was positively associated with the
presence of vascular complications.

CELLULAR LEVEL/NOVEL CELLULAR
PROCESSES

As also seen above, numerous alleles and mutations associated
with increased risk of developing T1D or T2D diabetes
(Fuchsberger et al., 2016) were identified in recent years,
however cellular fate determination, identity, and function are
also regulated at other levels, i.e. mRNA processing or protein
folding, packing and sorting. Moss and Sussel summarise in a
review the current knowledge on RNA-binding proteins,
alternative-splicing events, and transcriptome-wide changes in
RNA methylation landscape influencing specific functions of
insulin-producing β-cells. As islet cells are mainly secretory
cells handling a high amount of hormone production, there is
strong pressure on the endoplasmic reticulum (ER) intrinsic
folding capacity. This might lead to, for example, misfolded
pro-insulin in β-cells triggering a physiological upregulation of
the unfolded protein response (UPR) to restore homeostasis.
Lenghel et al. discussed recent data addressing the role of UPR on
the dedifferentiation or proliferation of β-cells, as well as in
triggering inflammation at the islet level, and proposed
possible therapies by using UPR for restoring β-cells
homeostasis according to their stress level.

ISLET LEVEL/REGENERATIVE
STRATEGIES

An increasing amount of recent studies suggest that diabetes is
not only a β-cell disease, and several other islet cell types could
also contribute to its physiopathology (Chakravarthy et al.,
2017; Holst et al., 2017; Traub et al., 2017; Brissova et al., 2018;
Cigliola et al., 2018; Rorsman and Huising, 2018; Furuyama
et al., 2019; Cigliola et al., 2020; Nair et al., 2020). In a mini-
review Bru-Tari et al. discussed recent work on islet cell
heterogeneity and how this knowledge can be used to
restore islet function and therefore to improve current β-
cell replacement therapies. An alternative therapeutic
strategy could be aimed at increasing the replication rate of
insulin-producing β-cells (Nir et al., 2007), which is at very low
levels in homeostatic islets. Along these lines, Jiang et al.
studied the role of SNAPIN, a protein that interacts with
SNARE complexes, in mediating β-cell proliferation. One
potential approved drug with β-cell regenerative potential
might be liraglutide, an analogue of glucagon-like peptide-1.
Villalba et al. investigated the role of liraglutide on the
restoration of β-cell mass in regards to neogenesis and
transdifferentiation, although additional lineage-tracing
studies will be required to clarify the origin of the cells
involved in these processes.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8224402

Ghila et al. Editorial: Beta-Cell Fate

https://www.frontiersin.org/articles/10.3389/fendo.2020.534362/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.00645/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.00450/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.00450/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.567191/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.630109/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.575469/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.00983/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.614123/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.619150/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.624309/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.00258/full
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


PERSPECTIVES

A major goal of diabetes research is mapping the diverse specific
cellular and molecular mechanisms leading to disease onset and
progression. Advances in this area will lead to an improved diabetes
classification and a more targeted management of the different
diabetes subtypes. The need for this fine-tuned reclassification is
clearly illustrated by the current high incidence of diabetes-related
complications resulting from insufficient disease models supporting
appropriate clinical decision-making. Better disease knowledge and,
consequently, its improvedmanagement will help avoid unnecessary
treatments, improve the patients’ quality of living, reduce costs and
ultimately bend the mortality curve.

Thus, in our view, demultiplexing the pathophysiological
mechanisms characterising diabetes will remain a key goal of
diabetes research, which can be achieved by further 1) mapping
associated genetic factors, including themechanistic characterization
and pathogenicity assessment of relevant genetic variants in different
ethnic groups; 2) identifying key regulators controlling the cellular
processes and molecular landscape leading to disease onset and
complications; 3) developing top-notch cell and animal models for
studying islet cell function, dysfunction, and extra-pancreatic
confounding effects.
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