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Abstract

The major challenge in the diagnosis of disseminated intravascular coagulation (DIC)

comes from the lack of specific biomarkers, leading to developing composite scoring sys-

tems. DIC scores are simple and rapidly applicable. However, optimal fibrin-related markers

and their cut-off values remain to be defined, requiring optimization for use. The aim of this

study is to optimize the use of DIC-related parameters through machine learning (ML)-

approach. Further, we evaluated whether this approach could provide a diagnostic value in

DIC diagnosis. For this, 46 DIC-related parameters were investigated for both clinical find-

ings and laboratory results. We retrospectively reviewed 656 DIC-suspected cases at an ini-

tial order for full DIC profile and labeled their evaluation results (Set 1; DIC, n = 228; non-

DIC, n = 428). Several ML algorithms were tested, and an artificial neural network (ANN)

model was established via independent training and testing using 32 selected parameters.

This model was externally validated from a different hospital with 217 DIC-suspected cases

(Set 2; DIC, n = 80; non-DIC, n = 137). The ANN model represented higher AUC values

than the three scoring systems in both set 1 (ANN 0.981; ISTH 0.945; JMHW 0.943; and

JAAM 0.928) and set 2 (AUC ANN 0.968; ISTH 0.946). Additionally, the relative importance

of the 32 parameters was evaluated. Most parameters had contextual importance, however,

their importance in ML-approach was different from the traditional scoring system. Our

study demonstrates that ML could optimize the use of clinical parameters with robustness

for DIC diagnosis. We believe that this approach could play a supportive role in physicians’

medical decision by integrated into electrical health record system. Further prospective vali-

dation is required to assess the clinical consequence of ML-approach and their clinical

benefit.

PLOS ONE | https://doi.org/10.1371/journal.pone.0195861 May 2, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Yoon JG, Heo J, Kim M, Park YJ, Choi

MH, Song J, et al. (2018) Machine learning-based

diagnosis for disseminated intravascular

coagulation (DIC): Development, external

validation, and comparison to scoring systems.

PLoS ONE 13(5): e0195861. https://doi.org/

10.1371/journal.pone.0195861

Editor: Pal Bela Szecsi, Holbæk Hospital,

DENMARK

Received: November 14, 2017

Accepted: March 31, 2018

Published: May 2, 2018

Copyright: © 2018 Yoon et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The commercial company Solidware Inc.

provided support in the form of salaries for authors

MK, YT, KW, HK, OD and SE but did not have any

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The specific roles of these authors

are articulated in the ‘author contributions’ section.

https://doi.org/10.1371/journal.pone.0195861
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195861&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195861&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195861&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195861&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195861&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195861&domain=pdf&date_stamp=2018-05-02
https://doi.org/10.1371/journal.pone.0195861
https://doi.org/10.1371/journal.pone.0195861
http://creativecommons.org/licenses/by/4.0/


Introduction

Disseminated intravascular coagulation (DIC) is a life-threatening condition which arises as a

secondary complication from a range of underlying conditions including sepsis, severe

trauma, and advanced cancer [1]. The Scientific and Standardization Committee on DIC of

the International Society on Thrombosis and Haemostasis (ISTH) define DIC as ‘an acquired

syndrome characterized by the intravascular activation of coagulation with a loss of localiza-

tion arising from different causes.’[2] Despite this definition highlighting DIC’s key features,

the major challenge in the diagnosis of disseminated intravascular coagulation (DIC) comes

from the lack of a single potent marker for DIC, leading to developing composite scoring sys-

tems, derived from underlying conditions and laboratory results [2–4].

The diagnostic criteria, widely used as a gold standard, is the ISTH criteria which consist of

platelet (PLT) count, prothrombin time (PT), fibrinogen, and fibrin-related markers (e.g. D-

dimer or fibrin degradation products; FDP) [2]. Although the ISTH criteria have been vali-

dated by various studies and the performance was shown to be satisfactory, several issues

remain [5–8]. Particularly, determination of the optimal fibrin-related markers and individual

laboratory cut-off values for moderate to strong increase have not yet been clearly defined [9–

12]. Furthermore, the ISTH criteria’s sensitivity is regarded by some to be lacking when com-

pared to other scoring systems [13]. Two other well-established scoring systems are the Japa-

nese Ministry of Health and Welfare’s criteria (JMHW criteria) and the Japanese Association

for Acute Medicine’s criteria (JAAM criteria; Table 1) [4–14]. Those criteria have respective

advantages and limitations depending on the underlying conditions, and numbers of refine-

ments have been made [10, 13, 15].

Artificial intelligence (AI)—where computers mimic human intelligence through machine

learning algorithms—has drawn media attention, and ubiquitous application of AI has grown

in momentum across various fields. Similar trials have shown up in the medical field, particu-

larly using clinical data and medical images [16–19]. Artificial neural network (ANN) resem-

bles human neuronal connections by building a multi-layered network and can be trained to

functionalize or categorize complex patterns [20, 21]. There are two remarkable characteristics

of this machine learning (ML)-approach: 1) non-linear pattern recognition and 2) improve-

ment by learning. These features are not only ideal for considering various clinical conditions,

but also for giving standardized results with wide extensibility. ANNs have demonstrated posi-

tive medical application in areas such as diagnosis of myocardial infarction, cancer, and dia-

betic retinopathy [22–24]. In this study, we demonstrated ML-approaches for DIC diagnosis

and established an optimized ANN model which integrates both the clinical findings and the

laboratory results.

Materials and methods

Patients

This study was approved by the institutional review board and the ethics committee of Yonsei

University Health System (Seoul, Korea; IRB 4-2016-0698). The current study used medical

records and participating centers have waived by completing the questionnaires. All data was

treated confidentially with anonymized numbers. Patients with full DIC profile were defined

as cases with all laboratory results including complete blood count (CBC) with differential

counts, global coagulation tests (PT, PT % activity, international normalized ratio [INR], acti-

vated partial thromboplastin time [aPTT], and thrombin time), fibrinogen, D-dimer, FDP,

and anti-thrombin III (AT III) having been ordered on the same day (this order set defined as

‘DIC profile’).

Machine learning-based diagnosis for DIC

PLOS ONE | https://doi.org/10.1371/journal.pone.0195861 May 2, 2018 2 / 15

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: MK, KW, HK, YT,

and OD are employees of Solidware Inc. SE is the

founder of Solidware Inc. Those authors have no

other competing interests to declare. Other authors

have no competing interests to declare. This does

not alter our adherence to PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0195861


Eligible cases had full DIC profile orders (n = 837) between April and October 2016 at a ter-

tiary hospital (Severance Hospital, Seoul, Korea; Fig 1A). After excluding consecutive orders from

the identical patients and outpatient clinic orders, patients with initial full DIC profile after admis-

sion (n = 769) were enrolled. Cases from pediatric patients, routine orders at admission, long-

term hospitalized patients, or previous transfusion therapy were excluded (n = 113). Finally, the

development set (set 1; n = 656) remained with DIC suspected cases requiring an evaluation of

DIC. Because the cases were enrolled at initial evaluation point, no cases were previously treated

with transfusion therapy (plasma product or cryoprecipitate) or AT III. A similar approach was

used for the external validation set (set 2; n = 217) derived from data obtained from another ter-

tiary hospital (Gangnam Severance Hospital, Seoul, Korea). Demographics and clinical character-

istics of the patients are represented in Table 2. There were no cases having heparin-induced

thrombocytopenia, thrombotic microangiopathy (TMA), or antiphospholipid syndrome.

Data collection and labeling DIC status

We retrospectively followed the timeline of physicians’ diagnostic process. Therefore, the pres-

ence of clinical signs, symptoms, underlying DIC-related conditions and the full set of laboratory

results was obtained at the same day of DIC profile (Tables 2 and 3, Text A in S1 File) (9). CBC

was obtained from K2-EDTA tube using automated hematology analyzers (ADVIA 2120i; Sie-

mens Healthcare Diagnostics, IL, USA) which provide commonly reported clinical parameters

and additional research use only (RUO) parameters, such as large unstained cells (LUC; %),

delta neutrophil index (DNI), and TMA score [25–27]. Global coagulation tests and fibrin-

related markers were performed using ACL-TOP 750 analyzer (Instrumentation Laboratory,

Bedford, MA, USA), with the samples collected in 3.2% sodium citrate tubes. Noticeably, the

external validation hospital used different automated hematologic analyzers (XN-9000 and CS-

5100 system; Sysmex, Kobe, Japan) and had different DIC profile: protein C was included instead

of FDP, and RUO parameters were not provided. In this reason, four parameters were excluded

Table 1. Diagnostic scoring systems for disseminated intravascular coagulation (DIC) used in this study.

DIC criteria ISTH JMHW JAAM

Underlying condition Essential 1 p Essential

Clinical symptoms NA Bleeding: 1 p SIRS score� 3: 1 p

Organ failure: 1 p

Prothrombin time (PT) Prolonged PT (sec) PT ratio PT ratio

3 <–� 6: 1 p 1.25�–< 1.67: 1 p � 1.2: 1 p

> 6: 2 p � 1.67: 2 p

Platelet count (×103/μL) 50�–< 100: 1 p 80 <–� 120: 1 p 80�–� 120 or > 30% reduction/24h: 1 p

< 50: 2 p 50 <–� 80: 2 p < 80 or > 50% reduction/24h: 3 p

� 50: 3 p

Fibrin-related marker FDP, D-dimer, SF FDP (μg /mL) FDP (μg /mL)

Moderate increase: 2 p 10 �–< 20: 1 p 10�–< 25: 1 p

Strong increase: 3 p 20 �–< 40: 2 p � 25: 3 p

� 40: 3 p

Fibrinogen (mg/dL) < 100: 1 p 100 <–� 150: 1 p NA

� 100: 2 p

Score range 0–8 p 0–13 p 0–8 p

DIC diagnosis � 5 p � 7 p � 4 p

Abbreviations: ISTH, the International Society on Thrombosis and Haemostasis; JMHW, the Japanese Ministry of Health and Welfare; JAAM, the Japanese Association

for Acute Medicine; NA, Not applicable; SF, soluble fibrin; p, point

https://doi.org/10.1371/journal.pone.0195861.t001
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Fig 1. Schematic representation of patient enrollment and development of the artificial neural network (ANN) model. (A) Full DIC profile was

defined as all laboratory results including complete blood count with differential counts, global coagulation tests (PT, PT % activity, international

normalized ratio [INR], activated partial thromboplastin time [aPTT], and thrombin time), fibrinogen, D-dimer, FDP, and anti-thrombin III. The

external validation hospital used different DIC profile: protein C was included instead of FDP, and RUO parameters were not provided. (B) ANN

model for DIC diagnosis. In the training phase, the development set (n = 656) was randomly split into training and test sets in 80:20 ratio and hyper-

parameters were determined for an optimal modeling. All layers have 32 nodes with an input-layer and two-hidden layers. The relative importance

of input features was calculated based on the ‘Connection Weight’ approach, after the ANN model was established.

https://doi.org/10.1371/journal.pone.0195861.g001
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in set 2 (Fig 2). To curate the DIC status (non-DIC: 0, DIC: 1), patient’s medical record, clinical

manifestation, and laboratory results were retrospectively reviewed by medical experts. Each

case was carefully reviewed by two experts individually and the patient’s evaluation result which

occurred within a week was assigned comprehensively depending on the laboratory data change,

clinical manifestation, clinical intervention, and final diagnosis. If a discrepancy occurred, the

case was reviewed by another third expert and labeled after a consensus was reached.

Model development

Using the collected datasets, we tested several ML algorithms including logistic regression, lin-

ear regression, ridge regression, random forest, gradient boosting machine, deep learning, and

ANN with DaVinci Labs (Solidware Inc., Seoul, Korea) which support an AI-based data analy-

sis; the performance of ANN model was the best among the seven algorithms. In the training

phase, the development set was randomly split into training and test sets in 80:20 ratio. Next,

auto-tuning for hyper-parameters (e.g. number of hidden layers, epochs) with respect to the

performance of the model on the test set was conducted. After several iterations of the auto-

tuning and training processes, an ANN model (2 hidden layers, 10 epochs) to evaluate DIC sta-

tus was established (Fig 1B). Additionally, we calculated the relative importance of the input

variables with ‘Connection Weight’ approach [28]. Briefly, the importance of variables is pro-

portional to the sum of absolute values of products between weights of connections, by which

this variable is propagated. We also conducted an external validation of the ANN model using

set 2. As set 2 was missing four variables, the ANN model was re-trained without the four vari-

ables and evaluated.

Table 2. Patient demographics and clinical characteristics.

Numbers of cases (%) Development set (set 1; n = 656) External validation set (set 2; n = 217)

DIC

(n = 228)

Non-DIC

(n = 428)

P value DIC

(n = 80)

Non-DIC

(n = 137)

P value

Age, years 60.8 ± 16.6 58.1 ± 17.5 .053 62.7 ± 15.9 64.2 ± 16.5 .228

Gender, male 119 (52.2) 225 (52.6) .992 49 (61.3) 71 (51.8) .530

Currently in ICU 155 (68.0) 171 (40.0) < .001 59 (73.8) 59 (43.1) < .001

APACHE II score ± SD � 30.2 ± 10.7 24.3 ± 9.8 < .001 25.3 ± 9.7 16.2 ± 6.7 < .001

Mortality (28-days) 146 (64.0) 77 (18.0) < .001 53 (66.2) 12 (8.8) < .001

On anticoagulation therapy 2 (0.9) 32 (7.5) .001 2 (2.5) 5 (3.6) .949

Thrombosis 12 (5.3) 46 (10.7) .027 4 (5.0) 9 (6.6) .862

Bleeding 60 (26.3) 85 (19.9) .072 22 (27.5) 12 (8.8) .001

Organ failure 116 (50.9) 58 (13.6) < .001 39 (48.8) 15 (10.9) < .001

SIRS score� 3 176 (77.2) 146 (34.1) < .001 66 (82.5) 53 (38.7) < .001

Associated conditions with DIC

Sepsis/Infection 161 (70.6) 140 (32.7) < .001 58 (72.5) 47 (34.3) < .001

Tissue damage 28 (12.3) 51 (11.9) .991 23 (28.7) 33 (24.1) .551

Post major surgery 34 (14.9) 133 (31.1) < .001 13 (16.2) 46 (33.6) .009

Hematologic malignancy 26 (11.4) 35 (8.2) .225 7 (8.8) 5 (3.6) .201

Solid cancer 87 (38.2) 82 (19.2) < .001 20 (25.0) 17 (12.4) .028

Hepatic failure 34 (14.9) 17 (4.0) < .001 13 (16.2) 4 (2.9) .001

Obstetric complications 4 (1.8) 21 (4.9) .073 1 (1.2) 3 (2.2) > .999

Vascular abnormalities 4 (1.8) 18 (4.2) .152 11 (13.8) 31 (22.6) .156

Immunologic insult 4 (1.8) 22 (5.1) .057 9 (11.2) 5 (3.6) .056

� The Acute Physiology and Chronic Health Evaluation (APACHE) II score was calculated only if a patient was admitted to ICU.

https://doi.org/10.1371/journal.pone.0195861.t002
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Analysis

Performance of the ANN model was compared to the three scoring systems (ISTH, JMHW,

and JAAM; Table 1). Sensitivity, specificity, positive and negative predictive value, and area

under curve (AUC) values were calculated following each criterion. D-dimer was used as the

fibrin-related marker for the ISTH criteria as both set 1 and set 2 had this parameter (cut-off

values for the moderate to the strong increase were based on 25% and 75% quartiles of all

Table 3. Laboratory results for full DIC profile parameters.

Parameters, mean (SD) Development set (set 1; n = 656) External validation set (set 2; n = 217)

DIC

(n = 228)

Non-DIC

(n = 428)

P value DIC

(n = 80)

Non-DIC

(n = 137)

P value

Global coagulation tests with DIC profile

Prothrombin time (PT; sec) 21.9 (10.3) 15.1 (6.5) < .001 20.6 (7.4) 14.6 (3.9) < .001

PT activity (%) 50.4 (18.8) 75.8 (20.9) < .001 50.4 (17.9) 77.7 (18.7) < .001

INR 1.92 (0.90) 1.32 (0.56) < .001 1.72 (0.65) 1.21 (0.34) < .001

aPTT (sec) 60.3 (36.5) 39.1 (18.8) < .001 52.2 (35.6) 31.3 (11.0) < .001

Thrombin time (sec) 21.5 (17.0) 20.0 (18.2) .297 24.9 (13.9) 19.3 (3.0) < .001

Fibrinogen (mg/dL) 304 (189) 415 (178) < .001 326 (212) 470 (202) < .001

D-dimer (μg/mL)a 8.23 (12.95) 2.10 (4.55) < .001 16.96 (18.86) 7.25 (12.16) < .001

Anti-thrombin III activity (%) 53.8 (20.0) 81.0 (24.6) < .001 50.5 (19.9) 79.8 (18.8) < .001

Fibrin degradation product (μg /mL) 59.4 (62.3) 18.0 (24.6) < .001 NAe NA NA

Protein C activity (%) NA NA NA 40.7 (19.5) 81.9 (31.4) < .001

Complete blood count and related parameters

RBC count (×106/μL) 2.97 (0.65) 3.25 (0.69) < .001 3.20 (0.89) 3.56 (0.74) .002

Hemoglobin (g/dL) 9.2 (2.0) 10.0 (2.0) < .001 9.9 (2.7) 10.9 (2.0) .003

Hematocrit (%) 27.5 (5.7) 29.8 (5.9) < .001 29.8 (8.1) 33.0 (6.4) .002

MCV (fL) 93.0 (6.8) 92.3 (5.9) .150 93.5 (6.3) 92.9 (5.7) .477

MCH (pg) 31.1 (2.3) 30.8 (2.1) .038 31.0 (2.4) 30.7 (2.4) .412

MCHC (g/dL)b 33.4 [32.4, 34.4] 33.4 [32.5, 34.2] .433 33.0 [32.1, 34.1] 33.0 [32.4, 33.6] .334

RDW (%) 16.5 (2.7) 15.4 (2.4) < .001 15.5 (2.8) 14.1 (2.0) < .001

PLT count (×103/μL) 57 (56) 168 (129) < .001 77 (78) 211 (133) < .001

PLT changes (%/24hrs)c -0.36 (0.60) -0.15 (0.33) < .001 -0.40 (0.52) -0.08 (0.32) < .001

PDW (%, fL)d 61.9 (17.2) 56.4 (10.6) < .001 13.7 (3.7) 11.5 (2.2) < .001

MPV (fL) 10.45 (1.99) 9.15 (1.49) < .001 11.36 (1.99) 10.33 (1.49) < .001

WBC count (×103/μL) 12.75 (17.60) 10.60 (9.61) .044 11.75 (17.60) 13.40 (9.61) .218

Differential count (%)

Neutrophil 77.7 (24.0) 75.5 (21.0) .226 79.9 (15.4) 78.0 (17.3) .404

Lymphocyte 13.2 (19.3) 14.4 (16.3) .423 12.5 (15.4) 13.5 (12.7) .626

Monocyte 4.8 (3.6) 5.5 (4.5) .063 6.0 (4.4) 7.0 (6.9) .250

Eosinophil 0.8 (1.5) 1.8 (3.8) < .001 1.1 (1.8) 1.3 (1.9) .566

Basophil 0.2 (0.3) 0.2 (0.2) .845 0.4 (0.7) 0.3 (0.3) .114

Large unstained cell (LUC) 3.2 (13.0) 2.2 (8.6) .277 NA NA NA

Delta neutrophil index (%) 13.5 (16.2) 5.0 (9.2) < .001 NA NA NA

Thrombotic microangiopathy score 2.7 (1.5) 2.0 (1.4) < .001 NA NA NA

a measured in data display unit (DDU; set 1) or fibrinogen-equivalent unit (FEU; set 2). See Table A in S1 File.
b Non-parametric distribution, median [25, 75 percentiles].
c The percent change in PLT count within 24 hours was calculated only if previous PLT count was available.
d The report units are different for PDW value between set 1 (%) and set 2 (fL).
e NA, not applicable

https://doi.org/10.1371/journal.pone.0195861.t003
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patients in each hospital, respectively.) [9]. JMHW and JAAM scores could not be evaluated in

set 2 as FDP was lacked in the DIC profile of set 2.

Statistics software R version 3.4.3 was used for data analysis. Datasets were visualized using

‘ComplexHeatmap’ package [29]. Performance evaluation was achieved via receiver operating

characteristic (ROC) curve analysis, and calculation of AUC using the ‘pROC’ package [30].

The cut-off value (0.501) for the ANN model was determined by the ‘OptimalCutpoints’ pack-

age using the Youden method [31]. Statistical analyses were performed by Student’s t-test for

parametric data and Mann-Whitney U test for non-parametric data. P values below 0.05 were

considered as statistically significant.

Results

Patient characteristics

We conducted a retrospective cross-sectional study of DIC-suspected patients at initial evalua-

tion with full DIC profiles. All available cases with full DIC profiles were reviewed in two

Fig 2. Heat map presentation of the datasets used in this study. The x-axis denotes individual cases and the y-axis

corresponds to the clinical variables. Each cell shows values of variables for each case. All cases are sorted horizontally

by the labeled DIC status and predicted ANN model values. Rows 2–5 (ANN model, ISTH, JMHW, and JAAM

criteria) show predictions of different DIC diagnostic classifiers based on the cut-off values (0.501 for ANN) or points

(Table 1).

https://doi.org/10.1371/journal.pone.0195861.g002
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different hospitals. After excluding cases from consecutive orders, pediatric patients, routine

orders at admission or from long-term hospitalized patients, and patients with previous trans-

fusion therapy, the development dataset was constructed from 656 patients with initial full

DIC profiles. Among the 656 patients admitted to either general ward (n = 330) or intensive

care unit (ICU; n = 326) in Set 1, 228 (34.8%) and 428 (65.2%) patients were labeled as DIC

and non-DIC status, respectively (Table 2). Univariate analysis showed no differences in age

or gender between the two groups (DIC vs. non-DIC; in the parentheses). However, the pro-

portion in ICU (68.0 vs. 40.0%, P< .001), Acute Physiology and Chronic Health Evaluation

(APACHE) II scores (30.2 vs. 24.3, P< .001) which were only calculated for ICU patients [32],

and 28-days mortalities (64.0 vs. 18.0%, P< .001) were higher in DIC group. Moreover, the

proportion of patients showing organ failure (50.9 vs. 13.6%, P< .001) and systemic inflam-

matory response syndrome (SIRS; 77.2 vs. 34.1%, P< .001) was higher in the DIC group.

Additionally, bleeding was more common in the DIC group (26.3 vs. 19.9%) although the dif-

ference was only significant at P = .072. Above clinical conditions showed similar results in Set

2.

We also investigated the DIC-related conditions, and sepsis/infection was the most com-

mon condition (70.6%) followed by solid cancer (38.2%). Sepsis/Infection (70.6 vs. 32.7%, P<
.001), solid cancer (38.2 vs. 19.2%, P< .001), and hepatic failure (14.9 vs 4.0%, P< .001) were

the underlying conditions positively correlated with the DIC group. While post major surgery

status (14.9 vs 31.1%, P< .001) tended to be more prevalent in the non-DIC group, we believe

that this was resulted by physicians’ inclination ordering DIC profile after major surgery.

Other associated conditions such as tissue damage, hematologic malignancy, obstetric compli-

cations, vascular abnormalities, and toxic or immunologic insult showed no significant result

between the two groups, although the number of such cases was relatively small.

Most laboratory results showed a difference between the DIC and non-DIC groups. Global

coagulation parameters, except thrombin time, showed different results (P< .001; Table 3).

CBC components also presented different results, except for two RBC indices and some differ-

ential counts. The relative lower levels of RBC count and hemoglobin in the DIC group may

be caused by the higher proportion of bleeding patients than the non-DIC group. We visual-

ized the two datasets with the heat map (Fig 2) which enabled us to look over the landscapes of

the data distributions. Sepsis/infection, SIRS, and ICU admission were more commonly

observed in the DIC group. PT and PLT count showed reverse predisposition, as expected.

The general patterns represented in the heat map confirmed the similar composition of the

two data sets, while vascular abnormalities were more common in the validation set due to the

vascular surgery center located at this hospital. Missing values were presented as blanks, and

seven variables contained missing values. APACHE II scores were only calculated if a patient

was admitted to ICU. PLT changes (%/24hr) were only available for patients with previous

PLT count result. WBC differential counts, PLT distribution width (PDW), Mean PLT volume

(MPV), and RUO parameters were not reported from hematologic analyzers in cases of severe

thrombocytopenia or leukopenia.

Established model and variable importance

We first tested the ANN model with 46 investigated variables and gradually excluded negligi-

ble variables. The laboratory parameters with trivial impacts on the performance were

excluded: mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean

corpuscular hemoglobin concentration (MCHC) and WBC counts. Because of the small num-

ber of the cases with trivial effects, the following clinical variables were also excluded: anticoag-

ulant use, bleeding, thrombosis, hematologic malignancy, immunologic insult, hepatic failure,
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obstetric complication, tissue damage, and vascular abnormalities. Consequently, 32 represen-

tative variables were used in the developed ANN model including clinical signs and symptoms,

underlying conditions, and laboratory parameters.

To provide an interpretable model for each clinical variable, we calculated the relative

importance. It is noteworthy that statistical significance does not guarantee variable impor-

tance level in ANN, and vice versa. Recently, the ‘Connection Weight’ approach was reported

to be an efficient method of identifying variable importance in ANN model [33]. Fig 3 shows

the calculated importance using this approach in 32 clinical variables. Most parameters such as

PLT count (8.74%), PLT changes (4.86%), D-dimer (4.13%), and FDP (3.96%) had contextual

importance in accordance with DIC features, whereas fibrinogen level (2.43%) showed rela-

tively low importance. PLT count and PLT changes ranked as the first and third important var-

iable and these results were expectable owing to the evident statistical differences between the

DIC and non-DIC groups (57 vs. 168 ×103/μL, P< .001; -0.36 vs. -0.15, P< .001). To mini-

mize inter-laboratory variations, three PT parameters (sec, INR, percent activity) were sepa-

rately used in the model, because INR and PT % activity is a standardized value using normal

pooled plasma. Although separately evaluated, PT parameters occupied a total of 8.94% of the

entire importance level and also played a significant role. Interestingly, the importance of pre-

viously overlooked parameters was not negligible in the ANN model including PDW (varia-

tions in PLT size and shape), red cell distribution width (RDW; variations in RBC size and

shape), and RUO parameters. Most parameters presented a contextual importance, however,

their importance in the ML-approach was different from the traditional approach.

Performance

The performance of four methods was compared in terms of AUC values, sensitivity, specific-

ity, and predictive values (Table 4). Among the four methods, the ANN model showed the best

AUC value with P< .001 while the three DIC criteria presented no differences (Fig 4A). The

AUC (95% confidence interval; CI) of the ANN model was 0.981 (0.973–0.989) and the three

DIC criteria had AUC of 0.945 (0.929–0.962) for the ISTH, 0.943 (0.927–0.959) for the

JMHW, and 0.928 (0.909–0.946) for the JAAM, respectively. The optimal cut-off value by You-

den index for the ANN model was 0.501 with 89.9% (85.2–93.5) and 96.0% (93.7–97.7) of the

sensitivity and specificity (95% CI), respectively. Additionally, the sensitivity and specificity of

the three DIC criteria were 82.0% (76.4–86.8), 93.7% (91.0–95.8) for the ISTH, 91.2% (86.8–

94.6), 84.3% (80.6–87.7) for the JMHW, and 94.7% (91.0–97.3), 79.0% (74.8–82.7) for the

JAAM, respectively. All methods showed relatively lower performance than the previous pro-

spective study in the ICU setting using the ISTH criteria (sensitivity 91%, specificity 97%) [5].

The difference may be attributed to the study design, the patient composition and ward setting,

the hematologic analyzer, and/or variance in the expert opinion. Nevertheless, the ISTH crite-

ria showed relatively low sensitivity and high specificity, while the JMHW showed relatively

high sensitivity and low specificity, as reported [9]. Furthermore, we reviewed the performance

in the external validation set (n = 217). The ANN model was re-trained without the four vari-

ables (FDP and RUO parameters) which were included in set 1, and the AUC value of this

model without the four variables was 0.975 (0.966–0.984). Using this model, we tested set 2,

and the AUCs were 0.968 (0.945–0.986) for the ANN model and 0.946 (0.916–0.976) for the

ISTH (Fig 4B, Table 4). Both models showed slightly compromised results, while the ISTH

remained with constant AUC with slightly skewed performance–low sensitivity and high spec-

ificity. The compromised AUC portion in the ANN model may primarily come from the dif-

ferent hospital setting, the different reference intervals, and/or the unstandardized measured

values from analyzers. Nevertheless, the ANN model showed overall higher performance than
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the ISTH criteria. Because of the small numbers of cases in set 2, it was inevitable that the 95%

CI overlapped with the performance of ISTH criteria.

Discussion

This study demonstrated ML-approach for DIC diagnosis to optimally integrate the DIC-

related parameters. The established model enrolled 32 clinical parameters and the study shed

light on the buried roles of overlooked clinical parameters in the scoring systems. However,

the clinical implication of the enrolled variables remained uncertain to further investigation.

We suggest that a number of additional cases with excluded variables should be obtained to

precisely evaluate the role of anticoagulant use, bleeding, thrombosis, hematologic malignancy,

immunologic insult, hepatic failure, obstetric complication, tissue damage, and vascular

abnormalities in ML-approach. Therefore, the current ANN model may need to be further

updated and validated with bigger data sets. Nevertheless, we believe that this approach may

facilitate the diagnosis of DIC and the performance can be further improved by adding diverse

training data and applying more advanced algorithms and parameters.

The major limitation of this study is DIC labeling procedure. Labeled results could be

biased by the medical experts and by the limitation of retrospective approach. We employed

supervised learning method which is generally used for classification and risk prediction in

medicine [17]. In this approach, supervised labels determine the developed model. Although

we labeled DIC status after expert agreements with careful medical record reviews, the labeled

Fig 3. Relative importance of clinical and laboratory variables in the ANN model. In the developed ANN model, 32 variables are used and their

relative importance is calculated based on the weight value, reflecting connectivity of neurons, using ‘Connection Weight’ approach to provide

explanatory insights for each variable. (Total sum: 100%, average importance: 3.13%).

https://doi.org/10.1371/journal.pone.0195861.g003
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results can be incorrect or uncertain [34]. Moreover, we only enrolled the cases at the initial

orders with varying elapsed time to diagnose, therefore consecutive monitoring of DIC profile

was not possible except PLT changes. Because DIC is a rapid and dynamic change in blood

vessels, an ML model reflecting consecutive changes of variable laboratory parameters would

be developed in the future. These reasons may potentially play as limitations and could have

affected the current model. Recently, several advancements in ML algorithms have been

reported to overcome variations in human expert opinion. We expect that rapid advancement

in ML algorithms may cover such issues in the future. ML cannot go beyond what’s contained

in data. Meaning that more powerful and specific tests are still required for DIC diagnosis.

Some studies have shown the usefulness of several methods in diagnosing DIC such as throm-

boelastography, clot waveform analysis, damage-associated molecular patterns, histone-DNA

complexes, and circulating histones [13]. Additional data from such potential assays may also

improve the performance.

Developing an AI system that gives contextual rationale is another important issue in the

medical application. ANN is occasionally described as a ‘black box’ as it provides little explana-

tory insight into the variables [28]. However, recent studies illuminated substantial part of this

‘black box’ with a range of approaches. In order to provide intuitive information on clinical

parameters, we calculated the relative importance and the values were mostly circumstantial to

DIC features; absolute PLT count and changes, fibrin-related markers, PT prolongation were

also important features in the ANN model, whereas fibrinogen level had relatively low impor-

tance. Additionally, some overlooked laboratory parameters such as PDW, RDW, and RUO

parameters operated considerably in the ANN machinery. As a result of DIC progression,

Table 4. Diagnostic performance of disseminated intravascular coagulation (DIC) diagnostic classifiers in this study.

Dataset DIC criteria DIC Non-DIC AUC

(95% CI)

Diagnostic performance (95% CI)

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Positive

LR

Negative

LR

Set 1

(n = 656)

ANN� 0.981

(0.973–0.989)

89.9

(85.3–93.5)

96.0

(93.7–97.7)

92.3

(88.3–95.1)

94.7

(92.4–96.3)

22.64

(14.18–36.14)

0.11

(0.07–0.15)Positive 205 17

Negative 23 411

ISTH 0.945

(0.929–0.962)

82.0

(76.4–86.8)

93.7

(91.0–95.8)

87.4

(82.7–90.9)

90.7

(88.1–92.8)

13.00

(8.98–18.82)

0.19

(0.15–0.25)Score� 5 187 27

Score < 5 41 401

JMHW 0.943

(0.927–0.959)

91.2

(86.8–94.6)

84.4

(80.6–87.7)

75.6

(71.3–79.5)

94.8

(92.2–96.5)

5.83

(4.66–7.29)

0.10

(0.07–0.16)Score� 7 208 67

Score < 7 20 361

JAAM 0.928

(0.909–0.946)

94.7

(91.0–97.3)

79.0

(74.8–82.7)

70.6

(66.6–74.3)

96.6

(94.2–98.0)

4.51

(3.74–5.43)

0.07

(0.04–0.12)Score� 4 216 90

Score < 4 12 338

Set 2

(n = 217)

ANN� 0.968

(0.945–0.986)

90.0

(81.2–95.6)

93.4

(87.9–97.0)

88.9

(80.9–93.8)

94.1

(89.2–96.9)

13.7

(7.25–25.87)

0.11

(0.06–0.22)Positive 72 9

Negative 8 128

ISTH 0.946

(0.916–0.976)

82.5

(72.4–90.1)

95.6

(90.7–98.4)

91.7

(83.3–96.0)

90.3

(85.3–93.8)

18.84

(8.56–41.46)

0.18

(0.11–0.29)Score� 5 66 6

Score < 5 14 131

ANN, artificial neural network; ISTH, the International Society on Thrombosis and Haemostasis; JMHW, the Japanese Ministry of Health and Welfare; JAAM, the

Japanese Association for Acute Medicine; CI, Confidence Interval; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; LR, likelihood

ratio.

� Cut-off values for ANN model was determined at 0.501.

https://doi.org/10.1371/journal.pone.0195861.t004
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increases in PDW and MPV may be caused by a morphological transformation of PLT activa-

tion and young PLT production by megakaryopoiesis [35] that may explain the supportive

role of PDW (3.28%) and MPV (1.48%). Additionally, mechanical damage to RBC during DIC

progression such as schistocyte production may explain the importance of RDW (3.03%) [36].

Furthermore, TMA score (4.43%), an RUO parameter originally developed for the detection of

TMA and reported to be linked to thrombocytopenia associated multiple organ failure, was

revealed to be a supportive classifier for DIC [26]. DNI is another RUO parameter reflecting

immature granulocyte percentages in circulating blood and has been reported to be a useful

marker for sepsis. Because DIC commonly associated with sepsis, DNI (2.49%) may relate to

this proportion in the ANN model [27]. Although most of the ranks of variable importance

were understandable, it was difficult to interpret the relationships of some variables such as

eosinophil (3.82%), lymphocyte (3.81%), and monocyte (3.31%) percentages. Those CBC

Fig 4. Diagnostic performance of ANN model and scoring systems with receiver operating characteristic curve analysis and density plot. (A)

Training (Set 1): ANN model shows the best performance among the four diagnostic classifiers. The area under curve (AUC) values: ANN (0.981),

ISTH (0.945), JMHW (0.943), and JAAM (0.928). (B) External validation (Set 2): four variables were unavailable owing to the different hematologic

analyzers, therefore the AUC value was compromised compared to the development set in the ANN model; ANN (0.968), ISTH (0.946). (C, D)

Density plots of two represented diagnostic classifiers (ANN model, ISTH criteria) shows that the ANN model far obviously differentiates two groups

(DIC and non-DIC). The cut-off value for the ANN model is determined at 0.501.

https://doi.org/10.1371/journal.pone.0195861.g004
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differential count parameters may be negatively related to neutrophilia which is primarily

induced by infection or malignancy and frequently accompanied with DIC.

Laboratory results vary among institutions even when the sample is identical. Because

many laboratory parameters are required in this tool, standardization of their parameters

remains problematic and must be addressed to reduce variation between institutions. Particu-

larly, D-dimer assays, the salient variable in DIC evaluation, exploited various measuring prin-

ciples with a lack of standardized calibrators and reporting units which lead to wide inter-

laboratory and inter-method variability (Table A in S1 File) [37]. We believe that the best way

is to use a normalized value such as scaled values or z-score, however, it is not practically possi-

ble for all laboratory parameters and is remained to be solved. This standardization issue

should be always considered in the ML approach using laboratory parameters.

In conclusion, our study demonstrates a novel strategy to optimize the DIC diagnostic pro-

cess with DIC-related parameters using ML-approach. The results showed some improvement

of the diagnostic power in the retrospective design and provided additional insights into the

importance of the DIC-related parameters. We believe this approach could be implemented in

electrical health record system as a clinical decision support system in the near future. How-

ever, further prospective validation is required to assess the relationship between the ML-

approach and their clinical benefit.
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