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Abstract. Chloride channel 2 (ClC-2) is one of the nine 
mammalian members of the ClC family. The present review 
discusses the molecular properties of ClC-2, including CLCN2, 
ClC-2 promoter and the structural properties of ClC-2 protein; 
physiological properties; functional properties, including the 
regulation of cell volume. The effects of ClC-2 on the diges-
tive, respiratory, circulatory, nervous and optical systems are 
also discussed, in addition to the mechanisms involved in the 
regulation of ClC-2. The review then discusses the diseases 
associated with ClC-2, including degeneration of the retina, 
Sjögren's syndrome, age-related cataracts, degeneration of 
the testes, azoospermia, lung cancer, constipation, repair of 
impaired intestinal mucosa barrier, leukemia, cystic fibrosis, 
leukoencephalopathy, epilepsy and diabetes mellitus. It was 
concluded that future investigations of ClC-2 are likely to be 
focused on developing specific drugs, activators and inhibitors 
regulating the expression of ClC-2 to treat diseases associated 

with ClC-2. The determination of CLCN2 is required to 
prevent and treat several diseases associated with ClC-2.
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1. Introduction

Chloride channels (ClCs) are a type of permeable channel 
protein for chloride ions or other anions on the cell membrane, 
and ClC proteins are encoded by genes of the ClC family. ClCs 
have nine family members, which are classified into three 
distinct subfamilies: ClC-1, ClC-2, ClC-Ka/K1 and ClC-Kb/K2; 
ClC-3, ClC-4 and ClC-5; and ClC-6 and ClC-7 (1). ClC-2 is 
one of the nine mammalian members of the ClC family, and 
was initially isolated from the rat heart and brain (2,3) and 
then from the rabbit heart (4,5). ClC-2 is a two-pore homodi-
meric, voltage-gated Cl- channel (5-8). ClC-2 can be activated 
by hyperpolarization (3,9), cell swelling (2,9), extracelluar 
hypotonicity (2) and extracellular acidification (9,10). ClC-2 
is almost ubiquitously expressed (3,11), including in ureteric 
bud cells (12), intestine (13-17), gastric parietal cells (18,19), 
the liver (20), lung (11,21-26), rat retina (27), parotid acinar 
cells (28), guinea pig cardiac muscle (29), neuronal cells (30), 
rat and human airways (17), bovine trabecular meshwork (31), 
human trabecular meshwork (32,33) and rat trabecular mesh-
work (34). In addition, ClC-2 can regulate cell volume (2,4,35), 
control response to swelling (11,36-39), and regulates 
post-synaptic responses to GABA and glycine (11,40,41).

Although ClC-2 has a wide variety of properties and func-
tions, repots of CLC-3 prior to 1994 are limited, with only six 
published between 1953 and 1994. Between 1994 and 2015, 
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ClC-2 attracted increasing attention as ClC-2 was understood 
to possess several molecular, functional and physiological 
properties, and be associated with several diseases, including 
degeneration of the retina, Sjögren's syndrome, age-related 
cataracts, degeneration of the testes, azoospermia, lung cancer, 
constipation, repair of impaired intestinal mucosa barrier, 
leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and 
diabetes mellitus. However, reviews on ClC-2 are limited. The 
present review aimed to discuss the molecular, functional and 
physiological properties of ClC-2, in addition to mechanisms 
involved in the regulation of ClC-2 and diseases associated 
with ClC-2.

2. Molecular properties of ClC‑2

CLCN2 and ClC‑2 promoter. The ClC-2 protein is encoded 
by the CLCN2 gene, which is composed of 898 amino acids 
and is located in chromosome 3q27.1. The major transcription 
start site of the ClC‑2 gene has been identified, and is local-
ized 100 bp upstream of the putative translation initiation 
codon (21). A previous study (42) on the possible evolution of 
ClC-2 gene suggested that ClC-2 may have evolved by gene 
duplication, mutation and DNA rearrangement (27,43).

The ClC-2 promoter belongs to a GC-rich and TATA-less 
class (44). Within the 1,930-bp region, one of three CAAT 
boxes is close to the ClC-2 coding sequence, and the other two 
are at the middle (44). Within a 391-bp region upstream, the 
first three of four GC boxes are conserved in human ClC‑2, as 
reported by Cid et al (21,44).

Structural properties of ClC‑2 protein. Despite wide func-
tional diversity, ClC family members share a conserved 
protein structure, including a transmembrane region, which 
is involved in chloride anion transport, and two intracellular 
copies of the cystathionine-β-synthase (CBS) domain (CBS1 
and CBS2) (5-8,45,46) and an N-terminus. Therefore, the 
protein structure of ClC-2 is the same in the other ClC family 
members (45,46), as shown in Fig. 1.

Several other studies on the structural properties of ClC-2 
have reported that the ClC-2 dimer is the minimum functional 
structure (47), protons act independently from the possible effects 
of the N-terminus on gating (48) and the hetero-dimerization of 
ClC-2 can modify the unitary conductance of protopores (49).

3. Biophysical properties of ClC‑2

In 1992, it was reported that ClC-2 expressed in Xenopus oocytes 
generates Cl- currents, which activate slowly upon hyperpo-
larization and show a linear instantaneous current-voltage 
association (3). Further studies on the biophysical proper-
ties on ClC-2 have focused predominantly on Cl- currents, 
including ClC-2-like inwardly rectifying Cl- currents (3,50-54) 
and ClC-2 outwardly rectifying Cl- currents (36,37,52,55-59).

ClC-2-like inwardly rectifying Cl- currents have been 
detected in the human T84 cell line (50), drosophila ClC-2 
variants in HEK-293 cells (51) and rat type IV spiral ligament 
fibrocytes (52). The conductivity sequence of the inwardly 
rectifying currents is Cl- ≥ Br- > I- (3). ClC-2 inwardly rectifying 
Cl- currents are inhibited by 4,4'-diisothiocyano-2,2'-stilbene-
disulfonic acid (DIDS) (3) and Cd2+ (50), and regulated by cell 

swelling (53), extracellular pH, Cl- and Ca2+ (52). However, 
the results of another study on ClC-2 inwardly rectifying 
Cl-currents differed, reporting that ClC‑2 did not significantly 
contribute to inward-rectifying anion conductance in the 
mouse choroid plexus (54).

ClC-2 outwardly rectifying Cl- currents have been found 
in the T84 human adenocarcinoma cell line (36,37,55), 
human neurons (56), human parotid acinar cells (57) and 
rat type IV spiral ligament fibrocytes (52). The outwardly 
rectifying currents are characterized by a time-dependent 
decay at depolarizing voltages, and the anion permeability 
sequence I->Br >Cl->F-, and the currents show sensitivity to 
1,9-dideoxyforskolin, DIDS (58) and tamoxifen (55). ClC-2 
outwardly rectifying Cl- currents are regulated by extracellular 
pH, Cl- and Ca2+ (52). Another study showed that ClC-2 may 
contribute to cell volume regulation following hyposmotic 
stress produced by outwardly rectifying Cl-currents, however, 
cell volume regulation in T84 cells is independent of ClC-2 
activity (59).

ClC-2 inwardly/outwardly rectifying Cl- currents are simul-
taneously found in rat type IV spiral ligament fibrocytes (52), 
and they are modulated by extracellular pH, Cl- and Ca2+. 
According to previous studies, at least two chloride channels 
are involved in modulating membrane anion conductance (52). 
Another study on Cl- currents in rabbit heart cells suggested 
that rabClC-2α/2β may provide two homologous protein 
kinase A-activated chloride anion channels, with or without 
extracellular hypotonicity (60).

4. Functional properties of ClC‑2

Previous studies have shown that ClC-2 has several functional 
properties, including effects on cell volume (2,4,20,35,61), the 
digestive system (11,16,18,19,62-64), the eye (65-67), respira-
tory system (11,24,26,68-70), circulatory system (35,71-75) 
and nervous system (76). In addition, several studies have 
reported the functions of the NH2 terminus (77) and carboxy 
terminus (78) in ClC-2, and the similar functional properties 
between chloride-selective ion channels, including ClC-2, in 
protozoa (79-82).

Regulation of cell volume. The activation of ClC-2 in response 
to cell swelling and low extracellular pH is involved in the 
dissociation of an NH2-terminal region of ClC-2 (10). The 
dephosphorylation of serine/threonine residues in the channel or 
an associated protein appears to be necessary for current activa-
tion following cell swelling in T84 cells (53) and for a ClC-2-like 
current in ascidian embryo cells during the cell cycle (83). 
Hypotonic cell swelling activates an outwardly rectifying 
anionic conductance, with different characteristics from those 
of ClC-2 previously reported (84). The endogenous currents 
suggest that protein tyrosine phosphorylation is involved in the 
signal transduction pathway in certain cell types (85-87), and 
that epidermal growth factor enhances the hypotonicity-induced 
anionic efflux (85). However, tyrosine kinase p56lck activates 
these swelling-sensitive chloride channels without cell swelling, 
even during cell shrinkage, in lymphocytes (88).

Effect of ClC‑2 on the digestive system. Nehrke et al (62) 
detected the regulatory volume decrease following cell 
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swelling, which showed that ClC-2 can control cell volume 
in mouse parotid acinar cells. Others functions of ClC-2 have 
been reported, including HCl secretion across the parietal cell 
secretory membrane in the rabbit gastric mucosa (19), medi-
ating the basolateral membrane exit of Cl- in the distal colon 
of guinea pigs (16), regulating gastric acid secretion (11,18,63), 
and affecting gastric glands and its cell layers (63). However, 
one study suggested that ClC-2 may not be a Cl--transporting 
protein for gastric acid secretion in parietal cells (64).

Effect of ClC‑2 on the eye. Previous studies have shown that 
CIC-2 has a protective effect on trabecular cells under pressure 
stress (65), can regulate the inward rectification in Drosophila 
retinal photoreceptors (66), and can modulate cellular volume, 
intracellular Cl- and other cellular functions in trabecular 
meshwork cells (67).

Effect of ClC‑2 on the respiratory, circulatory and nervous 
systems. ClC-2 is gestationally regulated and is predominantly 
expressed in the fetal lung (26,68). Cystic fibrosis trans-
membrane conductance regulator (CFTR)‑independent fluid 
accumulation is induced by keratinocyte growth factor in fetal 
lung explants (69), and keratinocyte growth factor is necessary 
for ClC-2-like pH-sensitive Cl- secretion in the fetal airway 
epithelia (24). It has been shown that ClC-2 affects fetal lung 
fluid production and lung cyst morphology (70).

It has been reported that a novel Cl- inward rectifier channel 
is found in the cardiac atrial and ventricular myocytes of 
several species, including the guinea pig (71-73), mouse (71,73) 
and rat (72-75). The Cl- inward rectifier channels have proper-
ties of activation by hypotonic cell swelling and extracellular 
acidification, inward rectification, time‑dependent slow activa-
tion and Cd2+-sensitive inhibition (71-75). Experiments have 
shown that ClC-2 affects the positive chronotropic effect of 
acute exercise stress (73) and modulates cardiac pacemaker 
activity (73), but cannot alter intrinsic heart rate (73).

Another study (76) investigating the effect of ClC-2 on 
inhibitory interneurons showed that membrane voltage-/intra-
cellular chloride-dependent ClC-2 can selectively regulate 
GABAA receptor (GABAA R)-mediated synaptic inputs from 
basket cells.

5. Mechanisms of ClC‑2 regulation by regulators

Cell swelling can increase ClC-2 activity (2,9), and ClC-2 
can be activated by hyperpolarization (3,9), extracelluar 
hypotonicity (2) and extracellular acidification (9,10). 
Previous studies have shown that ClC-2 is also regulated 
by hormones (89-91), drugs (92-100), proteins (101-107), 
kinases (108-114), transcription factors (115,116), inhibi-
tors (117-120), scorpion venom (121), α1-adrenoceptor (122), 
Plasmodium berghei (123), adenosine triphosphate (124,125), 
ClH3 (40,126-137), permeant anions (138,139), membrane 
cholesterol (140) and the tyrosine endocytosis motif (141).

Regulation of ClC‑2 by hormones. Thyroid hormones (T3 and 
T4) can regulate renal function (142,143), Na+/K+ ATPase (144), 
Na+/H+ exchanger (145), and affect kidney growth and 
development (146). Previous studies have demonstrated that 
hyperthyroidism and hypothyroidism are associated with 

chloride (147,148), and the reversal of glomerular filtration 
by T4 is observed in patients with hypothyroidism (149). In 
addition, a previous study (89) on T4 suggested that ClC-2 is 
involved in chloride transport regulated by thyroid hormones 
in rat renal proximal tubules.

Estrogen is associated with a decrease in the urinary 
excretion of sodium and chloride (150-153). A study by 
Nascimento et al (90) showed that ClC-2 may be involved 
in estrogen-induced Cl- transport in the rat kidney. Another 
study (91) showed that ClC-2 is also involved in the rat renal 
tubule transcellular chloride transport regulated by arginine 
vasopressin, a neurohypophysial hormone.

Regulation of ClC‑2 by drugs. Lubiprostone can induce 
intestinal fluid secretion (154), treat constipation (155-157) 
and activate ClC-2 Cl- currents in a concentration-dependent 
manner (94), and ClC-2 can recover mucosal barrier function in 
the ischemia-injured intestine (92). Studies have shown that the 

Figure 1. Basic structure of ClC-2 as a two-pore homodimeric channel. ClC-2 
is a double-barreled channel with two identical, predominantly independent 
pores. (A) 18 α-helices are labeled A-R, and the two similar halves within 
the transmembrane domain (α-helices B-I and J-Q), which are oriented in 
opposite directions to the membrane, and are shown in green and cyan. The 
sequence regions, which contribute to the Cl- selectivity filter, are indicated 
by orange arrows, and the respective conserved sequences are shown; CBS1 
is colored red and CBS2 is colored blue. (B) Structure viewed from the extra-
cellular side. The two subunits of the homodimeric protein are shown in red 
and blue, and bound anions are shown in green. ClC-2, chloride channel 2; 
CBS, cystathionine-β-synthase.
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activation of ClC-2 by lubiprostone can stimulate the recovery of 
intestinal barrier function in the ischemia-injured porcine ileum 
and colon (93), and may have a protective and therapeutic effect 
on murine models of colitis (99). The prostaglandin E2 receptor 
4 [EP (4)] receptor (94-97) can stimulate ClC-2 and CFTR chlo-
ride channels, and it has been shown (98) that lubiprostone can 
activate CFTR by the EP (4) receptor in oocytes. The Chinese 
medicinal compounds Guanxinkang and diltiazem hydrochlo-
ride can decrease the mRNA and protein expression of ClC-2 in 
rats with myocardial ischemia reperfusion injury (100).

Regulation of ClC‑2 by proteins. The functional expres-
sion and activation of ClC-2 is reduced by dynein (a protein 
complex) (101) and p34cdc2/cyclin B (102), however, the 
inrerferon-γ glycoprotein can activate ClC-2 in lung epithe-
lial cells through mRNA stabilization, and increase ClC-2 
transcripts in Calu-3 cells (107). ClC-2 is regulated by protein 
phosphatase 1 (102), interactions between the actin cytoskel-
eton (a filamentous protein structure) and the N‑terminus of 
ClC-2 (104). M phase‑specific p34cdc2/cyclin B can phosphory-
late the ubiquitination of ClC-2 (103). Heat shock protein 90 
can increase ClC-2 current amplitude and the intracellular Cl- 
concentration, and enhance channel sensitivity to intracellular 
Cl- (105). ClC-2 is also associated with the transmembrane 
glycoprotein, GlialCAM, in the brain, and GlialCAM can 
involve ClC-2 in the homeostasis of myelin, which is defective 
in leukodystrophy (106).

Regulation of ClC‑2 by kinases. ClC-2 membrane abun-
dance is increased by serum and glucocorticoid inducible 
kinases (SGKs) and decreased by NEDD4-2, an enzyme 
of the NEDD4 family (108). In rats, protein kinase A can 
directly phosphorylate ClC-2, whereas protein kinase C and 
Ca2+/calmodulin-dependent protein kinase II cannot (113). 
PIKfyve is a FYVE finger-containing phosphoinositide 
kinase (158) and is a potent stimulator of ClC-2-activity (112), 
which can contribute to the SGK1-dependent regulation of 
ClC-2 (112).

Janus kinase (JAK) 2 and JAK3 (tyrosine kinase) can down-
regulate the activation of ClC-2 and offset Cl- exit (109,111), 
however, their functions and regulatory mechanism are 
different. JAK2 is involved in the signaling of leptin (159), 
growth hormones (160), erythropoietin, thrombopoietin, 
granulocyte colony-stimulating factor (161) and a variety of 
cytokines (161,162). JAK2 inhibitors can treat myeloprolif-
erative disorders (163-170), and JAK2 can be activated by 
hyperosmotic shock (171,172). By contrast, JAK3 can promote 
proliferation and act against the apoptosis of lymphocytes 
and tumor cells (173-177). It is also present in acute mega-
karyoplastic leukemia (178,179). Therefore, cell proliferation 
and apoptosis is associated with Cl- channel activity (110). In 
addition, the substitution of lysine by alanine can inactivate 
JAK3 (180). In addition to JAK2 and JAK3, SPS1-related 
proline/alanine-rich kinase and oxidative stress-responsive 
kinase 1 can also downregulate ClC-2 (114).

Regulation of ClC‑2 by transcription factors. The Sp1 and Sp3 
transcription factors can control the rate of transcription of 
genetic information from DNA to messenger RNA (181,182). 
Reducing interactions between Sp1 or Sp3 and the ClC-2 

promoter can lead to a postnatal decrease in the expression 
of ClC-2 in lung epithelia (116). In addition, the glycosylation 
of SP1 produces the 105-kD isoform of SP1 and is involved in 
regulating the expression of ClC-2 (115).

Regulation of ClC‑2 by inhibitors. Previous studies have 
shown that ClC-2 is inhibited by methadone (117), gating 
modifier of anion channels 2 (GaTx2) (118), DIDS (119) and 
5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) (120). 
However, DASU-02, as an inhibitor of common chloride 
channels, cannot inhibit ClC-2 (117). The inhibitory effects 
on ClC-2 by these inhibitors are entirely different. Methadone 
can inhibit the activities of ClC-2, which shows that ClC-2 
may be involved in chloride anion secretion (117). GaTx2, as 
a peptide toxin inhibitor of ClC-2, can inhibit channel activa-
tion gating, but not other chloride channels or voltage-gated 
potassium channels (118). DIDS can significantly reduce 
the increased mRNA and protein levels of ClC-2 following 
ischemia-hypoxia damage (119). NPPB, as a ClC inhibitor, can 
affect the phagocytosis of human trabecular meshwork cells, 
which shows that ClC-2 may be involved in the regulation of 
its phagocytic process (120).

Other factors in the functional regulation of ClC‑2. According 
to previous studies, in addition to the above-mentioned regula-
tory mechanisms, scorpion venom (121), α1-adrenoceptor (122), 
Plasmodium berghei (123), adenosine triphosphate (124,125), 
ClH3 (137), GABAAR (40,126-128), permeant anions (138,139), 
membrane cholesterol (140) and β-cyclodextrin sensitive 
clusters (141) can also regulate or affect ClC-2. A peptide 
of scorpion venom can induce slower activation kinetics of 
ClC-2 (121). α1-adrenoceptor activation can significantly 
reduce protein levels of ClC-2 in the villus and crypt epithelial 
cells from the acutely denervated jejunum, but not the inner-
vated jejunum (122). The activation of ClC-2 is involved in the 
altered permeability caused by Plasmodium berghei infection 
in Plasmodium berghei-infected mouse CLCN2 (123). ATP 
not only decelerates ClC-2 common gating for sufficient 
electrical stability of neurons (124), it also alters its surface 
expression (125). Intra-/extra-cellular permeant anions 
can affect the Vm-dependence of ClC-2 (138). Specially, 
Cl- as a permeant anion can increase pore occupancy, thus 
obstructing the closure of the protopore gate of ClC-2 (139). 
In addition, alterations in the (Cl-)i between 10 and 200 mM 
can decelerate ClC-2 channel closing at a positive Vm (139). 
Membrane cholesterol can regulate the activation of ClC-2, 
and the increased activation of ClC-2 is involved in the relo-
calization of ClC-2 to detergent-soluble microdomains (140). 
β-cyclodextrin sensitive clusters with other molecules can 
mantain ClC-2 activity (141).

Previous studies have reported that ClH3 encodes the 
Caenorhabditis elegans homologs of ClC-2 (129-131). 
ClH3-dependent regulation not only alters the voltage depen-
dence of ClC-2 channels and inhibits hereditary sensory 
neuropathy (HSN) excitability (137), but may also affect 
chloride influx (137) in Caenorhabditis elegans. However, 
the chloride efflux pathway of ClC-2 is associated with 
synaptic inhibition regulated by the GABAAR (40,126-128). 
In addition, the HSNs can release acetylcholine, serotonin and 
multiple neuropeptides (133-136), which excite the VC motor 
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neurons (132). These functions of HSNs may be associated 
with clh-3-dependent regulation and the voltage dependence 
of ClC-2 channels.

6. Diseases associated with ClC‑2

Previous studies have shown that disruption and abnormity 
of ClC-2 can cause a number of diseases, including ophthal-
mological disease (11,183-185), otorhinolaryngological 
disease (186), disease of the reproductive system (11,187), 
disease of the respiratory system (188), disease of the digestive 
system (189-194), disease of the hematological system (195), 
genetic diseases (23,25,26,42,44,74,76,196-198), diseases 
of the nervous system (30,40,41,168,199-212) and metabolic 
diseases (213). The majority of studies have focused on 
diseases of the nervous system.

Ophthalmological and otorhinolaryngological disease 
associated with ClC‑2. Severe degeneration of the retina 
occurs in ClC-2-knockout mice, although no other notable 
eye abnormalities are present (11). Possible reasons for degen-
eration of the retina caused by ClC-2-knockout include the 
following (11): i) ClC-2 disruption causes the death of photo-
receptor cells; ii) depletion of ClC-2 may impair the transport 
and alter the ionic environment of photoreceptors. Other 
studies on ophthalmological diseases associated with ClC-2 
include Sjögren's syndrome (183,184,214-218) and age-related 
cataracts (185).

Sjögren's syndrome is a chronic autoimmune disease, 
and previous studies have shown that eye diseases caused 
by Sjögren's syndrome are primarily through the destruc-
tion of lacrimal glands (LGs) (214), keratoconjunctivitis 
sicca (215). In addition, LG pathologic properties in Sjögren's 
syndrome appear in rabbits induced by autoimmune dacryo-
adenitis (216-218). Acini and interlobar ducts have the lowest 
mRNA abundance of ClC2γ, and the intralobar duct has 
the highest (183,184), and alterations in ClC2γ may alter 
lacrimal secretion, particularly Cl- transport (184). The causes 
of age-related cataracts include aging, inheritance, local 
nutritional disorders, immune and metabolic abnormalities, 
trauma, poisoning and radiation. According to a study by 
Ouyang (185), the expression level of ClC-2 is associated with 
the development of age-related cataracts.

Reports on otorhinolaryngological diseases associated 
with ClC-2 are limited, however, Li et al reported on the patho-
genesis of nasal polyps. The study (186) showed that ClC-2 
was not expressed in normal nasal mucosa, however, ClC-2 
proteins were expressed in epithelial cells and sub-epithelial 
mucous glands in patients affected with nasal polyps. This 
suggested that ClC-2 is involved in the pathogenesis of nasal 
polyps.

Diseases of the reproductive system associated with ClC‑2. 
In previous studies, a number of diseases of the reproductive 
system have been associated with ClC-2, including degenera-
tion of the testes (11) and azoospermia (187,219,220).

It was shown that severe degeneration of the testes appears 
in ClC-2-knockout mice, however, no other reproductive abnor-
malities are observed (11). A study by Bösl et al suggested 
that ClC-2 disruption causes the death of germ cells, impaired 

transport and alterations to the ionic environment of germ 
cells, and that germ cells rely on the transepithelial transport 
mediated by Sertoli cells (11).

Azoospermia is a medical condition in which males do not 
have a measurable level of sperm in their semen, and is associ-
ated with low levels of fertility or infertility. Its pathogenesis 
involves CFTR disruption in CF, affecting male fertility (219). 
In addition, the male sterility resulting from reduced fluid 
volume is associated with disruption of Cl- channels from 
other ClCN genes (220). Another study (187) by Edwards et al 
reported that ClCN2nmf240 homozygotes have azoospermic 
symptoms severe degradation of spermatogenesis, and short-
ages of spermatocytes, spermoblasts and sperm.

Diseases of the respiratory system associated with ClC‑2. 
Reports on diseases of the respiratory system associated with 
ClC-2 are limited. A previous study (188) reported that ClC-2 
may be important in the invasion, development and occurrence 
of lung cancer, and that ClC-2 may be a novel molecular target 
for clinical therapy in non-small cell lung cancer.

Diseases of the digestive system associated with ClC‑2. There 
have been several reports on diseases of digestive system asso-
ciated with ClC-2, including constipation (18,26,189-193,221) 
and repair of impaired intestinal mucosa barrier (194).

CFTR is major chloride channel regulating chloride 
secretion in the small intestine (221), however, ClC-2 can also 
regulate chloride secretion (18,26). Hypotonicity can also acti-
vate chloride currents in the rat ileum (189). Several studies 
have reported that ClC-2 is expressed in the intestinal epithe-
lium, in T84 human intestinal cells, rat intestinal tissue (3) and 
the murine duodenum (190). In addition, previous studies have 
shown that ClC-2 can regulate chloride secretion in rodent 
neonatal airways (26), and regulate gastric chloride secre-
tion (18). However, another study (191) described contradictory 
findings, reporting that ClC‑2 was not involved in Cl- secre-
tion, but was involved in Cl- absorption in the distal colon. 
According to these studies, ClC-2 inhibitors may be used to 
treat constipation by decreasing NaCl and water absorption in 
the colon (191).

Irritable bowel syndrome (IBS) is characterized by 
chronic abdominal pain, discomfort and bloating associated 
with altered bowel habits, including diarrhea and/or constipa-
tion. Current therapy for constipation caused by IBS has side 
effects, including deterioration of the condition or electrolyte 
disturbances (192). Previous studies have shown that, in addi-
tion to the above-mentioned side effects, lubiprostone can also 
increase gut motility and frequency of stool passage, relieve 
abdominal pain and discomfort (192), stimulate chloride 
secretion and improve bowel function (193).

A previous study (194) by Chen et al reported that the acti-
vation of ClC-2 can activate tight junction proteins and repair 
impaired intestinal mucosa barrier. In addition, ClC-2 and tight 
junction proteins are involved in maintenance of the intes-
tinal mucosal barrier, and acute biliary obstruction-induced 
destruction of the intestinal mucosa barrier is associated with 
ClC-2 in enterocytes (194).

Diseases of the hematological system associated with ClC‑2. 
There have been few studies on diseases of the hematological 
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system associated with ClC-2. A previous study reported the 
expression of swelling-and/or pH-regulated ClC-2 chloride 
channels in human leukemia (195). In addition, it was suggested 
that the molecular identification of chloride channels may 
provide a novel approach for the treatment of leukemia (195).

Genetic diseases associated with ClC‑2. According to previous 
reports, there have been several studies on the association 
between CF and ClC-2 (3,11,23,25,26,68,70,196-198,222,223). 
Several studies have reported that ClC-2 may be an alternative 
pathway for chloride anion secretion in CF (3,11,23), and that 
ClC-2 is a potential target for therapy in CF (25,197). CF is a 
genetic disease, which primarily affects the lungs, in addition 
to the pancreas, liver, kidneys and intestine (222). CF is caused 
by mutations in the gene encoding CFTR, the only member of 
the ABC transporter family known to be a cAMP-activated 
chloride channel (223). ClC-2 is a candidate alternative 
chloride channel in respiratory epithelia (196). ClC-2 is also 
involved in lung morphogenesis (26,68), and can conduct chlo-
ride in mature respiratory epithelia (23,25,197). ClC-2 mRNA 
and protein are expressed in unaffected tissues in CF, which 
may make up for defects in the expression of CFTR (68).

However, another previous study (198) reported that 
ClC-2 is unlikely to be a candidate rescue channel in CF, as 
disruption of ClC-2 and CFTR channel genes did not cause 
morphological alterations in the intestine, lung or pancreas 
affected by CF; neither disrupted ClC-2 or CFTR reduced 
Cl- secretion (198). In addition, two studies (70,196) refer to 
the importance of detecting modifications of CF by ClC‑2, and 
underlined the importance of examining potential polymor-
phisms in subjects affected with CF and potential mutations in 
the coding region of ClC-2.

Diseases of the nervous system associated with ClC‑2. There 
have been more studies on diseases of the nervous system 
associated with ClC-2, compared with other diseases associ-
ated with ClC-2. Studies on diseases of the nervous system 
associated with ClC-2 have predominantly focused on leukoen-
cephalopathy (199-202,224) and epilepsy (30,40,203-212,225).

Leukoencephalopathy can refer specifically to any of the 
following diseases: Progressive multifocal leukoencepha-
lopathy, toxic leukoencephalopathy, leukoencephalopathy with 
vanishing white matter, leukoencephalopathy with neuroaxonal 
spheroids, reversible posterior leukoencephalopathy syndrome, 
megalencephalic leukoencephalopathy with subcortical cysts 
(MLC) and hypertensive leukoencephalopathy. Among these, 
MLC is a rare type of leukodystrophy, which is characterized 
by macrocephaly emerging in the first years of life (224).

The disruption of ClC‑2 can cause fluid accumulation 
resulting in myelin vacuolation in mice, similar to that 
observed in humans affected with MLC from mutations in 
MLC1 or GlialCAM. GlialCAM is a ClC-2 binding partner 
and the first auxiliary subunit of ClC‑2 (199). According to 
a study by Jeworutzki et al (199), neither the stimulation of 
GlialCAM on ClC-2 currents, nor mislocalization of this Cl- 
channel were found to damage glial Cl- transport. Mutated 
GlialCAM in MLC can target ClC-2 to cell contacts in glia and 
activate its currents (200). A study by Jeworutzki et al (200) 
showed that GlialCAM can target the common gate defi-
cient ClC-2 mutant, E211V/H816A, to cell contacts without 

altering its function. Another study suggested that ClC-2 is 
not important for MLC1 or GlialCAM localization in the 
brain (201), but that it is involved in the pathogenesis of 
MLC (201).

However, a separate study (202) reported different conclu-
sions, as there was no evidence that the CLCN2 gene is 
associated with MLC. Despite not referring to the association 
between the CLCN2 gene and MLC, this study demonstrated 
that mice lacking the ClC-2 protein had white matter abnor-
malities with vacuole formation in myelin sheaths, similar to 
the intramyelinic vacuoles in MLC.

Epilepsy comprises a set of neurological diseases 
characterized by epileptic seizures, and a heterogeneous 
disorder characterized by recurrent unprovoked seizures, 
which affect ~1-3% of the population during their life-
times (225). ClC-2 mRNA and protein are found in neurons 
and astrocytes (30,40,203). In addition, ClC-2 protein is 
present at the end feet of astrocytes contacting blood vessels 
and neurons close to inhibitory synapses (30). Inwardly 
rectifying hyperpolarization-activated ClC-2-like currents 
are found in hippocampal pyramidal cells (40,127) and 
in astrocytes (204-207). In hippocampal pyramidal cells 
and astrocytes (208), ClC-2 may have different effects. In 
neurons, ClC-2 can prevent the accumulation of chloride 
anions above equilibrium due to the activation of ClC-2 by 
intracellular Cl- (41,127). Under these conditions, GABAA R 
activity may become excitatory (208). A previous study (208) 
reported that loss of function mutations of ClC-2 lead to 
increased excitability in certain neurons, and that hyperpo-
larization-activated chloride currents are detected in cortical 
astrocytes, but absent in tissues from ClC-2-null mice (207). 
Another study (211) showed that several ClC-2 sequence 
abnormalities previously found in patients affected with 
epilepsy are likely to represent innocuous polymorphisms, 
detected by sequencing of a large collection of human DNA 
and electrophysiological analysis.

Several other studies have reported that a susceptibility 
locus for idiopathic generalized epilepsy (IGE) is on chromo-
some 3q26 (the location of the CLCN2 gene) (209), and three 
mutations on ClC-2 cosegregated with IGE with autosomal 
dominant inheritance (210) have been identified.

In addition to the above-mentioned studies on the asso-
ciation between epilepsy and ClC-2, an association between 
temporal lobe epilepsy (TLE) and ClC-2 has been reported. 
TLE with spontaneous recurrent attacks, and learning and 
memory disabilities, is associated with neurodegeneration, 
abnormal reorganization of the circuitry and loss of functional 
suppression in hippocampus (212). A study by Ge et al reported 
that ClC-2 contributes towards tonic inhibition, modulated by 
α5 subunit-containing GABAA Rs in the CA1 area (212).

Metabolic diseases associated with ClC‑2. Few studies 
on metabolic diseases associated with ClC-2 have been 
performed, however, a study on diabetes mellitus was found. 
Diabetes mellitus is a metabolic disease, which gener-
ally causes chronic delayed wound healing. In a study by 
Pan et al (213), a high glucose concentration inhibited kerati-
nocyte migration by downregulating ClC-2, suggesting ClC-2 
may be important during delayed wound healing processes. 
In addition, the study reported that ClC-2 is an important 
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modulator of cell migration in keratinocytes, although it  
did not discuss how ClC-2 is involved in keratinocyte  
migration.

7. Conclusion

With the continuous progress in experimental and clinical 
studies on the ClC family, it is clear that the activation of ClC-2 
occurs via hyperpolarization (3,9), cell swelling (2,9), extracel-
luar hypotonicity (2) and extracellular acidification (9,10), and 
that the expression of ClC-2 is ubiquitous (3,11) in ureteric bud 
cells (12), the intestine (13-17), gastric parietal cells (18,19), 
the liver (20), the lungs (21-25), rat retina (27), parotid acinar 
cells (28), guinea pig cardiac muscle (29), neuronal cells (30), 
rat and human airways (17), bovine trabecular meshwork (31), 
human trabecular meshwork (32,33) and rat trabecular mesh-
work (34). Although there has been progress in understanding 
the CLCN2 gene, the molecular structure of the ClC-2 protein, 
the structure of ClC-2 chloride channels, and the functional 
properties and mechanisms regulating ClC-2, they remain to be 
fully elucidated and there have been contradictions in previous 
studies (226). According to previous studies, it is known that 
the disruption of ClC-2 can lead to several diseases. Although 
ClC-2 is associated with the pathogenesis of several diseases, 
the association between pathogenesis and ClC-2 remains to be 
fully elucidated.

At present, >6,500 types of genetic disease have been iden-
tified, among which ~3,000 are caused by a single gene defect. 
In this review, the mechanisms underlying the association 
between the CLCN2 gene and diseases, including azoospermia 
and IGE, were discussed. In the future, investigations focused 
on the determination of the CLCN2 gene may identify novel 
methods to treat and prevent several diseases associated with 
ClC-2. In addition, as the overexpression and underexpression 
of ClC‑2 can cause diseases, the development of specific ClC‑2 
activators and inhibitors, and understanding the mechanism of 
action between the functional properties of ClC-2 and these 
activators and inhibitors, is required in future investigations to 
regulate the expression of ClC-2.

As described above, ClC-2 can be regulated by hormones, 
drugs and scorpion venom. Certain hormones in humans are 
produced in small quantities, however, they have a substantial 
effect on health, with underproduction or overproduction 
leading to a variety of diseases. In addition, scorpion venom 
can be used to treat cancer and lower blood pressure, and is 
applied for hemostasis, anticoagulation, as an analgesic and a 
nerve growth factor. Therefore, future investigations focused 
on the regulatory mechanisms of hormones, drugs and scor-
pion venom may assist in developing specific drugs for treating 
diseases associated with ClC-2.

In conclusion, ClC-2 is important in several diseases and, 
in order to fully elucidate the structure and function of ClC-2, 
and the mechanisms regulating ClC-2 associated with disease 
treatment, examining the associations between ClC-2 and 
regulators, including hormones, proteins, kinases, transcrip-
tion factors, scorpion venom, adenosine triphosphate, clh-3, 
permeant anions, membrane cholesterol, tyrosine endocytosis 
motif and α1-adrenoceptor is required to develop novel treat-
ment strategies. Therefore, further investigations are required 
in the future.
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