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P H Y S I C S

Entanglement-induced collective 
many-body interference
Tommaso Faleo1*, Eric Brunner2†, Jonathan W. Webb3, Alexander Pickston3, Joseph Ho3,  
Gregor Weihs1, Andreas Buchleitner2,4, Christoph Dittel2,4,5, Gabriel Dufour2,  
Alessandro Fedrizzi3, Robert Keil1*

Entanglement and interference are both hallmark effects of quantum physics. Particularly rich dynamics arise when 
multiple (at least partially) indistinguishable particles are subjected to either of these phenomena. By combining both 
entanglement and many-particle interference, we propose an interferometric setting through which N-particle inter-
ference can be observed, while any interference of lower orders is strictly suppressed. We experimentally demonstrate 
this effect in a four-photon interferometer, where the interference is nonlocal, in principle, as only pairs of photons 
interfere at two separate and independent beam splitters. A joint detection of all four photons identifies a high-visibility 
interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.

INTRODUCTION
Entanglement is arguably one of the most fascinating and powerful 
phenomena arising in quantum physics. If two or more quantum 
objects are entangled, then they can no longer be described as inde-
pendent entities; instead, their properties are interlinked through 
their associated degrees of freedom (dof), regardless of how these 
dof are measured and how far apart the objects are from each other 
(1). This effect has been famously and unambiguously demonstrated 
in Bell inequality tests (2, 3), and it enables a rich variety of applica-
tions within the fields of quantum communication (4–6), quantum 
computation (7–9), and quantum simulation (10, 11).

A similarly fundamental effect is given by two-particle (2P) in-
terference, as first observed by Hong, Ou, and Mandel (HOM) (12) 
via the absence of photon pair coincidences at the output of a bal-
anced beam splitter. HOM interference has emerged as one of the 
most widely used quantum effects in the field of photonics (13), 
and it requires indistinguishability of the involved particles. Spe-
cifically, particles must not be identifiable by their internal states, 
the states of those dof that do not participate in the dynamics, thus 
forbidding the retrieval of 2P which-way information (14, 15). The 
HOM experiment represents a starting point for the exploration of 
multiparticle interference phenomena, and its generalization to 
larger-scale N-particle (NP) systems (16–18) finds applications in 
fundamental tests of quantum mechanics (19) and in the advance-
ment of quantum technologies (20, 21). However, NP interference 
for N > 2 is inherently more complex than the HOM effect. The rich 
spectrum of multiparticle interference terms stemming from the 
various particle-exchange processes gives rise to nontrivial behav-
iors, especially when partial distinguishability among the particles 
is introduced (18, 22, 23). Therefore, a substantial challenge is to 

discern genuine NP interference (not reducible to independent in-
terference processes of 2 ≤ m < N particles), which has, in particu-
lar, been tackled by examining specific signatures of this interference 
(24–28) and by identifying instances of totally destructive NP inter-
ference, which generalize the HOM scenario (17, 29–32). These 
destructive NP interferences arise from the cancellation of many-
particle transition amplitudes in the complex plane, reminiscent of 
selective excitations of N-quanta transitions in nuclear magnetic 
resonance (33). Recent experimental observations (34, 35) have, 
furthermore, demonstrated the presence of genuine multiparticle 
interference witnessed by its dependence on a collective geometric 
phase that is determined by the internal quantum state of all N par-
ticles. The emergence of this collective NP phase can be attributed 
to carefully engineer internal states of the particles, as well as the 
specific structure of the interference terms, involving cyclic permu-
tations of all N particles (36).

Here, we propose and experimentally demonstrate an interfer-
ence effect to realize genuine NP interference by combining the con-
cepts of entanglement and many-body interference. In particular, 
we show that, by using entanglement between a subset of particles 
at the input of separate interferometers, full-contrast interference 
fringes emerge for the NP correlator as a function of a collective NP 
phase, while the signals of all lower-order correlators remain inde-
pendent of the involved phases. In contrast to the realization of NP 
phases of previous approaches (34, 35), which necessitate the engi-
neering of an N-dimensional internal Hilbert space and the mixing 
of all particles in an N-cyclic interferometer, here, only a two-
dimensional internal Hilbert space and pairwise exchanges of par-
ticles at separate beam splitters are needed to induce collective NP 
interference.

By virtue of its design, the entanglement-induced collective NP 
interference effect presented here exhibits full interference contrast 
for arbitrarily large numbers of particles and is, by construction, 
independent of the spatial separation between the beam splitters, 
such that the resulting collective many-body interference can be 
realized in a nonlocal fashion. Multiparticle interference in disjoint 
interferometers is otherwise only known from Franson-interference 
(37, 38), which relies on maximally entangled states in the energy-
time dof intrinsically linked to the photon generation process. In 
contrast, the entanglement-induced collective phase shown in this 

1Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, 
Austria. 2Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-
Herder-Straße 3, 79104 Freiburg, Germany. 3Institute of Photonics and Quantum 
Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, 
Edinburgh EH14 4AS, UK. 4EUCOR Centre for Quantum Science and Quantum 
Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 
Freiburg, Germany. 5Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität 
Freiburg, Albertstraße 19, 79104 Freiburg, Germany.
*Corresponding author. Email: tommaso.​faleo@​uibk.​ac.​at (T.F.); robert.​keil@​uibk.​
ac.​at (R.K.)
†Present address: Quantinuum, Partnership House, Carlisle Place, London SW1P 1BX, UK.

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution 
NonCommercial 
License 4.0 (CC BY-NC). 

mailto:tommaso.​faleo@​uibk.​ac.​at
mailto:robert.​keil@​uibk.​ac.​at
mailto:robert.​keil@​uibk.​ac.​at


Faleo et al., Sci. Adv. 10, eadp9030 (2024)     30 August 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 8

work can be imprinted on any bosonic state with a two-dimensional 
internal Hilbert space.

RESULTS
Many-body interference and collective phases
In a general interference scenario among N particles, as depicted in 
Fig. 1A for N = 4 unentangled particles, each input mode mi = 1, …, N 
of the multiport interferometer is occupied by a single particle, which 
carries some internal dof (illustrated by the particle’s color in Fig. 1). 
Interference effects across the multiport manifest through correlations 
of the particle numbers at the output ports of the interferometer. We 
specifically consider correlations between the occupations of k ≤ N 
distinct modes p1, …, pk. Denoting by U the single-particle unitary 
matrix describing the transformation between input and output modes 
(henceforth termed external modes) implemented by the interfero
meter, the expectation value of such a k-point correlator is given by

where the external number operator Np counts the number of par-
ticles in output mode p, irrespective of their internal state. In terms of 
the operator apα annihilating a particle with internal state ∣α⟩ in ex-
ternal mode p, the external number operator reads Np =

∑
α a

†
pαapα , 

where the sum runs over a basis of the internal Hilbert space.
Because it involves products of k creation and k annihilation 

operators, the k-point correlator Np1
…Npk

 is an example of a k-
particle (kP) observable (27, 39, 40). As a consequence, for k < N, it 
only probes the reduced state ρ(k)

ext
 , obtained by tracing out the inter-

nal dof and (N − k) particles from the input state (27, 41, 42). Spe-
cifically, the matrix elements 

⟨
m
|||ρ

(k)
ext

|||n
⟩

 appear in Eq. 1, with ∣m⟩ = 
∣ m1⟩ ⊗ … ⊗ ∣ mk⟩ being the tensor product of the external single-
particle basis states ∣mi⟩, corresponding to the particle occupying 
input port mi of the interferometer, and analogously for ∣n⟩. The 
nonzero matrix elements 

⟨
m
|||ρ

(k)
ext

|||n
⟩

 are indexed by tuples m and n 
that are connected by a permutation π ∈ Sk in the symmetric group 
Sk of their k entries: n = π(m) = (mπ−1(1), …, mπ−1(k)). The off-
diagonal matrix elements (m ≠ n) are called kP coherences.

⟨
Np1

… Npk

⟩
=

N !

(N − k) !

∑

m,n

k∏

i=1

Upimi
U∗

pini

⟨
m
|||ρ

(k)
ext

|||n
⟩

(1)

Fig. 1. Many-particle interference and collective phases. (A) In a fully connected interferometer with single-particle unitary matrix U (here 4 × 4), multiple exchange processes 
among combinations of input-output channels contribute to specific output events. The reduced 2P state associated with the second (yellow) and the fourth (red) particles contributes 
to the two-point correlator 〈N3N4〉 via the 2P transitions indicated by the solid and dashed lines. The interference of these two 2P paths is encoded in the 2P coherence at the bottom 
of the panel, which is associated with the permutation π = (1 2) obtained by taking one 2P path in the forward direction (dashed lines) followed by the other one in the backward direc-
tion (solid lines) (60). The matrix elements of U weigh these contributions, as well as the contributions from all other 2P sets. Similar considerations apply to all correlators from combina-
tions of different output modes. (B) The four-particle (4P) coherence corresponding to the depicted four-cyclic permutation leads to a genuine 4P interference that depends on a 
collective phase ϕ. This collective phase is set by the summation of phases ϕij (see section on Many-body interference and collective phases), resulting from the overlaps of the 
particles’ internal states along a “circle-dance” graph representative of the permutation process (35, 36), as depicted at the bottom of the panel. (C) A genuine entanglement-induced 
4P interference can be achieved by interfering entangled particles (blue envelope) with particles in separable states in two independent and separate beam splitters. In this process, 
the entanglement induces a collective 4P phase term ϕ, set by the internal states of all particles, through the two 2P permutations in π = (1 2)(3 4). The collective phase ϕ only affects 
the four-point correlator and introduces full-contrast interference fringes: 〈N1N2N3N4〉 ∝ cos2(ϕ/2) (see section on Scheme for entanglement-induced collective interference).
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In the traditional scenario where each particle in mode mi is as-
sociated with a particular internal quantum state ∣ξmi⟩, correspond-
ing to an input product state �Ψ⟩ = a†

m1,ξm1

… a†
mN ,ξmN

�0⟩ , all matrix 
elements are set, up to a multiplicative constant, by the overlaps be-
tween the internal states of the particles in the specific k modes

Therefore, these overlaps, i.e., the particles’ mutual (in)distinguish-
abilities, determine all matrix elements. In general, the overlaps are 
complex numbers ⟨ξi ∣ ξj ⟩ = rije

iϕij, with real amplitude rij and phase ϕij. 
In the two-point correlator 〈N3N4〉 shown in Fig. 1A, for example, the 
indicated transition processes lead to HOM-type interference involv-
ing the diagonal term 

�
2, 4

���ρ
(2)
ext

���2, 4
�
∝ ⟨ξ2 ∣ ξ2⟩⟨ξ4 ∣ ξ4⟩ = 1 , and the 

2P coherence 
�
2, 4

���ρ
(2)
ext

���4, 2
�
∝ ⟨ξ2 ∣ ξ4⟩⟨ξ4 ∣ ξ2⟩ = r2

2,4
 , corresponding 

to the permutations [in cycle notation; (43)] π = � , the identity, and 
π = (1 2), respectively (see Fig. 1A, bottom). As in HOM (i.e., 2P) in-
terference, no phase dependence arises, and only the real amplitude 
r2
2,4

 , which expresses the particles’ pairwise indistinguishability, deter-
mines 〈N3N4〉 (12).

In more complex multiparticle exchanges, the engineering of in-
ternal states ∣ξi⟩ within an N-dimensional Hilbert space allows to 
witness a phase dependence that is set by the specific permutation π 
and the overlaps among particle pairs (34, 35). Notably, the genuine 
NP interference introduced in (36) is rooted in a NP coherence ⟨
m
|||ρ

(N)
ext

|||π(m)
⟩

 associated with a N-cyclic permutation π = (1 2 3…N), 
as shown in Fig. 1B, which depends on the “circle-dance” collective 
NP phase ϕ = ϕ1,2 + ϕ2,3 + … + ϕN,1. Engineering zero overlaps of the 
internal states of non-neighboring particles in the permutation, par-
ticles in disconnected vertices of the permutation graph, ensures that 
no other phase dependence appears in the signal. In this traditional 
collective phase interference scenario, however, control over an (at 
least) N-dimensional internal Hilbert space is required.

Scheme for entanglement-induced collective interference
We here introduce a scheme using entanglement to witness a collec-
tive NP phase, depicted for N = 4 in Fig. 1C. In this scheme, the inter-
ferometer consists of N/2 separate beam splitters, where the first one 
mixes modes 1 and 2, the second one mixes modes 3 and 4, and so on. 
Pairwise 2P entanglement in one of the internal dof (here polariza-
tion) between particles in modes 2 and 3, 4 and 5, …, N − 2 and N − 1 
can then be used to induce collective interference across the separate 
beam splitters. For simplicity, we now restrict our discussion to N = 4 
(as realized in our experiment), while the general case of N particles 
(with N even) can be found in Supplementary Note 1. As input, we 
consider the combination of a polarization-entangled photon pair in 
modes 2 and 3 and an unentangled photon pair in the remaining 
modes 1 and 4 (see Fig.  1C). This is described by the four-particle 
(4P) state

where a†
i,H(V)

 creates a photon in external mode i with horizontal 
(vertical) polarization internal state, and

sets the polarization to a balanced superposition in the H/V basis 
with phase φ, and analogously for  a†

i,S
(θ) . Note that, while the ex-

pression of the k-point correlator in Eq. 1 remains valid, Eq. 2 no 
longer holds for such entangled input states.

Because of the specific topology of the interferometer in Fig. 1C 
(defining the single-particle unitary U), not all four modes mix, 
such that many terms in Eq. 1 vanish. The only kP coherences that 
contribute are associated with permutations π generated by transpo-
sitions (2n − 1 2n), with n = 1, …, N/2, e.g., for N = 4, π = (1 2), π = 
(3 4), and their product π = (1 2)(3 4). This factorization reflects the 
structure of the interferometer, with two separate beam splitters, 
which can, in principle, be arbitrarily far apart. If we assume the in-
put to be given only by the first term of the operator-valued sum 
acting upon ∣0⟩ in Eq. 3, then Eq. 2 holds. Defining the internal state 
�ξ⟩ =

�
a†
H
+ eiξa†

V

�
�0⟩∕

√
2 , the contributions arising from particle 

exchanges according to the above three permutations are given by 
|〈φ ∣ H〉|2, |〈V ∣ θ〉|2, and |〈φ ∣ H〉|2|〈V ∣ θ〉|2, respectively, i.e., by the 
modulus square of the inner products of the exchanged particles’ 
internal states. These are independent of φ, θ, and χ. Analogously, if 
only the second term on the right-hand side (RHS) of Eq.  3 was 
considered, then no phase contributions would be present in the 
four-point correlator (Eq. 1). The phase dependence results from 
the superposition of both 4P states created on the RHS of Eq. 3. The 
additional cross terms are the projection of the first term in Eq. 3 
onto the second term exchanged according to π = (1 2)(3 4), i.e., the 
matrix element 

⟨
1, 2, 3, 4

|||ρ
(4)
ext

|||2, 1, 4, 3
⟩

 in Eq.  1, and its complex 
conjugate thereof. This matrix element is proportional to e−iχ〈φ∣V〉
〈V ∣ θ〉〈θ ∣ H〉〈H ∣ φ〉 ∝ e−i(χ + φ − θ). Note that the four bra-vectors in 
the scalar product are given by a cyclic permutation of the four ket-
vectors. Hence, the permutation π = (1 2)(3 4) in combination with 
the exchange of the roles of modes 2 and 3 in the two terms of the 
entangled state ∣ψ⟩ (Eq. 3; see also Fig. 1C) can be viewed as an 
effective four-cycle permutation that acts on the particles’ internal 
states (see also Eq. 2), which captures the dependence on the com-
plex phases φ, χ, and θ. Overall we find, for k = 4

with collective 4P phase ϕ = χ + φ − θ. The full derivation is given 
in Supplementary Note 1. Thus, the 4P correlator oscillates with full 
interference contrast. One can show that the full contrast remains 
for arbitrary even particle numbers N > 4 by adding beam splitters 
in parallel and entangled pairs between the beam splitters as dis-
cussed in the beginning of this section. Specifically, for an NP input 
state, the N-point correlator can be generalized to (see Supplemen-
tary Note 1)

with collective NP phase ϕ = χ1 + χ2 + … + χ(N − 2)/2 + φ − θ, where 
χ1, χ2, …, χ(N − 2)/2 are the phases associated with each entangled pair.

In contrast, for k < N, the structure of the input state and the 
specific interferometer topology ensure that all probed matrix ele-
ments 

⟨
m
|||ρ

(k)
ext

|||n
⟩

 in the expectation value (Eq. 1) are independent of 

�
m
���ρ

(k)
ext

���n
�
∝

k�

i=1

⟨ξmi
�ξmπ−1 (i)

⟩ (2)

�ψ⟩= 1√
2

a†
1,S
(φ)

�
a†
2,H

a†
3,V

+e−iχa†
2,V

a†
3,H

�
a†
4,S
(θ)�0⟩ (3)

a†
i,S
(φ) =

1√
2

�
a†
i,H

+ eiφa†
i,V

�
(4)

⟨N1N2N3N4⟩ =
1

8
cos2

�
ϕ

2

�
(5)

⟨N1 … N
N
⟩ = 1

2N

�
1 + (−1)

N

2 cosϕ
�

(6)
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the phases φ, χ1, χ2, …, θ. In the 4P scenario, this can be understood 
as follows: First, note that the three-point correlator only depends on 
the matrix elements of ρ(3)

ext
 (see Eq. 1). Moreover, the considered inter-

ferometer does not mix the modes 1 and 2 with the modes 3 and 4, and 
the only nonvanishing kP coherences 

⟨
m
|||ρ

(k)
ext

|||n
⟩

 are indexed by k-
tuples m and n that contain the same modes, only differing by a rela-
tive permutation n = π(m), as discussed after Eq. 1. Therefore, the only 
contributing 3P coherences in Eq. 1 for k = 3 are, up to complex con-
jugation and permuting both index tuples by the same permutation, ⟨
123

|||ρ
(3)
ext

|||213
⟩

 , 
⟨
124

|||ρ
(3)
ext

|||214
⟩

 , 
⟨
134

|||ρ
(3)
ext

|||143
⟩

 , and 
⟨
234

|||ρ
(3)
ext

|||243
⟩

.
In all these terms, only two particles are exchanged, similar to the 

2P HOM interference case (see Fig. 1A), which only involves squared 
moduli of the internal states’ overlaps. For example

The first contribution on the RHS comes from the first term in 
the sum (after multiplying all factors out) on the RHS of Eq. 3 defin-
ing the input state. Because the particle in input mode 2 has horizontal 
polarization, the exchange π = (12) leads to |〈φ∣H〉|2. Correspond-
ingly, the second contribution on the RHS of Eq. 7 stems from the 
second term on the RHS of Eq. 3, where the particle in mode 2 has 
vertical polarization. Note that the cross contribution (which en-
codes the complex phase dependence for the four-point correlator 
as discussed before Eq. 5) is zero because the particle in mode 3 has 
orthogonal polarization states in both terms. Analogously, all other 
contributing matrix elements in Eq. 1 are independent of the phases 
φ, θ, and χ. The same holds for k = 2. As a consequence, the NP col-
lective phase remains invisible in all correlation orders lower than 
N, which is why the description of this effect in terms of indepen-
dent 2P HOM processes fails.

Measurements of k-point correlators, as in Eq. 1, require resolving 
the photon number at each detector. Most photonic experiments, 
however, typically use threshold detectors and record coincidence 
events involving k detectors, referred to as k-fold coincidences, where 
at least one photon is detected in each of the output ports p1, …, pk. 
In an NP scenario, the N-fold coincidence rate is equivalent to the 
N-point correlator, because necessarily only one photon impinges 
each detector. However, k-fold coincidence events with k < N do not 
constitute true kP observables (as multiple photons may impinge on 
a single detector unnoticed) and are, in general, garnished by contri-
butions from lP terms, with k < l ≤ N, thus exhibiting weak traces of 
the NP collective phase ϕ (see Supplementary Note 2).

Experimental setup
We experimentally tested the collective-phase interference as pre-
dicted by Eq. 5 by implementing the scheme in Fig. 1C and the input 
state in Eq. 3. Figure 2 shows the experimental setup. We produce 
the four-photon input states via two high-brightness, high-purity 
(spectral purity ≥98%), and high-fidelity telecom (emission wave-
length, 1550 nm) spontaneous parametric down-conversion (SPDC) 
sources with apodized crystals (44, 45), as schematically represented 
in Fig. 2A. In the used Sagnac interferometer configuration (46–48), 
we obtained experimental fidelities of 98.56(2)% and 98.33(2)% 
when adjusting the phase χ of the entangled photon pair in modes 2 
and 3 of Eq. 3 to χ = 0, π (representing the well-known Bell states 
∣ψ+⟩ and ∣ψ−⟩), respectively, as shown in Supplementary Note 3.

Before interfering the photons as shown in Fig. 2B, we prepare 
the polarization states of the photons in modes 1 and 4 according to 
Eq. 4, through combinations of quarter- and half-wave plates, and 
we set the phase χ of the entangled pair via fiber polarization con-
trollers. More precisely, we varied the collective phase of the input 
state by changing the phase φ of the photons in mode 1 and the 
phase χ of the entangled pair to obtain the Bell state ∣ψ+⟩ or ∣ψ−⟩ but 
fixing the phase θ = 0, corresponding to the setting of a diagonal 
polarization state �D4⟩ = a†

4,S
(0) �0⟩ of the photons in mode 4.

After interfering, the photons collected at the output ports of the 
beam splitters are detected via superconducting nanowire single-
photon detectors (SNSPDs) with quantum efficiencies of ≥80%. To 
account for the polarization-dependent SNSPD detection efficiency, 
we project to the H/V basis and multiplex the outputs to eight 
SNSPD channels. The post-processing of the data retrieves the ag-
gregated single counts of each output channel and all possible com-
binations of k-fold coincidences among these channels, with k = 2,3, 
and  4. The multiplexed eight-detector scheme has two additional 
advantages: First, because SPDC sources are affected by multi-pair 
emission contributions (more than two photon pairs produced), 
this scheme makes it possible to reject coincidences of more than 
four photons, thus partially cleaning the fourfold statistics from 
these contributions. Second, the presence of additional beam split-
ters and (non-number–resolving) detectors helps to provide a pseudo–
photon-number resolution (49), which is required to perform correlation 
measurements as in Eq. 1. Although a single multiplexing layer is 
insufficient for a complete correlation measurement, it already 
significantly reduces the visibility of the collective phase depen-
dence of any k(<4)-fold coincidence events (see example in Supple-
mentary Note 2).

Experimental results
The specific arrangement of SPDC sources in our experimental 
scheme causes double-pair emissions from an individual source to 
propagate through the setup with the same probability as the desired 
two-source emissions. This results in a fourfold coincidence back-
ground from each source with the same order of magnitude as the 
coincidences from two-source emissions, thus reducing the visibility 
compared to the expected theoretical prediction of Eq. 5. However, 
our setup has the advantage of consisting of completely independent 
beam splitters, such that photons from single-source double-pair 
emissions do not interfere. The double-pair background is, there-
fore, independent of the collective phase by construction and can be 
subtracted from the entanglement-induced four-photon collective 
interference phase signal. Specifically, by blocking one of the two 
sources at a time, the four-photon background from the other 
source can be measured independently of the signal and subtracted 
from the raw data obtained in the main experiment (35). As an al-
ternative to this background subtraction, one can use a three-source 
scheme, heralding the unentangled photons in modes 1 and 4 to 
reject the contribution of double emissions from a single source. 
However, a detailed study of the interference visibility and its uncer-
tainty due to counting statistics shows that the background subtrac-
tion solution yields higher visibility and lower visibility error for the 
same total measurement time.

We recorded photon events for combinations of the two phases 
χ = 0, π and 31 settings of the phase φ ∈ (−π/2,3π/2), thus testing 
the collective phase within the 3π phase range ϕ ∈ (−π/2,5π/2). We 
measured each setting of φ, at fixed χ, over 60 s, and we averaged the 

�
123

���ρ
(3)
ext

���213
�
∝ �⟨φ ∣H⟩�2 + �⟨φ ∣V⟩�2 (7)
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measurements over 20 repetitions of this phase scan. We subsequently 
performed the measurement of the background for each photon 
source by following the same procedure but using a reduced set of 
eight phase scans per source to obtain a good trade-off between ac-
quiring sufficient data statistics and avoiding long-term drifts affect-
ing the measurements.

Figure 3 shows the results of both the fourfold background coin-
cidences and the background-subtracted fourfold coincidences 
when preparing the photon pair in modes 2 and 3 in the two Bell 
states ∣ψ+⟩ (χ = 0) and ∣ψ−⟩ (χ = π), respectively. The background 
coincidences in Fig. 3 (A and B) have negligible fluctuations with 
relative magnitude ≃1.2%, uncorrelated to the collective phase ϕ. In 
contrast, the background-subtracted fourfold coincidences in Fig. 3 
(C and D) exhibit pronounced cosine oscillations, as predicted by 
Eq.  5, with high visibilities of 69.2(2.5)% and 85.8(4.5)%, respec-
tively. This distinctive dependence of fourfold coincidences on the 
collective phase cannot be attributed to fluctuations of single counts 
or twofold and threefold coincidences, which exhibit only weak 
fluctuations imputable to secondary effects, as detailed in Supple-
mentary Note 4, where we also present the raw (uncorrected) four-
photon coincidence data. Moreover, the experimental data are in 
good agreement with numerical simulations of the experiment, 
which provide visibilities of 70.2(1.2)% and 88.1(1.7)%, respectively. 
The numerical results are obtained by taking into account input and 
output losses, unbalanced splitting ratios of the beam splitters, 
multi-pair emissions of the sources up to six photons, and laser 
power drifts (see Supplementary Note 5).

These numerical simulations also help to quantify the contribu-
tion of effects causing the residual visibility reduction of fourfold 
coincidences in Fig. 3D and, in particular, Fig. 3C. The primary fac-
tors affecting the visibility are, in order of significance: laser power 

drifts, higher-order (>3) photon-pair emissions, and the imperfect 
implementation of the unitary transformation. Deviations in the av-
erage laser power during the main measurement and the two back-
ground measurements in Fig. 3 (A and B) lead to the subtraction of 
a background level that differs from the level affecting the main 
measurement. The background fourfold coincidences in Fig. 3A are 
slightly lower than those measured in Fig. 3B. This causes the lower 
visibility in Fig.  3C with respect to the measurement in Fig.  3D, 
which is virtually unaffected by power drifts (see simulation in Sup-
plementary Note 5 for details). The second noise contribution is 
associated with higher-order emissions with at least three photon 
pairs emitted by the two sources: two pairs in one source and one in 
the other. Our background subtraction procedure cannot account 
for this process. Imperfections in the experimental implementa-
tion of the unitary transformation are mainly caused by slight man-
ufacturing deviations of beam splitters from a 50:50 splitting ratio. 
Additional minor contributions include residual polarization de-
pendence of the beam splitters’ splitting ratios, the imperfect spec-
tral purity of the down-converted photons, or slight temporal 
indistinguishability at the beam splitters, as well as imperfect state 
preparation.

DISCUSSION
We have shown in theory and in photonic experiments that the en-
tanglement between particles at the input ports of independent and 
separate beam splitters sets the stage for a collective interference ef-
fect of all particles, which cannot be traced back to the interference 
of smaller subsets. The peculiarity of this phenomenon lies in the 
fact that collective many-particle dynamics arises despite the topol-
ogy of the optical setup inducing only pairwise interference, with 

Fig. 2. Experimental setup. (A) A picosecond (ps)–pulsed laser clocked at 80 MHz is split via a balanced beam splitter (BS) to pump two SPDC sources based on apodized 
potassium titanyl phosphate (aKTP) crystals embedded in Sagnac interferometers (source 1 and source 2). Half-wave plates (HWPs) and Glan-Taylor polarizers (GT) are 
used to adjust the input power and set the pump polarization to obtain entangled photon pairs (source 1) or separable photon pairs (source 2). Down-converted photons 
are separated from the laser light via polarizing beam splitters (PBSs), dichroic mirrors (DMs), long-pass filters (LPFs), and collected through single-mode fibers. (B) Pho-
tons are adjusted in polarization via combinations of HWPs and quarter-wave plates (QWPs), or via fiber polarization controllers (FPCs) and guided to two independent 
balanced beam splitters. At the output, photons are detected by multiplexing each output channel (Ch. A to Ch. D) with two SNSPDs at the output ports of a PBS, as shown 
in the inset. The single-photon detection events are analyzed at a field-programmable gate array (FPGA) logic unit and post-processed to determine every twofold, three-
fold, and fourfold coincidence event.
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some particles even prepared in distinguishable internal states. En-
tanglement inscribed into the photonic input state bridges the gaps 
between the disjoint interferometers and, therefore, acts as a media-
tor of the collective interference in a nonlocal fashion. Compared to 
the conventional case of separable photons (35, 36), this effect has 
two fundamental advantages for scaling toward more particles: 
First, the equivalent interference scenario with N > 4 photons can 
be implemented by adding beam splitters and pairs of entangled 
photons in parallel, without the requirement of engineering addi-
tional internal dof as N increases. Thus, the dimension of the single-
particle Hilbert space remains constant at two (41), with no further 
increase in the complexity of the state preparation. Second, the vis-
ibility of the entanglement-induced collective phase interference is 
ideally always one and does not diminish with a growing number of 
particles. Given the characteristic exponential decrease in the (N-
fold) coincidence probability of many-body interference experi-
ments, shown here in Eq. 6, this advantage will be instrumental in 
obtaining clear signals in interference scenarios with higher num-
bers of particles involved.

Our experimental data and numerical simulations produce a 
high interference visibility, which is mainly limited by the nature of 

the SPDC photon sources and the errors introduced with the back-
ground subtraction. However, for N > 4 input particles, the partial 
(input-output) connectivity of the interferometer necessitates the 
participation of all N/2 sources to achieve an N-fold coincidence, 
that is, background subtraction is no longer required to obtain visi-
bilities comparable with the highest visibility obtained here (∼86%). 
The detrimental influence of multi-pair emissions could also be 
completely overcome by using deterministic single-photon sources, 
such as semiconductor quantum dots, if the required input state can 
be engineered by appropriate excitation schemes (50–52) and 
high photon indistinguishability between separate sources can be 
achieved (53).

Our study gives another notable example of how entanglement 
can play a key role in shaping interference phenomena (38, 54, 55). 
It reveals a hitherto unexplored interference effect that, by virtue of 
the partial distinguishability of the involved particles, extends the 
complexity of traditional many-body interference scenarios, poten-
tially leading to unexpected phenomena. For instance, a recent work 
has shown that by using N ≥ 7 partially distinguishable particles, 
indistinguishable bosons do not maximize the probability of bunch-
ing in a subset of output modes (28). The scheme presented here 

Fig. 3. Results of fourfold coincidence counts for entanglement-induced collective 4P interference. (A and B) Fourfold background coincidences from multi-pair 
emissions of individual sources. (C and D) Background-subtracted fourfold coincidences data (blue dots) fitted with a cosine function (red curve). The red-shaded region 
shows the fit prediction interval at a confidence level of one SD. The graphs include the results of the multiphoton interference simulations (black dashed curve). The vis-
ibility of the fit is 69.2(2.5)% and 85.8(4.5)% for (C) and (D), respectively. Simulations (Supplementary Note 5) predict a visibility of 70.2(1.2)% and 88.1(1.7)%. The integra-
tion time for each point of all panels is 60 s.
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allows scaling to such a modest number of interfering particles, rais-
ing the question of whether and how a collective behavior, as induced 
here through entanglement between internal dof of a subset of par-
ticles, can affect the dynamics in similar many-body conditions. 
Moreover, our scheme readily extends to larger entangled Greenberger-
Horne-Zeilinger (GHZ) states (56) while preserving its properties 
(see Supplementary Note 1). Using such multipartite entangled states 
offers various advantages in quantum communication protocols (57, 
58). Consequently, it seems worthwhile to further investigate the po-
tential of entanglement-induced collective interference with GHZ 
states for multiparty quantum communication. Furthermore, the 
presence of an NP collective phase producing high interference con-
trast could be exploited for quantum metrology purposes. In particu-
lar, the possibility of scaling up the scheme by adding only Bell pairs 
can be beneficial to avoid the typical complex preparation of NOON 
states and their exposure to decoherence at large photon numbers N 
(59). However, given the exponential decrease in the probabilities of 
individual output coincidence events, the challenge lies in the extrac-
tion of information. Overall, the combination of partial distinguish-
ability and entanglement in many-body interference could serve as a 
valuable tool for advancing quantum technologies or manifest as a 
subtle yet noteworthy side effect.
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