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Abstract. Chloride channel 2 (CIC-2) is one of the nine
mammalian members of the CIC family. The present review
discusses the molecular properties of CIC-2, including CLCN2,
CIC-2 promoter and the structural properties of CIC-2 protein;
physiological properties; functional properties, including the
regulation of cell volume. The effects of CIC-2 on the diges-
tive, respiratory, circulatory, nervous and optical systems are
also discussed, in addition to the mechanisms involved in the
regulation of CIC-2. The review then discusses the diseases
associated with CIC-2, including degeneration of the retina,
Sjogren's syndrome, age-related cataracts, degeneration of
the testes, azoospermia, lung cancer, constipation, repair of
impaired intestinal mucosa barrier, leukemia, cystic fibrosis,
leukoencephalopathy, epilepsy and diabetes mellitus. It was
concluded that future investigations of CIC-2 are likely to be
focused on developing specific drugs, activators and inhibitors
regulating the expression of CIC-2 to treat diseases associated
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with CIC-2. The determination of CLCN2 is required to
prevent and treat several diseases associated with CIC-2.
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1. Introduction

Chloride channels (CICs) are a type of permeable channel
protein for chloride ions or other anions on the cell membrane,
and CIC proteins are encoded by genes of the CIC family. CICs
have nine family members, which are classified into three
distinct subfamilies: CIC-1,CIC-2,CIC-Ka/K1 and CIC-Kb/K?2;
CIC-3, CIC-4 and CIC-5; and CIC-6 and CIC-7 (1). CIC-2 is
one of the nine mammalian members of the CIC family, and
was initially isolated from the rat heart and brain (2,3) and
then from the rabbit heart (4,5). CIC-2 is a two-pore homodi-
meric, voltage-gated CI” channel (5-8). CIC-2 can be activated
by hyperpolarization (3,9), cell swelling (2,9), extracelluar
hypotonicity (2) and extracellular acidification (9,10). CIC-2
is almost ubiquitously expressed (3,11), including in ureteric
bud cells (12), intestine (13-17), gastric parietal cells (18,19),
the liver (20), lung (11,21-26), rat retina (27), parotid acinar
cells (28), guinea pig cardiac muscle (29), neuronal cells (30),
rat and human airways (17), bovine trabecular meshwork (31),
human trabecular meshwork (32,33) and rat trabecular mesh-
work (34). In addition, CIC-2 can regulate cell volume (2,4,35),
control response to swelling (11,36-39), and regulates
post-synaptic responses to GABA and glycine (11,40,41).
Although CIC-2 has a wide variety of properties and func-
tions, repots of CLC-3 prior to 1994 are limited, with only six
published between 1953 and 1994. Between 1994 and 2015,



12 WANG et al: RESEARCH AND PROGRESS ON CIC-2

CIC-2 attracted increasing attention as CIC-2 was understood
to possess several molecular, functional and physiological
properties, and be associated with several diseases, including
degeneration of the retina, Sjogren's syndrome, age-related
cataracts, degeneration of the testes, azoospermia, lung cancer,
constipation, repair of impaired intestinal mucosa barrier,
leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and
diabetes mellitus. However, reviews on CIC-2 are limited. The
present review aimed to discuss the molecular, functional and
physiological properties of CIC-2, in addition to mechanisms
involved in the regulation of CIC-2 and diseases associated
with CIC-2.

2. Molecular properties of CIC-2

CLCN2 and CIC-2 promoter. The CIC-2 protein is encoded
by the CLCN2 gene, which is composed of 898 amino acids
and is located in chromosome 3q27.1. The major transcription
start site of the CIC-2 gene has been identified, and is local-
ized 100 bp upstream of the putative translation initiation
codon (21). A previous study (42) on the possible evolution of
CIC-2 gene suggested that CIC-2 may have evolved by gene
duplication, mutation and DNA rearrangement (27,43).

The CIC-2 promoter belongs to a GC-rich and TATA-less
class (44). Within the 1,930-bp region, one of three CAAT
boxes is close to the CIC-2 coding sequence, and the other two
are at the middle (44). Within a 391-bp region upstream, the
first three of four GC boxes are conserved in human CIC-2, as
reported by Cid et al (21,44).

Structural properties of CIC-2 protein. Despite wide func-
tional diversity, CIC family members share a conserved
protein structure, including a transmembrane region, which
is involved in chloride anion transport, and two intracellular
copies of the cystathionine-p-synthase (CBS) domain (CBS1
and CBS2) (5-8,45,46) and an N-terminus. Therefore, the
protein structure of CIC-2 is the same in the other CIC family
members (45,46), as shown in Fig. 1.

Several other studies on the structural properties of CIC-2
have reported that the CIC-2 dimer is the minimum functional
structure (47), protons act independently from the possible effects
of the N-terminus on gating (48) and the hetero-dimerization of
CIC-2 can modify the unitary conductance of protopores (49).

3. Biophysical properties of CIC-2

In 1992, it wasreported that CIC-2 expressed in Xenopus oocytes
generates Cl currents, which activate slowly upon hyperpo-
larization and show a linear instantaneous current-voltage
association (3). Further studies on the biophysical proper-
ties on CIC-2 have focused predominantly on CI" currents,
including CIC-2-like inwardly rectifying CI currents (3,50-54)
and CIC-2 outwardly rectifying CI currents (36,37,52,55-59).
CIC-2-like inwardly rectifying Cl* currents have been
detected in the human T84 cell line (50), drosophila CIC-2
variants in HEK-293 cells (51) and rat type I'V spiral ligament
fibrocytes (52). The conductivity sequence of the inwardly
rectifying currents is Cl" = Br > 1 (3). CIC-2 inwardly rectifying
CI currents are inhibited by 4.,4'-diisothiocyano-2,2'-stilbene-
disulfonic acid (DIDS) (3) and Cd** (50), and regulated by cell

swelling (53), extracellular pH, CI- and Ca?* (52). However,
the results of another study on CIC-2 inwardly rectifying
Clcurrents differed, reporting that CIC-2 did not significantly
contribute to inward-rectifying anion conductance in the
mouse choroid plexus (54).

CIC-2 outwardly rectifying Cl currents have been found
in the T84 human adenocarcinoma cell line (36,37,55),
human neurons (56), human parotid acinar cells (57) and
rat type IV spiral ligament fibrocytes (52). The outwardly
rectifying currents are characterized by a time-dependent
decay at depolarizing voltages, and the anion permeability
sequence I'>Br>CI>F, and the currents show sensitivity to
1,9-dideoxyforskolin, DIDS (58) and tamoxifen (55). CIC-2
outwardly rectifying Cl currents are regulated by extracellular
pH, CI' and Ca®* (52). Another study showed that CIC-2 may
contribute to cell volume regulation following hyposmotic
stress produced by outwardly rectifying Clcurrents, however,
cell volume regulation in T84 cells is independent of CIC-2
activity (59).

CIC-2 inwardly/outwardly rectifying Cl currents are simul-
taneously found in rat type I'V spiral ligament fibrocytes (52),
and they are modulated by extracellular pH, CI and Ca*".
According to previous studies, at least two chloride channels
are involved in modulating membrane anion conductance (52).
Another study on CI" currents in rabbit heart cells suggested
that rabCIC-20/23 may provide two homologous protein
kinase A-activated chloride anion channels, with or without
extracellular hypotonicity (60).

4. Functional properties of CIC-2

Previous studies have shown that CIC-2 has several functional
properties, including effects on cell volume (2,4,20,35,61), the
digestive system (11,16,18,19,62-64), the eye (65-67), respira-
tory system (11,24,26,68-70), circulatory system (35,71-75)
and nervous system (76). In addition, several studies have
reported the functions of the NH2 terminus (77) and carboxy
terminus (78) in CIC-2, and the similar functional properties
between chloride-selective ion channels, including CIC-2, in
protozoa (79-82).

Regulation of cell volume. The activation of CIC-2 in response
to cell swelling and low extracellular pH is involved in the
dissociation of an NH,-terminal region of CIC-2 (10). The
dephosphorylation of serine/threonine residues in the channel or
an associated protein appears to be necessary for current activa-
tion following cell swelling in T84 cells (53) and for a CIC-2-like
current in ascidian embryo cells during the cell cycle (83).
Hypotonic cell swelling activates an outwardly rectifying
anionic conductance, with different characteristics from those
of CIC-2 previously reported (84). The endogenous currents
suggest that protein tyrosine phosphorylation is involved in the
signal transduction pathway in certain cell types (85-87), and
that epidermal growth factor enhances the hypotonicity-induced
anionic efflux (85). However, tyrosine kinase p56'* activates
these swelling-sensitive chloride channels without cell swelling,
even during cell shrinkage, in lymphocytes (88).

Effect of CIC-2 on the digestive system. Nehrke et al (62)
detected the regulatory volume decrease following cell
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swelling, which showed that CIC-2 can control cell volume
in mouse parotid acinar cells. Others functions of CIC-2 have
been reported, including HCI secretion across the parietal cell
secretory membrane in the rabbit gastric mucosa (19), medi-
ating the basolateral membrane exit of Cl in the distal colon
of guinea pigs (16), regulating gastric acid secretion (11,18,63),
and affecting gastric glands and its cell layers (63). However,
one study suggested that CIC-2 may not be a CI'-transporting
protein for gastric acid secretion in parietal cells (64).

Effect of CIC-2 on the eye. Previous studies have shown that
CIC-2 has a protective effect on trabecular cells under pressure
stress (65), can regulate the inward rectification in Drosophila
retinal photoreceptors (66), and can modulate cellular volume,
intracellular CI" and other cellular functions in trabecular
meshwork cells (67).

Effect of CIC-2 on the respiratory, circulatory and nervous
systems. CIC-2 is gestationally regulated and is predominantly
expressed in the fetal lung (26,68). Cystic fibrosis trans-
membrane conductance regulator (CFTR)-independent fluid
accumulation is induced by keratinocyte growth factor in fetal
lung explants (69), and keratinocyte growth factor is necessary
for CIC-2-like pH-sensitive Cl secretion in the fetal airway
epithelia (24). It has been shown that CIC-2 affects fetal lung
fluid production and lung cyst morphology (70).

It has been reported that a novel Cl" inward rectifier channel
is found in the cardiac atrial and ventricular myocytes of
several species, including the guinea pig (71-73), mouse (71,73)
and rat (72-75). The CI" inward rectifier channels have proper-
ties of activation by hypotonic cell swelling and extracellular
acidification, inward rectification, time-dependent slow activa-
tion and Cd**-sensitive inhibition (71-75). Experiments have
shown that CIC-2 affects the positive chronotropic effect of
acute exercise stress (73) and modulates cardiac pacemaker
activity (73), but cannot alter intrinsic heart rate (73).

Another study (76) investigating the effect of CIC-2 on
inhibitory interneurons showed that membrane voltage-/intra-
cellular chloride-dependent CIC-2 can selectively regulate
GABA, receptor (GABA, R)-mediated synaptic inputs from
basket cells.

5. Mechanisms of CIC-2 regulation by regulators

Cell swelling can increase CIC-2 activity (2,9), and CIC-2
can be activated by hyperpolarization (3,9), extracelluar
hypotonicity (2) and extracellular acidification (9,10).
Previous studies have shown that CIC-2 is also regulated
by hormones (89-91), drugs (92-100), proteins (101-107),
kinases (108-114), transcription factors (115,116), inhibi-
tors (117-120), scorpion venom (121), al-adrenoceptor (122),
Plasmodium berghei (123), adenosine triphosphate (124,125),
ClH; (40,126-137), permeant anions (138,139), membrane
cholesterol (140) and the tyrosine endocytosis motif (141).

Regulation of CIC-2 by hormones. Thyroid hormones (T3 and
T4) can regulate renal function (142,143), Na*/K* ATPase (144),
Na*/H* exchanger (145), and affect kidney growth and
development (146). Previous studies have demonstrated that
hyperthyroidism and hypothyroidism are associated with
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Figure 1. Basic structure of CIC-2 as a two-pore homodimeric channel. CIC-2
is a double-barreled channel with two identical, predominantly independent
pores. (A) 18 a-helices are labeled A-R, and the two similar halves within
the transmembrane domain (a-helices B-I and J-Q), which are oriented in
opposite directions to the membrane, and are shown in green and cyan. The
sequence regions, which contribute to the CI selectivity filter, are indicated
by orange arrows, and the respective conserved sequences are shown; CBS1
is colored red and CBS2 is colored blue. (B) Structure viewed from the extra-
cellular side. The two subunits of the homodimeric protein are shown in red
and blue, and bound anions are shown in green. CIC-2, chloride channel 2;
CBS, cystathionine-f3-synthase.

chloride (147,148), and the reversal of glomerular filtration
by T4 is observed in patients with hypothyroidism (149). In
addition, a previous study (89) on T4 suggested that CIC-2 is
involved in chloride transport regulated by thyroid hormones
in rat renal proximal tubules.

Estrogen is associated with a decrease in the urinary
excretion of sodium and chloride (150-153). A study by
Nascimento et al (90) showed that CIC-2 may be involved
in estrogen-induced CI transport in the rat kidney. Another
study (91) showed that CIC-2 is also involved in the rat renal
tubule transcellular chloride transport regulated by arginine
vasopressin, a neurohypophysial hormone.

Regulation of CIC-2 by drugs. Lubiprostone can induce
intestinal fluid secretion (154), treat constipation (155-157)
and activate CIC-2 CI" currents in a concentration-dependent
manner (94), and CIC-2 can recover mucosal barrier function in
the ischemia-injured intestine (92). Studies have shown that the
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activation of CIC-2 by lubiprostone can stimulate the recovery of
intestinal barrier function in the ischemia-injured porcine ileum
and colon (93), and may have a protective and therapeutic effect
on murine models of colitis (99). The prostaglandin E2 receptor
4 [EP (4)] receptor (94-97) can stimulate CIC-2 and CFTR chlo-
ride channels, and it has been shown (98) that lubiprostone can
activate CFTR by the EP (4) receptor in oocytes. The Chinese
medicinal compounds Guanxinkang and diltiazem hydrochlo-
ride can decrease the mRNA and protein expression of CIC-2 in
rats with myocardial ischemia reperfusion injury (100).

Regulation of CIC-2 by proteins. The functional expres-
sion and activation of CIC-2 is reduced by dynein (a protein
complex) (101) and p34°‘“?/cyclin B (102), however, the
inrerferon-y glycoprotein can activate CIC-2 in lung epithe-
lial cells through mRNA stabilization, and increase CIC-2
transcripts in Calu-3 cells (107). CIC-2 is regulated by protein
phosphatase 1 (102), interactions between the actin cytoskel-
eton (a filamentous protein structure) and the N-terminus of
CIC-2 (104). M phase-specific p34°**/cyclin B can phosphory-
late the ubiquitination of CIC-2 (103). Heat shock protein 90
can increase CIC-2 current amplitude and the intracellular CI
concentration, and enhance channel sensitivity to intracellular
CI (105). CIC-2 is also associated with the transmembrane
glycoprotein, GlialCAM, in the brain, and GlialCAM can
involve CIC-2 in the homeostasis of myelin, which is defective
in leukodystrophy (106).

Regulation of CIC-2 by kinases. CIC-2 membrane abun-
dance is increased by serum and glucocorticoid inducible
kinases (SGKs) and decreased by NEDD4-2, an enzyme
of the NEDD4 family (108). In rats, protein kinase A can
directly phosphorylate CIC-2, whereas protein kinase C and
Ca*/calmodulin-dependent protein kinase II cannot (113).
PIKfyve is a FYVE finger-containing phosphoinositide
kinase (158) and is a potent stimulator of CIC-2-activity (112),
which can contribute to the SGK1-dependent regulation of
CIC-2 (112).

Janus kinase (JAK) 2 and JAK3 (tyrosine kinase) can down-
regulate the activation of CIC-2 and offset CI" exit (109,111),
however, their functions and regulatory mechanism are
different. JAK?2 is involved in the signaling of leptin (159),
growth hormones (160), erythropoietin, thrombopoietin,
granulocyte colony-stimulating factor (161) and a variety of
cytokines (161,162). JAK?2 inhibitors can treat myeloprolif-
erative disorders (163-170), and JAK2 can be activated by
hyperosmotic shock (171,172). By contrast, JAK3 can promote
proliferation and act against the apoptosis of lymphocytes
and tumor cells (173-177). It is also present in acute mega-
karyoplastic leukemia (178,179). Therefore, cell proliferation
and apoptosis is associated with CI" channel activity (110). In
addition, the substitution of lysine by alanine can inactivate
JAK3 (180). In addition to JAK2 and JAK3, SPS1-related
proline/alanine-rich kinase and oxidative stress-responsive
kinase 1 can also downregulate CIC-2 (114).

Regulation of CIC-2 by transcription factors. The Spl and Sp3
transcription factors can control the rate of transcription of
genetic information from DNA to messenger RNA (181,182).
Reducing interactions between Spl or Sp3 and the CIC-2

promoter can lead to a postnatal decrease in the expression
of CIC-2 in lung epithelia (116). In addition, the glycosylation
of SP1 produces the 105-kD isoform of SP1 and is involved in
regulating the expression of CIC-2 (115).

Regulation of CIC-2 by inhibitors. Previous studies have
shown that CIC-2 is inhibited by methadone (117), gating
modifier of anion channels 2 (GaTx2) (118), DIDS (119) and
5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) (120).
However, DASU-02, as an inhibitor of common chloride
channels, cannot inhibit CIC-2 (117). The inhibitory effects
on CIC-2 by these inhibitors are entirely different. Methadone
can inhibit the activities of CIC-2, which shows that CIC-2
may be involved in chloride anion secretion (117). GaTx2, as
a peptide toxin inhibitor of CIC-2, can inhibit channel activa-
tion gating, but not other chloride channels or voltage-gated
potassium channels (118). DIDS can significantly reduce
the increased mRNA and protein levels of CIC-2 following
ischemia-hypoxia damage (119). NPPB, as a CIC inhibitor, can
affect the phagocytosis of human trabecular meshwork cells,
which shows that CIC-2 may be involved in the regulation of
its phagocytic process (120).

Other factors in the functional regulation of CIC-2. According
to previous studies, in addition to the above-mentioned regula-
tory mechanisms, scorpion venom (121), al-adrenoceptor (122),
Plasmodium berghei (123), adenosine triphosphate (124,125),
CIH;(137), GABA 4R (40,126-128), permeant anions (138,139),
membrane cholesterol (140) and B-cyclodextrin sensitive
clusters (141) can also regulate or affect CIC-2. A peptide
of scorpion venom can induce slower activation kinetics of
CIC-2 (121). al-adrenoceptor activation can significantly
reduce protein levels of CIC-2 in the villus and crypt epithelial
cells from the acutely denervated jejunum, but not the inner-
vated jejunum (122). The activation of CIC-2 is involved in the
altered permeability caused by Plasmodium berghei infection
in Plasmodium berghei-infected mouse CLCN2 (123). ATP
not only decelerates CIC-2 common gating for sufficient
electrical stability of neurons (124), it also alters its surface
expression (125). Intra-/extra-cellular permeant anions
can affect the Vm-dependence of CIC-2 (138). Specially,
CIl as a permeant anion can increase pore occupancy, thus
obstructing the closure of the protopore gate of CIC-2 (139).
In addition, alterations in the (CI'); between 10 and 200 mM
can decelerate CIC-2 channel closing at a positive Vm (139).
Membrane cholesterol can regulate the activation of CIC-2,
and the increased activation of CIC-2 is involved in the relo-
calization of CIC-2 to detergent-soluble microdomains (140).
B-cyclodextrin sensitive clusters with other molecules can
mantain CIC-2 activity (141).

Previous studies have reported that C1H; encodes the
Caenorhabditis elegans homologs of CIC-2 (129-131).
CIH;-dependent regulation not only alters the voltage depen-
dence of CIC-2 channels and inhibits hereditary sensory
neuropathy (HSN) excitability (137), but may also affect
chloride influx (137) in Caenorhabditis elegans. However,
the chloride efflux pathway of CIC-2 is associated with
synaptic inhibition regulated by the GABA,R (40,126-128).
In addition, the HSNs can release acetylcholine, serotonin and
multiple neuropeptides (133-136), which excite the VC motor
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neurons (132). These functions of HSNs may be associated
with clh-3-dependent regulation and the voltage dependence
of CIC-2 channels.

6. Diseases associated with CIC-2

Previous studies have shown that disruption and abnormity
of CIC-2 can cause a number of diseases, including ophthal-
mological disease (11,183-185), otorhinolaryngological
disease (186), disease of the reproductive system (11,187),
disease of the respiratory system (188), disease of the digestive
system (189-194), disease of the hematological system (195),
genetic diseases (23,25,26,42,44,74,76,196-198), diseases
of the nervous system (30,40,41,168,199-212) and metabolic
diseases (213). The majority of studies have focused on
diseases of the nervous system.

Ophthalmological and otorhinolaryngological disease
associated with CIC-2. Severe degeneration of the retina
occurs in CIC-2-knockout mice, although no other notable
eye abnormalities are present (11). Possible reasons for degen-
eration of the retina caused by CIC-2-knockout include the
following (11): i) CIC-2 disruption causes the death of photo-
receptor cells; ii) depletion of CIC-2 may impair the transport
and alter the ionic environment of photoreceptors. Other
studies on ophthalmological diseases associated with CIC-2
include Sjogren's syndrome (183,184,214-218) and age-related
cataracts (185).

Sjogren's syndrome is a chronic autoimmune disease,
and previous studies have shown that eye diseases caused
by Sjogren's syndrome are primarily through the destruc-
tion of lacrimal glands (LGs) (214), keratoconjunctivitis
sicca (215). In addition, LG pathologic properties in Sjogren's
syndrome appear in rabbits induced by autoimmune dacryo-
adenitis (216-218). Acini and interlobar ducts have the lowest
mRNA abundance of CIC2y, and the intralobar duct has
the highest (183,184), and alterations in CIC2y may alter
lacrimal secretion, particularly Cl transport (184). The causes
of age-related cataracts include aging, inheritance, local
nutritional disorders, immune and metabolic abnormalities,
trauma, poisoning and radiation. According to a study by
Ouyang (185), the expression level of CIC-2 is associated with
the development of age-related cataracts.

Reports on otorhinolaryngological diseases associated
with CIC-2 are limited, however, Li et al reported on the patho-
genesis of nasal polyps. The study (186) showed that CIC-2
was not expressed in normal nasal mucosa, however, CIC-2
proteins were expressed in epithelial cells and sub-epithelial
mucous glands in patients affected with nasal polyps. This
suggested that CIC-2 is involved in the pathogenesis of nasal

polyps.

Diseases of the reproductive system associated with CIC-2.
In previous studies, a number of diseases of the reproductive
system have been associated with CIC-2, including degenera-
tion of the testes (11) and azoospermia (187,219,220).

It was shown that severe degeneration of the testes appears
in CIC-2-knockout mice, however, no other reproductive abnor-
malities are observed (11). A study by Bosl er al suggested
that CIC-2 disruption causes the death of germ cells, impaired

transport and alterations to the ionic environment of germ
cells, and that germ cells rely on the transepithelial transport
mediated by Sertoli cells (11).

Azoospermia is a medical condition in which males do not
have a measurable level of sperm in their semen, and is associ-
ated with low levels of fertility or infertility. Its pathogenesis
involves CFTR disruption in CF, affecting male fertility (219).
In addition, the male sterility resulting from reduced fluid
volume is associated with disruption of Cl" channels from
other CICN genes (220). Another study (187) by Edwards er al
reported that CICN2nmf240 homozygotes have azoospermic
symptoms severe degradation of spermatogenesis, and short-
ages of spermatocytes, spermoblasts and sperm.

Diseases of the respiratory system associated with CIC-2.
Reports on diseases of the respiratory system associated with
CIC-2 are limited. A previous study (188) reported that CIC-2
may be important in the invasion, development and occurrence
of lung cancer, and that CIC-2 may be a novel molecular target
for clinical therapy in non-small cell lung cancer.

Diseases of the digestive system associated with CIC-2. There
have been several reports on diseases of digestive system asso-
ciated with CIC-2, including constipation (18,26,189-193,221)
and repair of impaired intestinal mucosa barrier (194).

CFTR is major chloride channel regulating chloride
secretion in the small intestine (221), however, CIC-2 can also
regulate chloride secretion (18,26). Hypotonicity can also acti-
vate chloride currents in the rat ileum (189). Several studies
have reported that CIC-2 is expressed in the intestinal epithe-
lium, in T84 human intestinal cells, rat intestinal tissue (3) and
the murine duodenum (190). In addition, previous studies have
shown that CIC-2 can regulate chloride secretion in rodent
neonatal airways (26), and regulate gastric chloride secre-
tion (18). However, another study (191) described contradictory
findings, reporting that CIC-2 was not involved in CI secre-
tion, but was involved in CI" absorption in the distal colon.
According to these studies, CIC-2 inhibitors may be used to
treat constipation by decreasing NaCl and water absorption in
the colon (191).

Irritable bowel syndrome (IBS) is characterized by
chronic abdominal pain, discomfort and bloating associated
with altered bowel habits, including diarrhea and/or constipa-
tion. Current therapy for constipation caused by IBS has side
effects, including deterioration of the condition or electrolyte
disturbances (192). Previous studies have shown that, in addi-
tion to the above-mentioned side effects, lubiprostone can also
increase gut motility and frequency of stool passage, relieve
abdominal pain and discomfort (192), stimulate chloride
secretion and improve bowel function (193).

A previous study (194) by Chen et al reported that the acti-
vation of CIC-2 can activate tight junction proteins and repair
impaired intestinal mucosa barrier. In addition, CIC-2 and tight
junction proteins are involved in maintenance of the intes-
tinal mucosal barrier, and acute biliary obstruction-induced
destruction of the intestinal mucosa barrier is associated with
CIC-2 in enterocytes (194).

Diseases of the hematological system associated with CIC-2.
There have been few studies on diseases of the hematological
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system associated with CIC-2. A previous study reported the
expression of swelling-and/or pH-regulated CIC-2 chloride
channels in human leukemia (195). In addition, it was suggested
that the molecular identification of chloride channels may
provide a novel approach for the treatment of leukemia (195).

Genetic diseases associated with CIC-2. According to previous
reports, there have been several studies on the association
between CF and CIC-2 (3,11,23,25,26,68,70,196-198,222,223).
Several studies have reported that CIC-2 may be an alternative
pathway for chloride anion secretion in CF (3,11,23), and that
CIC-2 is a potential target for therapy in CF (25,197). CF is a
genetic disease, which primarily affects the lungs, in addition
to the pancreas, liver, kidneys and intestine (222). CF is caused
by mutations in the gene encoding CFTR, the only member of
the ABC transporter family known to be a cAMP-activated
chloride channel (223). CIC-2 is a candidate alternative
chloride channel in respiratory epithelia (196). CIC-2 is also
involved in lung morphogenesis (26,68), and can conduct chlo-
ride in mature respiratory epithelia (23,25,197). CIC-2 mRNA
and protein are expressed in unaffected tissues in CF, which
may make up for defects in the expression of CFTR (68).

However, another previous study (198) reported that
CIC-2 is unlikely to be a candidate rescue channel in CF, as
disruption of CIC-2 and CFTR channel genes did not cause
morphological alterations in the intestine, lung or pancreas
affected by CF; neither disrupted CIC-2 or CFTR reduced
CI secretion (198). In addition, two studies (70,196) refer to
the importance of detecting modifications of CF by CIC-2, and
underlined the importance of examining potential polymor-
phisms in subjects affected with CF and potential mutations in
the coding region of CIC-2.

Diseases of the nervous system associated with CIC-2. There
have been more studies on diseases of the nervous system
associated with CIC-2, compared with other diseases associ-
ated with CIC-2. Studies on diseases of the nervous system
associated with CIC-2 have predominantly focused on leukoen-
cephalopathy (199-202,224) and epilepsy (30,40,203-212,225).

Leukoencephalopathy can refer specifically to any of the
following diseases: Progressive multifocal leukoencepha-
lopathy, toxic leukoencephalopathy, leukoencephalopathy with
vanishing white matter, leukoencephalopathy with neuroaxonal
spheroids, reversible posterior leukoencephalopathy syndrome,
megalencephalic leukoencephalopathy with subcortical cysts
(MLC) and hypertensive leukoencephalopathy. Among these,
MLC is a rare type of leukodystrophy, which is characterized
by macrocephaly emerging in the first years of life (224).

The disruption of CIC-2 can cause fluid accumulation
resulting in myelin vacuolation in mice, similar to that
observed in humans affected with MLC from mutations in
MLCI or GlialCAM. GlialCAM is a CIC-2 binding partner
and the first auxiliary subunit of CIC-2 (199). According to
a study by Jeworutzki et al (199), neither the stimulation of
Glial CAM on CIC-2 currents, nor mislocalization of this CI
channel were found to damage glial CI" transport. Mutated
Glial CAM in MLC can target CIC-2 to cell contacts in gliaand
activate its currents (200). A study by Jeworutzki e al (200)
showed that GlialCAM can target the common gate defi-
cient CIC-2 mutant, E211V/H816A, to cell contacts without

altering its function. Another study suggested that CIC-2 is
not important for MLC1 or GlialCAM localization in the
brain (201), but that it is involved in the pathogenesis of
MLC (201).

However, a separate study (202) reported different conclu-
sions, as there was no evidence that the CLCN2 gene is
associated with MLC. Despite not referring to the association
between the CLCN2 gene and MLC, this study demonstrated
that mice lacking the CIC-2 protein had white matter abnor-
malities with vacuole formation in myelin sheaths, similar to
the intramyelinic vacuoles in MLC.

Epilepsy comprises a set of neurological diseases
characterized by epileptic seizures, and a heterogeneous
disorder characterized by recurrent unprovoked seizures,
which affect ~1-3% of the population during their life-
times (225). CIC-2 mRNA and protein are found in neurons
and astrocytes (30,40,203). In addition, CIC-2 protein is
present at the end feet of astrocytes contacting blood vessels
and neurons close to inhibitory synapses (30). Inwardly
rectifying hyperpolarization-activated CIC-2-like currents
are found in hippocampal pyramidal cells (40,127) and
in astrocytes (204-207). In hippocampal pyramidal cells
and astrocytes (208), CIC-2 may have different effects. In
neurons, CIC-2 can prevent the accumulation of chloride
anions above equilibrium due to the activation of CIC-2 by
intracellular Cl (41,127). Under these conditions, GABA, R
activity may become excitatory (208). A previous study (208)
reported that loss of function mutations of CIC-2 lead to
increased excitability in certain neurons, and that hyperpo-
larization-activated chloride currents are detected in cortical
astrocytes, but absent in tissues from CIC-2-null mice (207).
Another study (211) showed that several CIC-2 sequence
abnormalities previously found in patients affected with
epilepsy are likely to represent innocuous polymorphisms,
detected by sequencing of a large collection of human DNA
and electrophysiological analysis.

Several other studies have reported that a susceptibility
locus for idiopathic generalized epilepsy (IGE) is on chromo-
some 3q26 (the location of the CLCN2 gene) (209), and three
mutations on CIC-2 cosegregated with IGE with autosomal
dominant inheritance (210) have been identified.

In addition to the above-mentioned studies on the asso-
ciation between epilepsy and CIC-2, an association between
temporal lobe epilepsy (TLE) and CIC-2 has been reported.
TLE with spontaneous recurrent attacks, and learning and
memory disabilities, is associated with neurodegeneration,
abnormal reorganization of the circuitry and loss of functional
suppression in hippocampus (212). A study by Ge et al reported
that CIC-2 contributes towards tonic inhibition, modulated by
a5 subunit-containing GABA , Rs in the CAl area (212).

Metabolic diseases associated with CIC-2. Few studies
on metabolic diseases associated with CIC-2 have been
performed, however, a study on diabetes mellitus was found.
Diabetes mellitus is a metabolic disease, which gener-
ally causes chronic delayed wound healing. In a study by
Pan et al (213), a high glucose concentration inhibited kerati-
nocyte migration by downregulating CIC-2, suggesting CIC-2
may be important during delayed wound healing processes.
In addition, the study reported that CIC-2 is an important
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modulator of cell migration in keratinocytes, although it
did not discuss how CIC-2 is involved in keratinocyte
migration.

7. Conclusion

With the continuous progress in experimental and clinical
studies on the CIC family, it is clear that the activation of CIC-2
occurs via hyperpolarization (3,9), cell swelling (2,9), extracel-
luar hypotonicity (2) and extracellular acidification (9,10), and
that the expression of CIC-2 is ubiquitous (3,11) in ureteric bud
cells (12), the intestine (13-17), gastric parietal cells (18,19),
the liver (20), the lungs (21-25), rat retina (27), parotid acinar
cells (28), guinea pig cardiac muscle (29), neuronal cells (30),
rat and human airways (17), bovine trabecular meshwork (31),
human trabecular meshwork (32,33) and rat trabecular mesh-
work (34). Although there has been progress in understanding
the CLCN2 gene, the molecular structure of the CIC-2 protein,
the structure of CIC-2 chloride channels, and the functional
properties and mechanisms regulating C1C-2, they remain to be
fully elucidated and there have been contradictions in previous
studies (226). According to previous studies, it is known that
the disruption of CIC-2 can lead to several diseases. Although
CIC-2 is associated with the pathogenesis of several diseases,
the association between pathogenesis and CIC-2 remains to be
fully elucidated.

At present, >6,500 types of genetic disease have been iden-
tified, among which ~3,000 are caused by a single gene defect.
In this review, the mechanisms underlying the association
between the CLCN2 gene and diseases, including azoospermia
and IGE, were discussed. In the future, investigations focused
on the determination of the CLCN2 gene may identify novel
methods to treat and prevent several diseases associated with
CIC-2. In addition, as the overexpression and underexpression
of CIC-2 can cause diseases, the development of specific CIC-2
activators and inhibitors, and understanding the mechanism of
action between the functional properties of CIC-2 and these
activators and inhibitors, is required in future investigations to
regulate the expression of CIC-2.

As described above, CIC-2 can be regulated by hormones,
drugs and scorpion venom. Certain hormones in humans are
produced in small quantities, however, they have a substantial
effect on health, with underproduction or overproduction
leading to a variety of diseases. In addition, scorpion venom
can be used to treat cancer and lower blood pressure, and is
applied for hemostasis, anticoagulation, as an analgesic and a
nerve growth factor. Therefore, future investigations focused
on the regulatory mechanisms of hormones, drugs and scor-
pion venom may assist in developing specific drugs for treating
diseases associated with CIC-2.

In conclusion, CIC-2 is important in several diseases and,
in order to fully elucidate the structure and function of CIC-2,
and the mechanisms regulating CIC-2 associated with disease
treatment, examining the associations between CIC-2 and
regulators, including hormones, proteins, kinases, transcrip-
tion factors, scorpion venom, adenosine triphosphate, clh-3,
permeant anions, membrane cholesterol, tyrosine endocytosis
motif and al-adrenoceptor is required to develop novel treat-
ment strategies. Therefore, further investigations are required
in the future.
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