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Vineet Thumuluri1,†, José Juan Almagro Armenteros2,4,†,
Alexander Rosenberg Johansen3,4, Henrik Nielsen 5,*,‡ and Ole Winther6,7,8,‡

1Indian Institute of Technology Madras, Chennai 600036, India, 2Novo Nordisk Foundation Center for Protein
Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark,
3Department of Computer Science, Stanford University, Stanford 94305, CA, USA, 4Department of Genetics,
Stanford University School of Medicine, Stanford 94305, CA, USA, 5Section for Bioinformatics, Department of Health
Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark, 6Center for Genomic Medicine,
Rigshospitalet (Copenhagen University Hospital), Copenhagen 2100, Denmark, 7Department of Biology,
Bioinformatics Centre, University of Copenhagen, Copenhagen 2200, Denmark and 8Section for Cognitive Systems,
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby
2800, Denmark

Received February 05, 2022; Revised April 07, 2022; Editorial Decision April 08, 2022; Accepted April 19, 2022

ABSTRACT

The prediction of protein subcellular localization is
of great relevance for proteomics research. Here,
we propose an update to the popular tool DeepLoc
with multi-localization prediction and improve-
ments in both performance and interpretability.
For training and validation, we curate eukaryotic
and human multi-location protein datasets with
stringent homology partitioning and enriched with
sorting signal information compiled from the liter-
ature. We achieve state-of-the-art performance in
DeepLoc 2.0 by using a pre-trained protein language
model. It has the further advantage that it uses
sequence input rather than relying on slower protein
profiles. We provide two means of better inter-
pretability: an attention output along the sequence
and highly accurate prediction of nine different
types of protein sorting signals. We find that the
attention output correlates well with the position
of sorting signals. The webserver is available at
services.healthtech.dtu.dk/service.php?DeepLoc-
2.0.

GRAPHICAL ABSTRACT

INTRODUCTION

Identifying protein localization in different cellular com-
partments plays a key role in functional annotation. It can
also aid in identifying drug targets (1), and understand-
ing diseases linked to aberrant subcellular localization (2,3).
Some proteins are known to localize in multiple cellular
compartments (4–6). Several biological mechanisms have
been identified to explain the localization process, which in-
volves short sequences known as sorting signals (7–10).

Several machine learning-based methods exist for pre-
dicting subcellular localization. They can vary in the out-
put prediction, i.e. single versus multi-location, or in the in-
put features. YLoc+ (11) predicts multiple locations using
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biological features such as sorting signals, PROSITE (http:
//prosite.expasy.org/) patterns and optionally Gene Ontol-
ogy (GO) terms from a database. Fuel-mLoc (12) on the
other hand uses only GO terms from a custom database
called ProSeq-GO to predict multiple locations for a variety
of organisms. DeepLoc 1.0 (13) and LAProtT5 (14) predict
a single location based on features extracted from only the
sequence (sequence profiles in the case of DeepLoc) using
deep learning models.

DeepLoc 1.0 uses a three stage deep learning approach
for sequence classification. First, a feature representation
for each amino acid in the sequence is generated. Then an
attention-based pooling stage produces a single represen-
tation for the whole sequence. Finally, the prediction stage
uses a classifier to output the subcellular labels.

DeepLoc 2.0 uses the same template while updating im-
portant aspects:

• Dataset: We curate large strict homology partitioned
datasets of eukaryotic (15) and human proteins (16) for
training and independent testing. We also compiled a
dataset with experimentally verified annotation of nine
types of sorting signals.

• Feature representation: We use a pre-trained protein
transformer language model.

• An attention plot visualizes what part of the input the
model uses for its predictions. Thus pointing to regions
responsible for localization and potentially containing
sorting signals. We use supervised learning with regular-
ization to improve the interpretability of the attention
plot.

• Prediction stage: We predict multiple labels for both the
ten class subcellular localization and nine class sorting
signals tasks.

WEBSERVER

The webserver is free and open to all and there is no login
requirement. It takes in a maximum of 500 input sequences
in the FASTA format. The model’s attention is shown in a
figure when the long result format is toggled. Regions with
high attention values are used by the model for its prediction
and they are indicative of the presence of sorting signals.
Once the job is submitted, it enters a queue and a waiting
page is shown. The users can provide an email address to
be notified of the results or the page automatically redirects
when the results become available. An example prediction
page is shown in Figure 1. Note that our model provides an
output regardless of the input sequence. However, it is very
difficult for us to judge whether a prediction is sensible if it
is not a eukaryotic protein. Detailed estimate of prediction
times is provided in Supplementary Table S1.

DATA

We curate three datasets: two datasets with subcellular lo-
calization labels for cross-validation and independent vali-
dation, respectively, and a third dataset consisting of sorting
signal labels, both the presence and location within the se-
quence, which is a part of the cross-validation dataset. De-
tailed statistics regarding the distribution of subcellular lo-

calization labels in the datasets are provided in Supplemen-
tary Figure S1 (Figure inspired by (17)).

SwissProt localization dataset

The protein data were extracted from the UniProt database
release 2021 03 (15). The protein sequences and localiza-
tion annotations were then filtered using the following
criteria: eukaryotic, not fragments (these could have N-
terminal or C-terminal sorting signals missing), encoded
in the nucleus, >40 amino acids and experimentally anno-
tated (ECO:0000269) subcellular localizations. These pro-
teins can be categorized into one or multiple of these ten
locations: Cytoplasm, Nucleus, Extracellular, Cell mem-
brane, Mitochondrion, Plastid, Endoplasmic reticulum,
Lysosome/Vacuole, Golgi apparatus, Peroxisome. The de-
tails of the sublocation mapping and the number of pro-
teins in each category are provided in Supplementary Ta-
ble S2. This dataset is used for 5-fold cross-validation after
homology-based partitioning (Supplementary Section S1).

Human protein atlas

The Human Protein Atlas (HPA) project provides subcel-
lular localization of human proteins using confocal mi-
croscopy (16). The annotations are provided with four re-
liability labels: Enhanced, Supported, Approved, and Un-
certain, based on various criteria such as antibody valida-
tion and experimental evidence in the literature. We con-
sider only Enhanced and Supported annotations for our in-
dependent test set since these are the most reliable labels.
This dataset is ensured to not have any sequences with a
>30% global sequence identity with the Swissprot Local-
ization dataset described above and is used for independent
validation.

Sorting signals

Annotated sorting signals that are experimentally verified
were mainly compiled from the literature. Supplementary
Table S3 is a list of signals and their sources. We ex-
cluded proteins that were not present in our constructed
SwissProt Localization Dataset. This dataset is used in the
cross-validation procedure.

DEEPLOC 2.0 OVERVIEW

As shown in Figure 2, the method can be broadly divided
into three stages, each of which is briefly described below.
More detailed information can be found in the Supplemen-
tary Section S2.

Per-token representation using a transformer model

We utilize transformer-based language models (18) that
have been successfully applied to the protein domain due to
the abundance of unlabelled raw sequence data. They are
trained in a self-supervised fashion on a large corpus, such
as the UniRef50 database (19), using the masked language-
modelling objective (20). The transformer is a deep learning
method that uses multiple layers of the self-attention mech-
anism to produce representations that have been found to
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Figure 1. An example snippet from the results page on the webserver. The prediction summary is available for download as a comma-separated file (CSV) at
the top which consists of the predicted subcellular localization and sorting signals. The image or attention values of each plot can be separately downloaded.
All the predicted subcellular localization and sorting signal labels are listed, along with the prediction score table. The predicted localizations in the table
are highlighted in green. If no score crosses the threshold, the label closest to the threshold is chosen. High values in the logo-like plot signify important
regions in the sequence for localization prediction that may correspond to sorting signals. This is meant to serve as a guideline and specialized tools such
as SignalP or TargetP can be used for a more detailed and accurate analysis of these signals.

encode contact maps, taxonomy, and biophysical character-
istics in their distributed representations (21–27). We eval-
uated three publicly available transformer models, the 12-
layer ESM (Evolutionary Scale Modelling, (21)) model with
84M parameters, the 33-layer ESM model with 650M pa-
rameters (23) and the 3B parameter ProtT5-XL-UniRef50
model (24), referred to as ESM12, ESM1b and ProtT5, re-
spectively, throughout the rest of the manuscript. The out-
put of the language model is a vector representation for each
residue (token) in the input sequence.

Sequence representation using attention pooling

The per-token representations are combined using attention
(28): First, a scalar score is computed for each token by
taking the dot-product of the representation with a learn-
able vector. The learnable vector is tuned using supervised
learning by using both the subcellular localization labels as
well as the sequence annotation of the sorting signals. We
smooth the scalar scores along the sequence by applying a
1d Gaussian filter of width 5, clipped at one standard devi-

ation, to account for signals being present in a contiguous
set of residues. The attention weights over the sequence are
then computed using the softmax function on the smoothed
scores so that they sum to 1. The output representation is
the attention weighted sum of the token representations.
This attention pooled representation vector is used as input
to the prediction stage. The attention weights, visualized in
the webserver, and the prediction of the sorting signals pro-
vide a better understanding of the predictions of the model.

Multi-label localization and signal type prediction

The prediction stage consists of two multi-layer perceptron
(MLP) classifier heads. The first head is trained along with
the learnable vector from the attention step for the ten-class
multi-label subcellular localization task. A second head is
trained after freezing the rest of the parameters for the nine-
class sorting signal prediction task. We found that optimiz-
ing for both tasks simultaneously proved to be difficult,
hence we trained them one after another. These classifiers
output a probability for each label. A weighted focal loss
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Figure 2. DeepLoc 2.0 uses a transformer-based protein language model to encode the input amino acid sequence. Then using an interpretable atten-
tion pooling mechanism a sequence representation is produced. The two prediction heads then utilize this representation to predict multiple labels for
both the 10-type subcellular localization and 9-type sorting signal prediction tasks. Source of cell diagram: https://commons.wikimedia.org/wiki/File:
Simple diagram of plant cell (blank).svg, attribution: domdomegg, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Com-
mons.

Table 1. Results on the SwissProt CV dataset

Counts DeepLoc 1.0 � YLoc+ � DeepLoc 2.0

ESM1b ProtT5

Type Single Multi Multi Multi
Pred. Num. Labels (Actual: 1.27) 1.00 ± 0.00 1.57 ± 0.02 1.27 ± 0.02 1.26 ± 0.02
Accuracy 28303 0.48 ± 0.01 0.32 ± 0.02 0.53 ± 0.02 0.55 ± 0.02
Jaccard 28303 0.56 ± 0.01 0.50 ± 0.01 0.68 ± 0.01 0.69 ± 0.01
MicroF1 28303 0.58 ± 0.02 0.56 ± 0.01 0.72 ± 0.01 0.73 ± 0.01
MacroF1 28303 0.47 ± 0.01 0.42 ± 0.01 0.64 ± 0.01 0.66 ± 0.01

MCC per location (↑ is better)
Cytoplasm 9870 0.45 ± 0.02 0.38 ± 0.02 0.61 ± 0.01 0.62 ± 0.01
Nucleus 9720 0.46 ± 0.02 0.42 ± 0.02 0.66 ± 0.02 0.69 ± 0.01
Extracellular 3301 0.78 ± 0.05 0.61 ± 0.05 0.85 ± 0.03 0.85 ± 0.04
Cell membrane 4187 0.53 ± 0.02 0.44 ± 0.02 0.64 ± 0.01 0.66 ± 0.01
Mitochondrion 2590 0.58 ± 0.04 0.47 ± 0.02 0.73 ± 0.03 0.76 ± 0.02
Plastid 1047 0.69 ± 0.04 0.72 ± 0.02 0.88 ± 0.01 0.90 ± 0.01
Endoplasmic reticulum 2180 0.32 ± 0.04 0.17 ± 0.04 0.52 ± 0.01 0.56 ± 0.03
Lysosome/Vacuole 1496 0.06 ± 0.05 0.07 ± 0.03 0.24 ± 0.03 0.28 ± 0.04
Golgi apparatus 1279 0.20 ± 0.04 0.11 ± 0.04 0.36 ± 0.06 0.34 ± 0.05
Peroxisome 304 0.15 ± 0.04 0.05 ± 0.02 0.48 ± 0.05 0.56 ± 0.08

Bold values indicate the best score
� = GO-terms were not used
� = Retrained on this dataset

https://commons.wikimedia.org/wiki/File:Simple_diagram_of_plant_cell_(blank).svg
https://creativecommons.org/licenses/by/4.0
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Table 2. Results on the HPA independent test set

Count YLoc+ DeepLoc 1.0 � Fuel-mLoc LAProtT5 DeepLoc 2.0

Animal� Euk � , � ESM1b ProtT5

Type Multi Single Multi Single Multi Multi
Pred. Num. Labels (Actual: 1.22) 1.44 0.89 1.00 0.94 1.15 1.21
Accuracy 1717 0.23 0.37 0.38 0.45 0.34 0.39
Jaccard 1717 0.41 0.42 0.46 0.52 0.48 0.53
MicroF1 1717 0.51 0.46 0.52 0.56 0.57 0.60
MacroF1 1717 0.34 0.35 0.39 0.43 0.44 0.46

MCC per location (↑ is better)
Cytoplasm 562 0.14 0.23 0.23 0.33 0.29 0.36
Nucleus 893 0.20 0.28 0.41 0.45 0.41 0.44
Cell membrane 287 0.20 0.23 0.32 0.30 0.34 0.36
Mitochondrion 196 0.37 0.39 0.33 0.59 0.60 0.56
Endoplasmic reticulum 77 0.12 0.23 0.14 0.22 0.20 0.17
Golgi apparatus 86 0.08 0.10 0.24 0.26 0.17 0.31

Bold values indicate the best score
� = GO-terms were not used
� = Retrained on the new CV dataset
� = using local implementation
� = using reduced ProSeq database

Table 3. Results of signal type prediction; cross-validation

DeepLoc 2.0 Specialized

ESM1b ProtT5 Predictor

MicroF1 0.87 ± 0.01 0.87 ± 0.02
MacroF1 0.80 ± 0.02 0.80 ± 0.03
Accuracy 0.78 ± 0.02 0.79 ± 0.03

MCC per signal (↑ is better)
SP 0.89 ± 0.03 0.90 ± 0.03 0.87 ± 0.02 (32)
TM 0.71 ± 0.07 0.66 ± 0.05 -
MT 0.93 ± 0.02 0.93 ± 0.03 0.94 ± 0.04 (33)
CH 0.85 ± 0.07 0.86 ± 0.09 0.96 ± 0.03 (33)
TH 0.86 ± 0.08 0.80 ± 0.08 0.98 ± 0.04 (33)
NLS 0.65 ± 0.06 0.66 ± 0.01 -
NES 0.49 ± 0.20 0.46 ± 0.17 -
PTS 0.85 ± 0.06 0.90 ± 0.05 -
GPI 0.85 ± 0.06 0.86 ± 0.06 0.91 ± 0.01 (34)

SP = Signal Peoptide, TM = First transmembrane domain, MT = Mi-
tochondrial transit peptide , CH = Chloroplast transit peptide, TH =
Thylakoidal transit peptide, NLS = Nuclear localization signal, NES =
Nuclear export signal, PTS = Peroxisomal targeting signal, GPI = GPI-
anchor

(29) is used for each label independently and then the losses
for all labels are averaged so that they are jointly optimized.
A threshold for each output label is computed by maximiz-
ing Matthew’s Correlation Coefficient (MCC) (30) on the
training data. Accuracy-based metrics are susceptible to im-
balance (31) that the MCC metric can handle better. Both
these predictions are provided as outputs.

RESULTS AND DISCUSSION

We chose YLoc+, DeepLoc 1.0, Fuel-mLoc, and LAProtT5
tools for comparison. These tools have public webservers
or easily available local implementations. Since the outputs
are different for each of the methods, we map the loca-
tions to the ten classes used in this work. We also reduce
the Fuel-mLoc database by about 2% to remove close ho-
mologs to the test set for a fair comparison. The details

Table 4. Quantitative comparison of interpretable attention; cross-
validation

DeepLoc 1.0 � DeepLoc 2.0

ESM1b ProtT5

KL Div (↓ is better)
SP 1.31 ± 0.57 1.04 ± 0.91 0.99 ± 0.86
TM 1.99 ± 0.81 1.13 ± 1.14 1.12 ± 1.03
MT 0.92 ± 0.38 0.51 ± 0.54 0.50 ± 0.48
CH 0.74 ± 0.33 0.32 ± 0.52 0.31 ± 0.31
TH 0.90 ± 0.31 0.19 ± 0.29 0.24 ± 0.16
NLS 3.11 ± 1.02 2.63 ± 1.52 2.60 ± 1.32
NES 3.97 ± 1.22 4.04 ± 1.51 3.88 ± 1.44
PTS 4.90 ± 0.93 0.85 ± 1.29 0.72 ± 1.05
GPI 2.30 ± 0.79 1.59 ± 0.73 1.85 ± 0.47

� = Retrained on the new CV dataset
Abbreviations same as in Table 3

of the mappings are provided in Supplementary Tables S4
and S5, modifications to the methods are described in the
Supplementary Section S3. Additionally, in Supplementary
Section S4, we provide insights from our experiments that
the reader might find useful.

Multi-label classification results

On the cross-validation dataset (Table 1), DeepLoc 2.0 has
the highest scores in all metrics. Details of the model perfor-
mance based on the kingdom of the protein are provided in
Supplementary Table S10.

From Table 2, on the independent HPA benchmark, we
find that DeepLoc 2.0 outperforms other tools on several
metrics except for the accuracy and MCC for nucleus which
are highest for the LAProtT5 method. The MCC for endo-
plasmic reticulum is highest for the DeepLoc 1.0 method.
DeepLoc 2.0 predicts a realistic average number of labels
per protein compared to other methods. Supplementary Ta-
ble S6 contains the results for all the methods and vari-
ants we benchmarked on this dataset. Supplementary Table
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S7 contains a threshold-independent comparison using the
Area under the ROC (AUC) metric for methods which also
output a prediction score.

Sorting signal prediction results

Signal type prediction. Table 3 shows that DeepLoc 2.0 is
able to distinguish between the nine signal types in most
of the cases with high accuracy (79%). The worst perfor-
mance is obtained for nuclear export signals. Additionally,
the table shows the performances we measured on the sort-
ing signals dataset by three specialized predictors: SignalP
6.0 (32) for signal peptides, TargetP 2.0 (33) for mitochon-
drial and plastid transit peptides, and NetGPI 1.1 (34) for
GPI anchors. Note that some of the sequences in the sort-
ing signals dataset may have been included in the training
sets of the specialized predictors, while the DeepLoc 2.0 val-
ues are cross-validated. DeepLoc 2.0 shows state-of-the-art
performance in recognizing signal peptides and mitochon-
drial transit peptides. However, the specialized tools must
be consulted in order to obtain the exact lengths of the sort-
ing signals.

Attention-signal correlation. Table 4 demonstrates that
DeepLoc 2.0’s attention is far better than that of DeepLoc
1.0 at providing insights into the sorting signals. The
Kullback–Leibler (KL) divergence, a direct measure of
dissimilarity between attention and signal, is lower for
DeepLoc 2.0. More detailed metrics and comparisons are
available for each sorting signal in the Supplementary Ta-
bles S8 and S9.

CONCLUSION

We provide a multi-label subcellular localization prediction
tool, based on protein language models, that uses only the
sequence information and outperforms existing methods.
This is made possible by the use of a large curated dataset
with annotations of multi-location proteins. Additionally,
using a small dataset of sorting signals, we were able to
improve the interpretability of the attention layer in our
model. Thus, we can also provide the predicted signal type
and important regions, which can give insights into rele-
vant sections of the protein sequence that are responsible for
particular localization. The webserver is available at https:
//services.healthtech.dtu.dk/service.php?DeepLoc-2.0.
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16. Thul,P.J., Åkesson,L., Wiking,M., Mahdessian,D., Geladaki,A., Ait
Blal,H., Alm,T., Asplund,A., Björk,L., Breckels,L.M. et al. (2017) A
subcellular map of the human proteome. Science, 356, eaal3321.

17. Wan,S., Mak,M.-W. and Kung,S.-Y. (2016) Sparse regressions for
predicting and interpreting subcellular localization of multi-label
proteins. BMC Bioinformatics, 17, 97.

18. Vaswani,A., Shazeer,N., Parmar,N., Uszkoreit,J., Jones,L.,
Gomez,A.N., Kaiser,L. and Polosukhin,I. (2017) Attention Is All
You Need. In: Guyon,I., Luxburg,U.V., Bengio,S., Wallach,H.,
Fergus,R., Vishwanathan,S. and Garnett,R. (eds). Advances in Neural
Information Processing Systems. Curran Associates, Vol. 30, pp.
5998–6008.

19. Suzek,B.E., Wang,Y., Huang,H., McGarvey,P.B., Wu,C.H. and the
UniProt Consortiumthe UniProt Consortium (2014) UniRef clusters:
a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics, 31, 926–932.

20. Devlin,J., Chang,M.-W., Lee,K. and Toutanova,K. (2019) BERT:
pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational
Linguistics, Minneapolis, Minnesota, pp. 4171–4186.

21. Rives,A., Meier,J., Sercu,T., Goyal,S., Lin,Z., Liu,J., Guo,D., Ott,M.,
Zitnick,C.L., Ma,J. et al. (2021) Biological Structure and Function

https://services.healthtech.dtu.dk/service.php?DeepLoc-2.0
https://services.healthtech.dtu.dk/service.php?DeepLoc-2.0
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac278#supplementary-data


W234 Nucleic Acids Research, 2022, Vol. 50, Web Server issue

Emerge from Scaling Unsupervised Learning to 250 Million Protein
Sequences. Proc. Nati. Acad. Sci., 118, e2016239118.

22. Rao,R., Liu,J., Verkuil,R., Meier,J., Canny,J.F., Abbeel,P., Sercu,T.
and Rives,A. (2021) MSA Transformer. In: Meila,M. and Zhang,T.
(eds). Proceedings of the 38th International Conference on Machine
Learning, PMLR. Vol. 139, pp. 8844–8856.

23. Rao,R., Meier,J., Sercu,T., Ovchinnikov,S. and Rives,A. (2020)
Transformer protein language models are unsupervised structure
learners. bioRxiv doi: https://doi.org/10.1101/2020.12.15.422761, 15
December 2020, preprint: not peer reviewed.

24. Elnaggar,A., Heinzinger,M., Dallago,C., Rihawi,G., Wang,Y.,
Jones,L., Gibbs,T., Feher,T., Angerer,C., Bhowmik,D. et al. (2021)
ProtTrans: towards cracking the language of lifes code through
self-supervised deep learning and high performance computing. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence.
https://doi.org/10.1109/TPAMI.2021.3095381.

25. Vig,J., Madani,A., Varshney,L.R., Xiong,C., Socher,R. and
Rajani,N.F. (2021) BERTology meets biology: interpreting attention
in protein language models. bioRxiv doi:
https://arxiv.org/abs/2006.15222, 28 March 2021, preprint: not peer
reviewed.

26. Brandes,N., Ofer,D., Peleg,Y., Rappoport,N. and Linial,M. (2022)
ProteinBERT: a universal deep-learning model of protein sequence
and function. Bioinformatics, 38, 2102–2110.

27. Martiny,H.-M., Almagro Armenteros,J.J., Johansen,A.R.,
Salomon,J. and Nielsen,H. (2021) Deep protein representations
enable recombinant protein expression prediction. Comput. Biol.
Chem., 95, 107596.

28. Bahdanau,D., Cho,K. and Bengio,Y. (2015) Neural machine
translation by jointly learning to align and translate. In: Bengio,Y.
and LeCun,Y. (eds). 3rd International Conference on Learning
Representations. San Diego, California.

29. Lin,T., Goyal,P., Girshick,R.B., He,K. and Dollár,P. (2017) Focal loss
for dense object detection. In: 2017 IEEE International Conference on
Computer Vision (ICCV). pp. 2999–3007.

30. Chicco,D. and Jurman,G. (2020) The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genomics, 21, 6.

31. Wan,S., Mak,M.-W. and Kung,S.-Y. (2012) mGOASVM: Multi-label
protein subcellular localization based on gene ontology and support
vector machines. BMC Bioinformatics, 13, 290.

32. Teufel,F., Almagro Armenteros,J.J., Johansen,A.R., Gı́slason,M.H.,
Pihl,S.I., Tsirigos,K.D., Winther,O., Brunak,S., von Heijne,G. and
Nielsen,H. (2022) SignalP 6.0 predicts all five types of signal peptides
using protein language models. Nat. Biotechnol.,
https://doi.org/10.1038/s41587-021-01156-3.

33. Almagro Armenteros,J.J., Salvatore,M., Emanuelsson,O.,
Winther,O., von Heijne,G., Elofsson,A. and Nielsen,H. (2019)
Detecting sequence signals in targeting peptides using deep learning.
Life Sci. Allian., 2, e201900429.

34. Gı́slason,M.H., Nielsen,H., Almagro Armenteros,J.J. and
Johansen,A.R. (2021) Prediction of GPI-anchored proteins with
pointer neural networks. Curr. Res. Biotechnol., 3, 6–13.

https://doi.org/10.1101/2020.12.15.422761
https://doi.org/10.1109/TPAMI.2021.3095381
https://arxiv.org/abs/2006.15222
https://doi.org/10.1038/s41587-021-01156-3

