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Abstract: Plants have evolved many metabolites to meet the demands of growth and adaptation.
Although strigolactones (SLs) play vital roles in controlling plant architecture, their function
in regulating plant metabolism remains elusive. Here we report the integrative metabolomic
and transcriptomic analyses of two rice SL mutants, d10 (a biosynthesis mutant) and d14 (a perception
mutant). Both mutants displayed a series of metabolic and transcriptional alterations, especially
in the lipid, flavonoid, and terpenoid pathways. Levels of several diterpenoid phytoalexins were
substantially increased in d10 and d14, together with the induction of terpenoid gene cluster and
the corresponding upstream transcription factor WRKY45, an established determinant of plant
immunity. The fact that WRKY45 is a target of IPA1, which acted as a downstream transcription factor
of SL signaling, suggests that SLs contribute to plant defense through WRKY45 and phytoalexins.
Moreover, our data indicated that SLs may modulate rice metabolism through a vast number
of clustered or tandemly duplicated genes. Our work revealed a central role of SLs in rice metabolism.
Meanwhile, integrative analysis of the metabolome and transcriptome also suggested that SLs may
contribute to metabolite-associated growth and defense.
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1. Introduction

Since the first proto-life forms emerged on Earth some four billion years ago, a myriad of metabolites
has been produced in a series of organisms to meet the demands for energy, growth and development,
and for adaptation to the environment. Plants, which are evolutionarily forced to adapt to a constantly
changing environment due to their sessile lifestyle, have been estimated to produce approximately 0.1
to 1 million phytochemicals [1,2]. Various kinds of metabolites have been shown to contribute to plant
defense against phytopathogenic microorganisms. These include phytoalexins derived from terpenoid,
flavonoid, and phenylamide metabolism [3].

The wide array of plant metabolites represents a world of rich biological complexity and
significance [4,5]. Flavonoids, synthesized by a combination of the phenylpropanoid and
acetate-malonate metabolic pathways, provide an example of this complexity and significance. The core
structures of flavonoids are produced by successive reactions catalyzed by multiple enzymes, including
chalcone synthases (CHS), chalcone isomerases (CHI), hydroxylases, reductases, and oxidases [6–8].
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The core flavonoids are subjected to multiple modifications, such as hydroxylation, oxidation,
methylation, glycosylation, and acylation. Frequently occurring tailoring modifications contribute
greatly to the structural as well as functional diversity of flavonoids [9–13] with dozens of flavonoids
detected in most plant species, showing significant interspecies and intraspecies diversity [11,14–17].

Various evolutionary routes to biochemical innovation have been adopted in plants, one of which
is the use of biosynthetic gene clusters [18–22]. Using a computational pipeline, approximately
12,000 metabolic gene clusters were predicted from 18 species [23]. There are several examples
of metabolic pathways controlled by regulon-like gene clusters, such as the terpenoids and alkaloids [24].
Diterpenoids, which comprise a considerable proportion of the terpenoid complement, originate from
consecutive reactions mediated by mechanistically distinct, yet phylogenetically related, diterpene
synthases (DiTPSs), including the labdadienyl/copalyl diphosphate synthase (CPS) and the kaurene
synthase (KS) belonging to class II and class I DiTPSs, respectively. Various diterpene scaffolds are
further modified by heme-thiolate cytochrome P450 monooxygenases to produce bioactive compounds,
such as oryzalexins, momilactones, oryzalides, phytocassanes, and GAs in rice [25]. There are two
well-established biosynthetic gene clusters of diterpenoids in the rice genome, containing genes
encoding CPSs, KSs, and P450s [26]. To date, transcription factors from different families have been
indicated to regulate the expression of diterpene gene clusters [27–29]. For instance, WRKY45, which
is essential for rice resistance to various biotic and abiotic stresses [30–32], has been documented to
play an essential role in priming diterpenoid phytoalexin biosynthesis by regulating biosynthetic gene
clusters [27].

In addition, gene duplication and divergence also contribute to the evolution of plant metabolic
diversity, as evidenced by evolutionary metabolomics [16,33–36]. A quantitative trait locus (QTL) study
on the biosynthesis of strigolactones (SLs) also supports the involvement of gene duplication in metabolic
diversification [37]. SLs, a class of sesquiterpene lactones, are downstream products of carotenoid
catabolism. The precursor of SLs, namely carlactone, is produced by successive reactions catalyzed
by DWARF27 (D27), carotenoid cleavage dioxygenase 7 (CCD7), and CCD8 (also denoted as D10
in rice) [38]. Then, carlactone is oxidized by the cytochrome P450 monooxygenase MORE AXILLARY
GROWTH 1 (MAX1/CYP711A1) in Arabidopsis [39,40]. There are five orthologues of MAX1 in rice, three
of which (denoted as CYP711A2-4) are tandem duplicates on the first chromosome [41]. CYP711A2 and
CYP711A3 (also known as Os900 and Os1400) share convergent functions in the conversion of carlactone
to carlactonoic acid, while CYP711A4/Os1500 is nonfunctional due to a premature stop codon [40].
Despite the close phylogenetic relatedness of their protein sequences, these two duplicates also display
divergent roles in further reactions [40,42]. Additionally, the transcriptional response of CYP711A2 to
phosphate deficiency is also distinct from that of CYP711A3 [37]. Moreover, the tandemly repeated
P450s on chromosome 1 also respond to the variation in SL content between indica and japonica,
two major subspecies of rice [37]. This indicates that the SL pathway may have undergone natural
or artificial selection. Encouraging evidence for this hypothesis also comes from a study on Ideal Plant
Architecture 1 (IPA1), which encodes a SQUAMOSA promoter binding protein-like (SPL) transcription
factor downstream of SL signaling [43]. IPA1 contributes to balanced growth and immunity in rice [44],
which harbors functional genetic variants across accessions [45,46].

A myriad of efforts has been made to illustrate the function of SLs in overall plant architecture [47].
Despite intensive previous work, the exact role of SLs in plant metabolism remains to be elucidated.
Herein, we performed metabolomic and transcriptomic profiling with rice mutants of SL biosynthesis
and signaling, namely, d10 and d14. Compared to the wild-type (WT) plants, a series of metabolic
and transcriptional alternations were identified in the two mutants, especially in the lipid, flavonoid,
and terpenoid pathways. The defective SL pathway also led to the altered accumulation of different
kinds of diterpenoid phytoalexins. Notably, WRKY45 and the biosynthetic gene cluster of diterpenoids
under its control displayed altered transcript levels in d10 and d14, suggesting that SLs may contribute
to plant immunity through WRKY45 and phytoalexins. Moreover, we also found that SLs regulate
metabolism via genes with evolutionary signatures.
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2. Results

2.1. Metabolomic Analysis of SL Mutants and WT Plants

To capture a wide range of metabolic responses to SLs in rice, a previously established and
developed widely targeted metabolomics method [48] was used with the WT and previously created
biosynthesis and perception mutants, namely, d10 and d14 [49]. The leaves of each genotype from
the rice plants grown with hydroponic culture were sampled and extracted. The extracts were
then subjected to an HPLC-ESI-MS/MS analysis. In total, 794 compounds were detected (Table S1).
These included both primary and secondary metabolites: (i) the majority of the primary metabolites
were derived from lipid metabolism, such as phosphatidylcholines (PCs) and lysophosphatidylcholines
(lysoPCs); (ii) various pathways were associated with the secondary metabolites detected, including
214 flavonoids and 45 terpenoids (Figure 1A). The metabolomic data of the WT and mutants were
clustered into three distinct groups after an unsupervised principal component analysis (PCA) of all
the detected metabolites with log10 values (Figure 1B). The PCA showed that the first two principal
components (PC1 and PC2) accounted for approximately 49% of the total differences among the three
genotypes (Figure 1B).
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(PCA) of the 794 metabolites in d10, d14, and WT. PC1 and PC2 refer to the first and second principal 
components, respectively. d10 and d14 represent mutants of DWARF10 and DWARF14, which are 
essential in the biosynthesis and signal transduction of SLs, respectively. WT refers to the background 
of the mutants, namely, ZH11. 

To reveal the metabolic divergence between the mutants and WT in-depth, differentially 
accumulated metabolites (DAMs) were identified (fold change > 1.5 times). First, we compared the 
metabolomic data of the WT with those of d10 and d14. In total, 183 and 129 metabolites accumulated 
at relatively higher and lower levels, respectively, in d10 leaves than in WT leaves (Figure 2). Further 
data mining revealed that most of the top 10% of the DAMs between the d10 and WT plants were 
classified into flavonoids, lipids, and phenolamines (Table S2). For the d14 leaves, the numbers of up- 
and down-regulated metabolites were 214 and 111, respectively (Figure 2). Metabolites from 
phenolamines, flavonoids, and lipids accounted for a majority of the top 10% of DAMs in d14, 
consistent with the result for d10 (Table S2). Next, we compared DAMs in d10 and d14 to define the 

Figure 1. Metabolomic analysis of SL mutants and wild-type (WT) plants. (A) A total of 794 metabolites
were detected in this study. Alks, alkaloids; Flas, flavonoids; Lips, lipids; NTs, nucleic acids
and nucleotide derivatives; OAs, organic acids; Phes, phenolamines; PHs, phytohormones; PAs,
polyamines; Sacs, saccharides; Ters, terpenoids; Vits, vitamins. (B) Principal component analysis
(PCA) of the 794 metabolites in d10, d14, and WT. PC1 and PC2 refer to the first and second principal
components, respectively. d10 and d14 represent mutants of DWARF10 and DWARF14, which are
essential in the biosynthesis and signal transduction of SLs, respectively. WT refers to the background
of the mutants, namely, ZH11.

To reveal the metabolic divergence between the mutants and WT in-depth, differentially
accumulated metabolites (DAMs) were identified (fold change > 1.5 times). First, we compared
the metabolomic data of the WT with those of d10 and d14. In total, 183 and 129 metabolites
accumulated at relatively higher and lower levels, respectively, in d10 leaves than in WT leaves
(Figure 2). Further data mining revealed that most of the top 10% of the DAMs between the d10
and WT plants were classified into flavonoids, lipids, and phenolamines (Table S2). For the d14
leaves, the numbers of up- and down-regulated metabolites were 214 and 111, respectively (Figure 2).
Metabolites from phenolamines, flavonoids, and lipids accounted for a majority of the top 10% of DAMs
in d14, consistent with the result for d10 (Table S2). Next, we compared DAMs in d10 and d14 to define
the SL-modulated metabolites. Overall, 190 DAMs were commonly found in the biosynthesis and
perception mutants of SLs, most of which were flavonoids and lipids (Table S2).
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Figure 2. Schematic representation of metabolites with altered accumulation levels in the mutants.
The number of up-regulated (A) and down-regulated (B) DAMs (differentially accumulated metabolites)
in d10 and d14.

2.2. Transcriptome Profiling of the Leaves from WT and SL Mutants

To obtain a molecular interpretation of the metabolic responses in the SL mutants, Illumina
RNA-sequencing-based transcriptome profiling was conducted. A total of approximately 264 million
clean reads were derived, with an average of 97% that could be mapped to the reference genome of rice
(Table S3). RNA reads from each sample were then aligned to the well-annotated genome of Nipponbare
(MSU 7.0). Subsequently, the relative expression of each gene was calculated using fragments per
kilobase of exon per million fragments mapped (FPKM) values. Our further interpretation is mainly
restricted to the genes with a mean FPKM ≥ 1 in at least one genotype. Prior to deeper mining
of the transcriptomic data, the repeatability of the data from independent biological replicates was
confirmed by correlation analysis (Figure S1).

To test the reliability of our transcriptomic data, we checked genes under the well-validated
regulation of SLs. The expression of D10 is significantly induced in the two mutants (Figure S2A), which
is consistent with the reported negative feedback regulation by SLs of its orthologues in Arabidopsis [50].
Then, a quantitative real-time polymerase chain reaction (qRT-PCR) assay was carried out and validated
that D10 and D14 expressed at significantly higher levels in the mutants (Figure S2B).

Additional evidence was obtained from the observation that two auxin efflux transporter encoding
genes, namely, PIN1a (LOC_Os06g12610) and PIN1b (LOC_Os02g50960), displayed elevated transcript
abundance in the two mutants (Figure S2A). This is consistent with the repression effect of exogenous
SL analogs on the expression of PIN1a and PIN1b [51].Metabolites 2020, 10, x FOR PEER REVIEW 5 of 18 
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Figure 3. Summary of the differentially expressed genes (DEGs) in d10 and d14. Venn diagrams showing
the number of significantly up-regulated and down-regulated genes that were uniquely or commonly
regulated in the mutants.

To identify genes affected by defective SL pathways, the differentially expressed genes (DEGs)
were identified, considering a two-fold expression change as the cut-off with a p-value < 0.05. A total
of 1104 and 1078 DEGs were identified in d10 and d14, respectively, with more than half up-regulated
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(i.e., ~53.4% in d10 and ~68.6% in d14) (Table S4). A combined analysis of DEGs in d10 and d14 led
to the observation that 380 and 110 genes were up- and down-regulated, respectively, in common,
while a considerable number of genes were uniquely differentially expressed as well (Figure 3).Metabolites 2020, 10, x FOR PEER REVIEW 6 of 18 
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Figure 4. MapMan and KEGG analysis of the DEGs in the mutants. (A) Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis of the differentially expressed genes (DEGs) in d10 vs. WT and d14
vs. WT. (B) Overview of the secondary metabolism-related DEGs in the mutants. (C) Enrichment
of DEGs into biotic stress pathways in d10 (blue rectangle) and d14 (red rectangle). In the heat maps
in B and C, red and blue indicate upregulation or downregulation in the mutants compared with
the WT, respectively. Colored boxes in each region represent multiple variations in gene expression.
(D) qRT-PCR based expression levels of WRKY45 and ST1 in d10, d14, and WT. The data are represented
as mean ± SD of two biological replicates. The Student’s t-test analysis indicates a significant difference
(compared with WT, * p < 0.05, ** p < 0.01).
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Next, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed with
the DEGs in d10 and d14. We found that ten pathways were significantly enriched in d10 vs. WT and
d14 vs. WT, including three shared by d10 and d14, namely, biosynthesis of secondary metabolites,
diterpenoid biosynthesis, and amino sugar and nucleotide sugar metabolism (Figure 4A). To investigate
the effect of SLs on the expression of metabolic genes in detail, we used MapMan 3.6.0 software
for further analysis. The MapMan-based analysis of the secondary metabolism overview showed that
the various metabolic genes were regulated by SLs. Of note were genes participating in the terpenoid
pathway and phenylpropane-derived metabolism (Figure 4B). Furthermore, the DEGs of d10 and
d14 were also mapped onto biotic stress pathways with MapMan (Figure 4C). Consistent with
the KEGG results, genes corresponding to secondary metabolites were found to be enriched with
altered expression levels. In addition, we observed that genes classified into the following categories
presented significant enrichment: signaling, proteolysis, cell wall, PR-proteins, and transcription
factors. Notably, a well-documented transcription factor denoted as WRKY45 displayed activated
expression in d10 and d14 (Figure 4D). There are two natural alleles of WRKY45 in rice, playing opposite
roles in rice resistance to Magnaporthe oryzae [52]. The japonica-derived allele WRKY45-1 negatively
regulates resistance to blast disease, and the first intron of this allele contains the transposon-derived
small RNA TE-siR815. TE-siR815 suppresses the leucine-rich repeat receptor kinase encoding ST1
(LOC_Os08g10150), which is an important component in WRKY45-mediated resistance [34]. The SL
mutants and WT plants used in this study carry the japonica type WRKY45-1. Along with the increased
transcript abundance of WRKY45 in d10 and d14, the expression levels of ST1 in the SL mutants were
reduced to approximately 25% of that in WT, albeit with a low statistical significance (Figure 4D).
This observation is similar to that of studies on transgenic plants overexpressing WRKY45-1 [34].
Therefore, it is conceivable that SLs may contribute to plant defensive actions involving fine-tuned
regulation and signal transduction.

2.3. SLs Regulate Diterpenoid Phytoalexins via WRKY45-Modulated Clustered Genes

Of the 45 structurally identified or annotated terpenoids, 10 were identified as DAMs in both
of the mutants, and 60% of these DAMs were up-regulated (Figure 5A). Notably, we found that
the leaves of d10 and d14 displayed enhanced accumulation of diterpenoid phytoalexins, including
phytocassane D, phytocassane E, and oryzalexin C. This is consistent with the observation that genes
related to secondary metabolites were enriched in the MapMan mapping onto the biotic stress pathways.
This finding also supports the view that SLs may contribute to plant defense.

To explore the molecular basis of the SL-regulated production of terpenoids, we re-inspected
the transcriptome profile. Given that successive cyclization of geranylgeranyl diphosphate catalyzed
by CPSs and KSs is essential for producing diterpenoids, we analyzed the expression of the encoding
genes. CPS2, KSL5, and KSL6 were induced significantly in d10 and d14, with a more than 3.2-fold
change in expression level in each genotype compared with the level in WT (Table S5). This is consistent
with the altered accumulation levels of phytoalexins in SL mutants, considering the previously reported
function of CPS2, KSL5, and KSL6 in the biosynthesis of diterpenoids. Notably, CPS2, KSL5, and KSL6
have been described to be part of a key gene cluster (referred to as the CPS2 cluster hereafter) involved
in the synthesis of diterpenoids [28,29]. This cluster consists of CPS2, three KSLs (KSL5–7), and six
P450s (two from the CYP71Z family and four from the CYP76M family). The clustered P450s have
been characterized to be co-regulated with CPS2 and KSL7, which is a feature of gene clusters [26,53].
Reasonably, this feature raised the question of whether SLs exert effects on the expression of the whole
CPS2 cluster. To address this issue, we analyzed the expression pattern of the P450s, with the exception
of CYP76M8, due to its relatively low abundance (mean FPKM less than one in each sample). CYP71Z6
was expressed at ~2.2-fold higher levels in the SL mutants than in the WT. The expression level
of CYP76M7 in d10 and d14 was reduced to less than half of that in WT (Figure 5B). That is, a majority
of the CPS2 clusters are under the control of SLs. In addition to the CPS2 cluster, there is another
biosynthetic gene cluster of diterpenoids on chromosome four (referred to as the CPS4 cluster hereafter),
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which consists of CPS4, KSL4, a dehydrogenase gene (MAS), and two P450s belonging to the CYP99A
family [26]. An expression analysis was performed with MAS and CYP99A members from the CPS4
cluster, even though there was no significant difference in the expression of CPS4 or KSL4 in the SL
mutants and WT (Figure 5C). Mutations in D10 and D14 triggered the expression of CYP99A3, while
CYP99A2 was not significantly affected (Figure 5C). The expression of the DEGs we have mentioned
above was verified by qRT-PCR (Figure 5E).
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Figure 5. SLs regulate terpenoids via clustered or tandemly duplicated genes. (A) Metabolic profiling
of terpenoids in d10, d14, and WT. Heat map visualized with the average content of terpenoids after
normalization in at least two biological replicates. The expression of genes in the CPS2 cluster (B) and
CPS4 cluster (C) in the mutants. In (B) and (C), the schematic diagram represents the CPS2 and
CPS4 clusters, with the arrowheads representing the direction of transcription. (D) The members
of the ent-kaurene oxidase-encoding family and their transcriptional responses in the mutants. In (B–D),
the altered expression level of each gene is represented by log2(FC). Red and blue represent upregulation
and downregulation, respectively. (E) qRT-PCR based expression levels of CYP71Z6, CYP71Z7,
CYP76M7, CPS4, CPS2, and EATB in d10, d14, and WT. The data are represented as mean ± SD of two
biological replicates. The Student’s t-test analysis indicates a significant difference (compared with WT,
* p < 0.05, ** p < 0.01).

Clustered genes tend to be coordinately regulated by transcription factors, which makes it possible
for plants to respond to external stimuli immediately. Of additional interest is the identification
of transcription factors with potential roles in SL-regulated biosynthetic gene clusters of diterpenoids.
To this end, we explored the expression pattern of transcription factors that have been shown to
modulate the aforementioned clusters. As described above, WRKY45, which has also been reported to
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mediate the expression of CPS2 and CPS4 cluster genes, was expressed at more than 2.1 times higher
levels in both mutants than in the WT (Figure 4D).

To conclude, SLs modulate diterpenoid phytoalexin metabolism via biosynthetic gene clusters,
possibly through WRKY45, which suggests the involvement of SLs in plant defense.

2.4. SLs Modulate a Series of Clustered or Tandemly Duplicated Genes

These findings prompted us to assess the effects of SLs on metabolic gene clusters from the whole
genome. Hence, we analyzed the expression pattern of genes included in 793 metabolic gene clusters
predicted by Schlapfer et al. (Supplementary Table S4) [23]. Overall, 57 clusters were marked as being
SL regulated, of which at least two genes displayed a greater than two-fold change in each mutant
(with similar tendencies). The proportion of the genes that responded to SLs in each cluster varied from
approximately 5% to 41%, with an average of approximately 20% (Table S6). In addition, the predicted
gene cluster C312_4, covering the CPS2 cluster, was also selected as being SL regulated. Notably, C645_4
is also regulated by SLs, containing four tandemly duplicated P450s with ent-kaurene oxidase activity
in diterpenoid biosynthesis, namely, KO1, KO2, KOL4, and KOL5. KOs and KOLs displayed divergent
responses to mutations of SLs, regardless of their phylogenetic relatedness. KOL4 was expressed at
approximately 2.1-fold to 2.7-fold higher levels in SL mutants than in WT (Figure 5D). The expression
level of KO1 in d10 and d14 was reduced to less than half of that in WT (Figure 5D). Additionally, in d10
and d14 leaves, the abundance of the transcript of KO2 was repressed to no more than 61% of that
in WT plants, despite a low significance (Figure 5D). In other words, SLs regulate the biosynthetic
gene cluster of diterpenoid, including several genes catalyzing GAs synthesis. Additional evidence
supporting SL-modulated GA production came from the observation that several genes involved in GA
biosynthesis or catabolism are regulated by SLs. For instance, GA20ox1 and GA2ox10 were significantly
repressed in the mutants (Figure S3). In addition, we noticed that the AP2/ERF factor-encoded gene
EATB, a negative regulator of GA synthesis [54], was significantly induced in d10, with a more than
five-fold increase in transcript level compared with that in WT. Meanwhile, the expression level
of OsEATB in d14 was approximately 1.7-fold higher than that in WT (Figure S4). In summary,
SLs affect GA-associated metabolism, at least partly via the convergent regulation of clustered genes
and the divergent modulation of duplicated genes.

2.5. Affected Flavonoid Pathway in SL Mutants

In addition to the terpenoid pathway, we focused on the effects of SLs on flavonoid metabolism,
given that flavonoids constitute a vast proportion of secondary metabolites. First, we analyzed
the abundance of metabolites at the node of core flavonoid metabolism. In the leaves of d14 and d10,
the level of quercetin (a typical structure of flavonols) was approximately 8% and 38%, respectively,
of that in WT leaves (Figure 6A). Meanwhile, we also noticed a slight but significant decrease of <30%
in the level of kaempferitrin in the mutants, which is another representative flavonol (Figure 6A).
However, compounds with featured flavone structures, such as tricetin, luteolin, and apigenin,
displayed almost no notable response in the two mutants. This means that the absence of SLs is likely to
reduce the production of flavonoids, particularly the synthesis of flavonols. Subsequently, we analyzed
the level of flavonoids produced by tailoring reactions. As shown in Figure 6B, 52 flavonoids displayed
marked differences in content between the WT and mutants, with approximately 60% down-regulated.

To focus on how SLs influence genes involved in core flavonoid metabolism, we analyzed
the expression of these genes according to the annotation from MSU (Figure 6C). Overall, a series
of these genes displayed altered expression levels in d10 and d14. In conclusion, defective SL pathways
repressed the accumulation of flavonoids.
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Figure 6. Affected flavonoid pathway in SL mutants. (A) Abundance of metabolites at the node of core
flavonoid metabolism in d10, d14, and WT. (B) Heat map of flavonoids produced by tailoring reactions.
The average content of each metabolite from individual biological replication of three genotypes was
standardized and used to generate the heat map. (C) Heat map of the expression levels of genes with
potential relatedness to the flavonoid pathway. The heat map was constructed with the average log2(FC)
expression level in each mutant. ACGT: anthocyanidin 5 3-O-glucosyltransferase; ANR: anthocyanidin
reductase; CHI: chalcone isomerase; CHS: chalcone synthase; DFR: dihydroflavonol-4-reductase; F3H:
flavanone 3-hydroxylase; FLS: flavonol synthase; LDOX: leucoanthocyanidin dioxygenase; UFGT:
UDP-glucuronosyl/UDP-glucosyltransferase family protein.
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2.6. Effects of SLs on Lipid Metabolism

To explore the effects of SLs on primary metabolism, we analyzed the accumulation of lipids
in plants of each genotype. The majority of lipid species are classified into non-esterified fatty acids,
sphingolipids, glycerolipids, and glycerophospholipids [55]. Glycerophospholipids could also be
the targets of phospholipase D (PLD), which separates the polar moieties from the substrate to form
phosphatidic acids (PAs) [56]. Overall, the levels of 47 DAMs classified as lipids were elevated in the two
SL mutants, with the exclusion of 2-hydroxy-3-methylvalerate, 1-oleoyl-2-linoleoyl-GPE (18:1/18:2),
FA 18:1-OH, and FA 15:1 (Figure 7). Notably, glycerophospholipid-related metabolites account
for approximately 70% of the up-regulated DAMs classified as lipids. Thus, glycerophospholipid-related
metabolism may be negatively regulated by SLs.

To explore the potential molecular basis of SL-regulated lipid metabolism, transcriptomic
data were then further analyzed. In total, we identified four DEGs that may be involved
in the glycerophospholipid pathway. Two genes encoding PLD were found to be induced in d10 and d14,
while a PLA-encoding gene was repressed (Figure S4). Serine also serves as the substrate to produce
phosphoethanolamine, the precursor of phosphatidylcholines. Phosphoethanolamine is subjected to
a three-step SAM-dependent methylation mediated by phosphoethanolamine N-methyltransferases
(PEAMTs) [57]. We also characterized a PEAMT-encoding gene, named PEAMT2 [58], that was
down-regulated in the SL mutants (Figure S4). Taken together, our metabolomic and transcriptomic
data show that SLs positively affect lipid metabolism.
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Figure 7. Effects of SLs on lipid metabolism. The relative content of lipids in d10, d14, and WT.
The red font in the picture is choline related metabolites. LV0262, (23E)-23-(2-Diazonio-2,4-cyclopentadien-
1-ylidene)-6,23-dihydroxy-2,2-dimethyl-11-oxo-9-[(stearoyloxy)-methyl]-5,7,10,22-tetraoxa-2-azonia-6-
phosphatricosane 6-oxide; LV0204, 2-[(8-Carboxyoctanoyl)-oxy]-3-(palmitoyloxy)-propyl 2-
(trimethylammonio)- ethyl phosphate; LV0199, (2S)-2-[(9-Oxononanoyl)-oxy]-3-(palmitoyloxy)-propyl
2-(trimethylammonio)-ethyl phosphate; LV0198, 2-[(7-Oxoheptanoyl)-oxy]-4-(palmitoyloxy)-butyl
2-(trimethylammonio)-ethyl phosphate; LV0111, 17-keto-4(Z),7(Z),10(Z),13(Z),15(E),19(Z)-
Docosahexaenoic Acid.

3. Discussion

While our understanding of the association between SLs and various end phenotypes and
the underlying mechanisms is growing, the role of SLs in metabolism and the way in which SLs
contribute to adaptation via metabolites remain unknown. Herein, we report a combined analysis with
transcriptomic and metabolomic data of rice mutants of the SL biosynthetic and signal transduction
pathways. In this work, we discovered a series of metabolic responses to SLs in both primary
and secondary metabolism, including in lipid, flavonoid, and terpenoid metabolism. Follow-up
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analysis of transcriptomic data showed the potential involvement of SLs in defensive reactions
in rice. Furthermore, we found that SLs target clustered or tandemly duplicated genes to regulate
GA-associated metabolism.

Based on the improved widely targeted metabolome strategy, 794 metabolites were detected
in our work. In brief, lipids, terpenoids, and flavonoids display strong yet distinct changes
in SL mutants. The majority of lipids and terpenoids with significant changes exhibited increased
accumulation in d10 and d14. The flavonoid pathway is apparently repressed in the two mutants.
That is, the metabolic flux distribution is controlled by SLs, which may occur through an upstream
switch. Glycerophospholipid-related metabolites accounted for the majority of the lipids with
altered abundance in the mutants. It has been documented that phosphate deficiency leads to
a reduced level of glycerophospholipids, as well as induced the accumulation of SLs [59]. In addition,
glycerophospholipids are also involved in acclimation to limited phosphate in plants [60,61]. The altered
content of glycerophospholipids in d10 and d14 could be a reflection of SL-mediated adaptation to
phosphate deficiency.

Based on the transcriptomic and metabolomic data, we reasonably inferred a potential role of SLs
in plant defense. Pieces of evidence underpinning this hypothesis arise from the observation that a series
of genes, which are predicted to be of importance in defensive reactions, exhibited changed transcript
abundances in the SL mutants. Notably, WRKY45, which is critical for plant defense [30–32], was also
induced in the two mutants. Meanwhile, the vital component of WRKY45-mediated defense, namely,
ST1 [34], was repressed in d10 and d14. This observation is reminiscent of the study of WRKY45-1
overexpression lines, which also repress ST1 and exhibit pathogen susceptibility. That is, SLs are
likely to contribute to defensive reactions via WRKY45. This hypothesis is supported by further
evidence from a study on IPA1, which has been identified as a key transcription factor downstream
of SLs [43]. Infection with the fungus Magnaporthe oryzae (M. oryzae) activates the phosphorylation
of IPA1, which can then bind to the WRKY45 promoter and subsequently activate WRKY45 expression.
Consequently, phosphorylated IPA1 enhances the rice defense against M. oryzae [44]. In other words,
SLs may contribute to enhanced immunity to biotic stress via IPA1 and WRKY45.

Focusing on the terpenoid pathway, we found that diterpenoid phytoalexins accumulated
at relatively high levels in d10 and d14. These compounds are considered to be pivotal in plant immunity
and are induced by microbial infections. Consistent with the metabolic responses of diterpenoid
phytoalexins, biosynthetic genes, including CPS2, KSL5, KSL6, and CYP71Z6, were also activated
in the mutants. This indicates the involvement of SLs in plant defense, considering the established
function of phytoalexins in plant resistance to diseases. Notably, WRKY45 has been shown to regulate
a series of biosynthetic genes of diterpenoid phytoalexins [27], including some that were modulated
by SLs in this work. As shown in our data, WRKY45 is activated in d10 and d14, subsequently inducing
the expression of biosynthetic genes and the accumulation of phytoalexins. Wang et al. have revealed
that GR244DO treatment induces WRKY38, which plays a role in defense responses in Arabidopsis [62].
That is in agreement with our findings. Nevertheless, the exact role of SLs remains to be illustrated, since
induced phytoalexins enhance the plant defense in d10 and d14, which is the opposite of the hypothesis
that SLs contribute to enhanced immunity via IPA1 and WRKY45.

Metabolic and functional diversification occurred during land plant evolution, benefiting from
gene duplication and divergence [63]. It has been well documented that SLs are closely associated with
various agricultural performance parameters in rice, such as tillering, plant height, flowering date, root
architecture, and resistance to drought and salt [38]. Hence, the selection of hitchhiking genes in SL
biosynthesis with genes controlling end phenotypes may account for the majority of the diversification
in SL production and signal transduction. Evidence supporting this inference comes from the natural
variation in SL levels and agricultural performance determined by the genetic divergence of MAX1
in rice [37]. The evolution of SL biosynthesis and signaling, including gene duplication and
divergence [37,40,64,65], led us to wonder whether SLs play a role in evolutionary metabolism.
Biosynthetic gene clusters are remarkable hallmarks of plant metabolism compared to the genetic
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control of agricultural traits [66]. Herein, our work revealed that SLs regulate various metabolic
gene clusters, including WRKY45-mediated clustered genes in the diterpenoid pathway. Moreover,
we found that duplicated genes of GA biosynthesis divergently responded to defects in the SL pathway,
providing additional evidence for the potential involvement of SLs in evolutionary metabolism.

Our work also provides new insights into the crosstalk of SLs with GAs, mutants of which
in various cereals led to the green revolution [67]. GAs and SLs have been shown to regulate a largely
overlapping set of genes in Arabidopsis [68]. Ito et al. (2017) reported that bioactive GAs repressed
the production of SLs in rice in a GA signaling-dependent manner. Most of the biosynthetic genes
of SLs are repressed by GAs [69]. Most recently, D14 has been proven to be positively controlled
by GAs via histone H3 lysine 27 trimethylation [67]. By and large, these studies clarified that GAs
work upstream of SLs by regulating the biosynthesis and signal transduction of the latter. In this work,
we identified transcriptomic evidence indicating that SLs, in turn, modulate the expression of genes
involved in GA biosynthesis and homeostasis.

In conclusion, our work revealed an essential role of SLs in rice metabolism, coordinately
modulating lipid, flavonoid, and terpenoid pathways. Meanwhile, we provide new insights into
the involvement of SLs in rice immunity, which may occur through IPA1, WRKY45, and phytochemicals.
In addition, we also identified the epistatic effect of SLs on GA biosynthesis, through which SLs
may contribute to plant growth. The integrative analysis of the metabolome and transcriptome also
suggested that SL-mediated metabolism may be a critical strategy evolved by plants to modulate
growth and defense.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Mutants of D10 and D14 were created in our previous work [49]. The rice plants used in this
study were grown at Hainan University (Haikou, China, N 20◦02′, E 110◦11′). All the seeds were
germinated for three days at 37 ◦C on filter paper soaked in distilled water and then planted in seedbeds.
Two-week-old seedlings were subsequently planted by hydroponic culture using Yoshida nutrient
solution as previously described [70].

4.2. Sample Preparation

Samples for metabolite profiling were collected from seedlings grown in hydroponic culture
for one month. The second and third upper leaves from three individual plants per line were harvested,
frozen in liquid nitrogen, and combined as one biological replicate of each sample for metabolite
extraction. Three biological replicates were collected from each genotype.

Leaves for RNA extraction were collected from plants identical to those used in the metabolomic
analysis. Each sample was harvested from three individual plants and frozen in liquid nitrogen.

4.3. Metabolite Profiling

We used a grinder (mm 400, Retsch, Haan, Germany) at 30 Hz for 1.5 min to grind samples that
were freeze-dried in a vacuum. Then, 100 mg of powder was weighed, and 70% methanol aqueous
solution was added at 0.1 mg/mL. The sample mixture was extracted by ultrasonication at 40 Hz
for 10 min. After centrifugation and filtration (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai,
China, http://www.anpel.com.cn/), the metabolites in the mixture were quantified by the MRM method
of LC-MS 8060 (Shimadzu, Kyoto, Japan) [48,71,72], setting the detection window to 120 s and the target
scan time to 1.5 s. A total of 796 transitions were monitored, and the original data were processed
by Multiquant 3.0.2. We divided the relative signal strengths of the metabolites by the strength
of the internal standard (0.1 mg L−1 lidocaine) for normalization and then log 2 transformed the values
to further improve the normalization.

http://www.anpel.com.cn/
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4.4. RNA-Sequencing

Total RNA was extracted with a TRIzol reagent (Cat# DP424, TIANGEN Biotech Co. Ltd., Beijing,
China) according to the protocol provided by the manufacturer. We determined the integrity of the total
RNA with a 2100 Bioanalyzer (Agilent, EN, USA), which is quantified using a NanoDrop (Thermo
Scientific, DE, USA). Then, we construct the sequencing library using RNA samples with high-quality
(OD260/280 = 1.8 to 2.2 approximately, OD260/230 ≥ 2.0, RIN ≥ 8, > 1 µg). We purified polyA
mRNA from total RNA using oligo-dT-attached magnetic beads. The purified polyA mRNA was then
subjected to a fragmentation buffer. Taking these short fragments as templates, the first-strand cDNA
was synthesized using reverse transcriptase and random primers, followed by second-strand cDNA
synthesis. Then, the synthesized cDNA was subjected to end repair, phosphorylation, and “A” base
addition according to the library construction protocol. Then, sequencing adapters were added to both
sides of the cDNA fragments. After PCR amplification of the cDNA fragments, the 150 to 250 bp target
fragments were cleaned up. Then, we performed paired-end sequencing on an Illumina HiSeq X Ten
platform (Illumina Inc., San Diego, CA, USA).

4.5. RNA-Sequencing Data Analyses

To remove low-quality bases and sequencing adapters, the raw data were first processed
by FASTP v0.19.4 with default settings. Subsequently, the clean data were mapped to the rice
reference genome (http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_
dbs/pseudomolecules/version_7.0/all.dir/all.con) using Hisat2 v2.1.0. The conversion of the mapping
output files from SAM to BAM format and the sorting by positions were performed using SAMTOOLS
v1.9. StringTie v1.3.4 was used to determine the FPKM values and read counts by using the script
preDE.py. DEG analysis was performed with count tables in R v3.6.2 using DEseq2, and genes with
a p-value < 0.05 and FC > 2 were classified as DEGs.

The KEGG analysis was conducted with DEGs by using the David website (https://david.ncifcrf.
gov/). For further pathway analysis of DEGs, MapMan v3.6.0 (http://mapman.gabipd.org/web/guest)
was used to visualize stress-related and overview changes. We summarized an overview pathway
based on MapMan results and then mapped the different expression genes to the overview pathways
with MapMan software.

4.6. Validation of RNA-Seq Data

The relative expression of the DEGs was validated by qRT-PCR. The primers of the nominated
genes were designed using Oligo7 software [73] or previously published [74,75]. The primers used
in this study were given in Additional File 2: Table S7. The reactions were performed with an ABI
QuantStudio 7 Flex Real-Time PCR system (Applied Biosystem, Foster City, CA, USA) using SYBR®

Premix Ex Taq™ II (Takara, Tokyo, Japan). Ubiquitin (LOC_Os09g39500) was used as an internal
control in qRT-PCR. The relative expression of the DEGs was calculated with the 2−∆∆CT method.
The qRT-PCR assay was carried out using two biological replicates with two technical replicates.

4.7. Phylogenetic Tree Construction

ClustalW in MEGA7 (https://www.megasoftware.net/) was used for alignment with protein
sequences, and the maximum likelihood method was used to construct phylogenetic trees.
After obtaining the newick file, the file was imported into the EvolView online tool (https:
//www.evolgenius.info//evolview/) for processing and beautification.

4.8. Data Availability

RNA sequence data that support the findings of this study have been deposited under SRA
BioProject accession number PRJNA622884.

http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://mapman.gabipd.org/web/guest
https://www.megasoftware.net/
https://www.evolgenius.info//evolview/
https://www.evolgenius.info//evolview/
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Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/11/425/s1,
Figure S1: Correlation analysis of transcriptome data from each biological replicate of mutants and WT. Figure S2:
The expression of DEGs in d10, d14, and WT. (A) Average gene expression levels of D10 (LOC_Os01g54270),
PIN1a (LOC_Os06g12610), and PIN1b (LOC_Os02g50960) in d10, d14, and WT. The error bar represents the mean
value ± SD. The p-values were calculated using DESeq2 in R (compared with WT, * p < 0.05, ** p < 0.01).
(B) qRT-PCR based expression levels of D10, D14 in d10, d14, and WT. The data are represented as mean ± SD
of two biological replicates. The Student’s t-test analysis indicates a significant difference (compared with WT,
* p < 0.05, ** p < 0.01). Figure S3: Expression level of genes involved in gibberellin (GA) pathway. The error bar
represents the mean value ± SD. The p-values were calculated using DESeq2 in R (compared with WT, * p < 0.05,
** p < 0.01). Figure S4: Expression level of genes with potential roles in lipid metabolism. The error bar represents
mean value ± SD. The p-values were calculated using DESeq2 in R (compared with WT, * p < 0.05, ** p < 0.01).
Table S1: List of the metabolites detected in this study. Table S2: The content of DAMs in each genotype. Table S3:
RNA-sequencing data statistics. Table S4: FPKM of differentially expressed genes in each genotype. Table S5: Fold
changes of CPSs and KSs in each mutant. Table S6: The list of putative gene clusters with altered gene expression
in the mutants. Table S7: A list of DEGs primers used for RNA-sequencing data validation.
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