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Abstract: Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only
associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1
and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in
patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often
explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly
identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this
cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding
the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The
purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to
underscore the importance of experimentally characterizing disease-associated variants.

Keywords: KCNQ1; KCNQ4; Kv7.1; Kv7.4; hearing loss; DFNA2A; Jervell and Lange–Nielsen
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1. Introduction

The human genome encodes 40 voltage-dependent potassium ion (K+) channels that
belong to 12 subfamilies (Kv1–Kv12). The voltage-dependent activities of Kv channels
play critical roles in controlling the electrophysiological properties of cells and maintaining
the ion homeostasis. All Kv channels possess six transmembrane (TM) segments (S1–S6).
The first four TM segments (S1–S4) constitute the voltage-sensing domain, while the last
two, which flank a channel pore loop (P-loop), constitute the pore-forming domain (S5-PH-
S6) (Figure 1). Tetramerization is essential for completing the K+-selective channel pore in
all Kv channel types. Two Kv channels, Kv7.1 and Kv7.4, are essential for normal operation
of the inner ear [1,2].

Kv7.1 is encoded by KCNQ1. It is abundantly expressed in the heart and is crucial for
normal repolarization of cardiomyocytes. Mutations in Kv7.1 underlie two forms of the long
QT syndrome (LQTS), i.e., the Romano–Ward syndrome (RWS) [3] and Jervell and Lange–
Nielsen syndrome (JLNS) [4]. Cardiac symptoms in JLNS are typically more severe than
those in RWS, and most patients with JLNS also suffer from congenital hearing loss [4]. RWS
is inherited dominantly, with some exceptions [5,6], whereas JLNS is inherited recessively.
In the cochlea, Kv7.1 is expressed in the marginal cells of the stria vascularis (SV) [4]. Kv7.1
is thought to mediate the secretion of K+ into the endolymph and the establishment of the
endocochlear potential (EP) [7].

Kv7.4 is encoded by KCNQ4. In the cochlea, two types of sound-sensing cells, inner
hair cells (IHCs) and outer hair cells (OHCs), are housed in the organ of Corti, and their
apical surfaces exposed to the endolymph. Kv7.4 is abundantly expressed in OHCs, but it is
also expressed in IHCs and the spiral ganglion neurons (SGNs) [8,9]. The K+ conductance
mediated by Kv7.4 contributes to the establishment of a normal resting membrane potential
and is crucial for repolarization of the cells after sound-elicited cell depolarization. The large
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Kv7.4-mediated conductance in OHCs also contributes to the reduction of the membrane
time constant so that the receptor-potential-induced mechanical response of OHCs, i.e.,
electromotility [10,11], can respond to sound stimuli at high frequencies [12]. K+ that flows
into OHCs from the high-K+-containing endolymph via the stereocilia is thought to be
extruded by Kv7.4 from the base of OHCs to the perilymph. This Kv7.4-mediated extrusion
of K+ is believed to be crucial for maintaining the intracellular ionic homeostasis and,
thus, for OHC maintenance. Mutations in Kv7.4 are responsible for dominantly inherited
progressive nonsyndromic hearing loss, DFNA2A [13].
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Figure 1. The structures of human Kv7.1 (a) and human Kv7.4 (b). One of the four protomers and four
bound calmodulins (one calmodulin per protomer) are shown in black and pale orange, respectively.
In both (a) and (b), a single protomer is shown on the right. The residues referred to in the main text
are shown in red. (c) The amino acid sequences of human Kv7.1 and human Kv7.4. The highlights
indicate helices, whose colors are matched with those used in (a,b).

2. The Pathologies of JLNS and DFNA2A Hearing Loss

Hearing loss in JLNS patients is congenital, bilateral, and profound (OMIN: 220400). To
date, 768 KCNQ1 variants have been reported, ~5% of which are JLNS-associated (the Hu-
man Gene Mutation Database, HGMD) [14] (Table 1). The ionic composition of endolymph
is unique among extracellular fluids in that it contains high K+ (~160 mM) but low Na+

(~1 mM) and Ca2+ (~20 µM) [15]. The high K+ in endolymph is due to the secretion of K+

from the marginal cells of the SV, which is powered by ATP-dependent Na+/K+ pumps, a
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Na+/K+/2Cl− cotransporter, and other ion transporters. K+ transport from the marginal
cells to the endolymph is electrogenic, resulting in positive EP (+80 to +100 mV) [16]. This
very positive EP is a main driving force for sensory mechanotransduction by both hair cells
(conversion of sound-induced mechanical vibrations sensed by stereocilia into changes
in the receptor potential). Kv7.1, together with its ancillary protein, KCNE1, is thought
to mediate K+ transport from the marginal cells to the endolymph. Thus, JLNS-causing
KCNQ1 variants are presumed to affect EP by impairing the K+ conductance of Kv7.1. In
fact, Kcnq1−/− mice lose EP and show atrophy of the SV, reduction of the endolymphatic
compartment, and degeneration of the organ of Corti and SGNs [17–20].

Table 1. JLNS-associated KCNQ1 variants that affect the amino acid sequence of the Kv7.1 protein.

Variant * Functional Study †

c.2T>C translation starts
from Met159? [21] [21]

c.115G>T p.E39X [22]
c.546C>A p.S182R [23]
c.557G>A p.G186D [24]
c.604G>A p.D202N [25] [26]
c.728G>A p.R243H [27] [27–33]
c.775C>G p.R259G [34]
c.783G>C p.E261D [35] [29,31]
c.815G>A p.G272D [35]
c.914G>C p.W305S [36] [27,37]
c.1040T>G p.L347R [38]
c.1051T>C p.F351L [24]
c.1175G>A p.W392X [39]
c.1588C>T p.Q530X [35] [5,29,31,40,41] ‡

c.1741A>T p.K581X [42]
c.431delC p.I145Sfs [39]
c.443delA p.Y148Lfs [24]

c.451_452delCT p.L151Gfs [43]
c.585delG p.L196Sfs [25]

c.733_734delGG p.G245Rfs [44]
c.820_830del11 p.I274Vfs [45]
c.998_999delCT p.S333Cfs [46]

c.1008delC p.I337Sfs [35] [29,31]
c.1188delC p.R397Gfs [47]
c.1319delT p.V440Afs [48]
c.1356delG p.L453Wfs [49]
c.567dupG p.R190Afs [50]
c.1149dupT p.A384Cfs [21] [21]

c.743_744delGGinsTC p.W248F [51] [40,51]
c.1630_1635delCAGTACinsGTTGAGA p.Q544Vfs [4] [27,37]

* Multiple case studies are reported for many variants, but only the primary report is provided for each. JLNS-
associated KCNQ1 variants that were also reported as dominantly inherited and LQTS-associated are not included.
† Most functional studies reported significantly reduced or lost K+ channel activity and little to small dominant-
negative inhibitory effects on Kv7.1WT, which account for the recessive inheritance of the JLNS-associated
Kv7.1 variants. Two studies [30,33] reported reduced sensitivity to PIP2. ‡ Our recent study [41] examined the
cell-death-inducing cytotoxicity.

Hearing loss in DFNA2A patients is typically progressive and more prominent at
higher frequencies (middle and low frequencies are also affected later in life) (OMIN:
600101). The severity of DFNA2A hearing loss and the rate of progression vary among
KCNQ4 variants. To date, 76 KCNQ4 variants have been reported in HGMD (Table 2). Given
the multiple aforementioned roles of Kv7.4 in OHCs, it is anticipated that DFNA2A-causing
KCNQ4 variants impair normal cochlear operation by primarily affecting OHCs. Kcnq4−/−,
Kcnq4G286S/+, and Kcnq4G286S/G286S (p.G285S in humans) mice recapitulate progressive
hearing loss that is, indeed, accompanied by OHC dysfunction and degeneration [52].
Degeneration of IHCs and SGNs at later postnatal ages was also found [53].
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Table 2. DFNA2A-associated KCNQ4 variants that affect the amino acid sequence of the Kv7.4 protein.

Variant * Functional Study †

c.140T>C p.L47P [54] [54]
c.343C>G p.L115V [55]
c.463G>A p.G155R [56]
c.546C>G p.F182L [57] [58]
c.572C>T p.A191V [59]
c.650T>A p.M217K [60]
c.689T>A p.V230E [61] [62]
c.701A>T p.H234L [63]
c.709G>A p.E237K [59]
c.725G>A p.W242X [64] [41] ‡

c.754G>C p.A252P [56]
c.767T>G p.V256G [59]
c.770A>G p.Y257C [59]
c.773T>C p.L258P [59]
c.778G>A p.E260K [64] [62]
c.785A>T p.D262V [64] [62]
c.796G>T p.D266Y [65] [65]
c.808T>C p.Y270H [66] [62]
c.821T>A p.L274H [67] [58,68]
c.823T>C p.W275R [69] [62]
c.824G>C p.W275S [70]
c.827G>T p.W276L [71]
c.827G>C p.W276S [72] [58,68,73,74]
c.842T>C p.L281S [75] [58,68]
c.842T>G p.L281W [59]
c.853G>T p.G285C [72] [58,68,73]
c.853G>A p.G285S [76] [52,68,76,77] ¶

c.857A>G p.Y286C [60]
c.857A>C p.Y286S [78]
c.859G>C p.G287R [79] [62]
c.872C>T p.P291L [61] [62]
c.871C>T p.P291S [61] [62]
c.878C>T p.T293I [59]
c.887G>A p.G296D [80]
c.886G>A p.G296S [81] [58,68,81]
c.889A>G p.R297G [59]
c.891G>T p.R297S [61]
c.947G>T p.G316V [82]
c.956G>A p.G319D [83] [83]
c.961G>A p.G321S [72] [58,68]
c.992G>A p.R331Q [83] [83]
c.992G>C p.R331P [59]

c.1012C>G p.R338G [84]
c.1012C>T p.R338W [59]
c.1288G>A p.E430K [85]
c.1316G>A p.R439H [84]
c.1365G>T p.H455Q [86] [74,81]
c.1498C>T p.R500C [59]
c.1600A>G p.I534V [82]
c.1647C>G p.F549L [87]
c.1762G>C p.G588R [59]
c.2014G>A p.V672M [88]
c.2039C>T p.S680F [89] [62]
c.211delC p.Q71Sfs [90] [41] ‡

c.212_224del13 p.Q71Pfs [72]
c.261_269delCTACAACGT p.Y88_V90del [65] [65]

c.664_681del18 p.G222_L227del [73] [73]
c.806_808delCCT p.S269del [91] [83]

c.811_816delGCCGAC p.A271_D272del [83] [83]
c.1044_1051delTGCCTGGC p.A349Pfs [92] [41] ‡

c.1725delG p.I576Sfs [93]
c.228_229dupGC p.H77Rfs [61]

c.1671_1672dupACGAC p.V558Tfs [94]

* Multiple case studies are reported for many variants, but only the primary report is provided for each. Seven po-
tentially pathogenic KCNQ4 missense variants (p.N264S, p.S269F, p.S273A, p.T278A, p.L281M, p.L295P, p.R433W)
reported in gnomAD and characterized in Jung et al. [74] are not included. † These functional studies reported
significantly reduced or lost K+ channel activity (or membrane targeting) and severe dominant-negative inhibitory
effects on Kv7.4WT, except for p.F182L (Kv7.4WT-like), p.H455Q (Kv7.4WT-like), and p.G319D (nonfunctional when
singly expressed, but gains hyperactivity when co-expressed with Kv7.4WT). ‡ Our recent study [41] examined
the cell-death-inducing cytotoxicity. ¶ Functional characterization in a mouse model [52].

The presence of multiple JLNS-/DFNA2A-associated variants found in KCNQ1/KCNQ4
and identification of hearing phenotypes in Kcnq1 and Kcnq4 mouse models compellingly
establish the essentiality of these Kv7 channels in hearing.
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3. The Pathological Roles of Kv7.1 and Kv7.4 Variants and Ongoing
Pharmacological Strategies

A dominant-negative inhibition (inhibition of the Kv7 channel function or mem-
brane targeting by having a mutated subunit in the tetramer complex) often underlies
the observed dominant inheritance of Kv7.1 and Kv7.4 variants associated with RWS and
DFNA2A. Since tetramerization of Kv7 channels is mediated by the C-terminal cytosolic
helices C and D (HC and HD in Figure 1) [95–103], haploinsufficiency is presumed to
account for the dominant inheritance of frame-shifted or nonsense Kv7 variants that lack
the C-terminal tetramerization region. In any case, the functional consequence of Kv7
variants would be the reduction of overall K+ channel activity. Hence, pharmacological
augmentation of reduced residual Kv7 channel activity by channel openers is considered
clinically effective and actively pursued [54,102–114].

4. Observations against a Haploinsufficiency-Based Pathological Mechanism

Kv7.1 variants associated with JLNS are inherited recessively. In other words, indi-
viduals heterozygous for JLNS-associated Kv7.1 variants suffer from neither LQTS nor
hearing loss. This suggests that one functional KCNQ1 allele is sufficient for maintaining
normal cardiac and auditory functions, thus arguing against a haploinsufficiency-based
pathological mechanism. It is perplexing that, among truncated Kv7.1 variants lacking
the C-terminal tetramerization region, some are inherited dominantly, while the others are
inherited recessively.

Multiple variants truncating the C-terminal tetramerization region are also identified
in KCNQ4. If haploinsufficiency accounted for dominant inheritance of these truncated
Kv7.4 variants, they should all result in a similar and a relatively mild DFNA2A pheno-
type compared to those that exert a dominant-negative inhibitory effect on the wild-type
Kv7.4 (Kv7.4WT) subunit. The slowly progressive hearing loss found in patients with
heterozygous Kv7.4Q71Sfs (c.211delC) [90] is in line with such a view. However, Kv7.4W242X

(c.725G>A), which completely lacks the channel pore-forming transmembrane domain and
the following C-terminal tetramerization region (Figure 1), is associated with severe to
profound hearing loss [64]. The presence of recessively inherited truncated Kv7.4 variant,
Kv7.4A349Pfs (c.1044_1051del8) [92], is also incompatible with a haploinsufficiency-based
pathological mechanism. Incidentally, Kcnq4+/− heterozygous mice do not suffer from
hearing loss [52], suggesting that one functional KCNQ4 allele is sufficient for maintaining
normal auditory function, at least in mice.

5. Identification of Cell Death-Inducing Cytotoxicity in Truncated Kv7.1 and
Kv7.4 Variants

In order to elucidate the pathogenic roles of truncated Kv7 variants, we first tried to
confirm the absence of K+ channel activity for three deafness-associated Kv7.4 variants
that completely lack the C-terminal tetramerization region, Kv7.4Q71Sfs, Kv7.4W242X, and
Kv7.4A349Pfs (Figure 1), in HEK293T-based stable cell lines. Unexpectedly, we encountered
great difficulties in establishing stable cell lines that were to constitutively express these
variants, especially for Kv7.4W242X. After confirming the reproducibility of this issue, we
suspected inherent cytotoxicity in these truncated variants. By performing CellTox Green
Cytotoxicity and RealTime-Glo Annexin V Apoptosis assays using doxycycline-inducible
stable cell lines, we found that these three Kv7.4 variants are indeed cytotoxic and induce
cell death to various degrees in a doxycycline-dosage-dependent manner [41]. The cell-
death-inducing cytotoxicity of these Kv7.4 variants was further confirmed in an HEI-OC1
cell line that was derived from the murine inner ear [41]. We also found that none of
these truncated Kv7.4 variants were functional by themselves (when singly expressed); nor
were they capable of forming a heteromer with Kv7.4WT [41], refuting the possibility that
Kv7.4W242X and Kv7.4A349Pfs physically interact with Kv7.4WT to exert either an inhibitory
(dominant-negative) or cooperative effect.
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A CellTox Green Cytotoxicity assay was also performed for HEK293T-based doxycycline-
inducible stable cell lines expressing truncated Kv7.1 variants lacking the C-terminal
tetramerization domain, Kv7.1E261X, Kv7.1W305X, Kv7.1Q530X, and Kv7.1Q531X (Figure 1),
among which solely Kv7.1Q530X was JLNS-associated [115]. Large cell-death-inducing
cytotoxicity was found in Kv7.1E261X and Kv7.1W305X, while small cytotoxicity was found
in Kv7.1Q530X and Kv7.1Q531X. A previous study showed that Kv7.1Q530X does not exert
a dominant-negative inhibitory effect on wild-type Kv7.1 (Kv7.1WT) [5,29]. Consistently,
another study showed that Kv7.1Q530X does not bind to Kv7.1WT [31]. It is probable that
the other three Kv7.1 variants, which are truncated similarly (Kv7.1Q531X) or are shorter
(Kv7.1E261X and Kv7.1W305X) compared to Kv7.1Q530X, are also incapable of physically
interacting with Kv7.1WT.

Collectively, these observations affirm the inadequacy of a pathological mechanism
that is based on dominant-negative inhibition or haploinsufficiency alone for explaining
the mode of inheritance of some Kv7 variants.

6. The Mechanism Underlying Cell-Death-Inducing Cytotoxicity

Both Kv7.1 and Kv7.4 are membrane proteins that are translated and matured in the
ER. It is conceivable that misfolding of truncated Kv7 variants and their accumulation
induce chronic cellular stress and eventual cell death. In fact, we detected splicing of XBP1
mRNA, which is indicative of ER stress, in cells expressing Kv7.4 variants [41]. We also
found that application of autophagy inducers, imatinib, SB202190, and FK-506, delayed
the onset of cell death induced by the three truncated Kv7.4 variants [41], suggesting
that accumulation of the truncated Kv7.4 proteins indeed underlies cell-death-inducing
cytotoxicity. It should be noted that XBP1 mRNA splicing and small but nonnegligible cell-
death-inducing cytotoxicity were also detected in cells expressing Kv7.4WT [41]. The small
cytotoxicity of Kv7.4WT may be of physiological relevance because Kv7.4 is abundantly
expressed in OHCs and because doxycycline-driven forced overexpression of prestin,
another membrane protein abundantly expressed in OHCs, induced much less cell death
compared to Kv7.4WT [41]. It may be conceivable that the Kv7.4 protein tends to misfold
and self-aggregate even for the wild type, and that the basal endogenous autophagy
activity needs to be kept high in OHCs to counteract the cytotoxicity associated with
the large expression of Kv7.4. Such a view is in line with a recent study demonstrating
that an inhibitor of autophagy, chloroquine, specifically damages OHCs in mice [116].
Pharmacological intervention to maintain or augment the endogenous autophagy activity
may delay or prevent age-related hearing loss (presbycusis).

7. Updates on the Pathological Mechanisms of JLNS and DFNA2A

A dominant-negative inhibition-based pathological mechanism has been experimen-
tally validated for many dominantly inherited Kv7.1 and Kv7.4 variants. We confirmed that
two missense Kv7.4 variants, Kv7.4G285S and Kv7.4P291L, can interact with Kv7.4WT, and
that their cytotoxicity is WT-like [41]. Thus, our study does not challenge the dominant-
negative inhibition-based pathological mechanism (at least for these two Kv7.4 missense
variants). However, to the best of my knowledge, a haploinsufficiency-based pathological
mechanism has never been firmly demonstrated for any Kv7 variants. As mentioned
above, a haploinsufficiency-based pathological mechanism is incompatible with several
observations and, thus, not compelling.

The cell-death-inducing cytotoxicity identified in our recent study [41] provides a
straightforward explanation for the observed dominant inheritance of truncated Kv7 vari-
ants lacking the ability to exert a dominant-negative inhibitory effect. It can also explain
why some Kv7.1 variants that are associated with severe cardiac phenotypes are not always
co-associated with proportionally longer corrected QT (QTc) intervals [117–120]. For ex-
ample, a sixteen-year-old proband with Kv7.1W305X died suddenly, and two other affected
members experienced syncopal episodes, although the resting QTc interval of patients
with this Kv7.1 variant was found to be normal to borderline [120]. The normal-like QTc
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interval seems reasonable because it is unlikely that Kv7.1W305X exerts a dominant-negative
inhibitory effect on Kv7.1WT and because one functional KCNQ1 allele is sufficient for
supporting normal cardiac function (see above). It is conceivable that the severe cardiac
phenotypes found in patients with Kv7.1W305X are ascribed to the large cell-death-inducing
cytotoxicity found in this variant [41]. The Kv7.1WT-like small cytotoxicity found in reces-
sively inherited Kv7.1Q530X among four truncated Kv7.1 variants tested [41] is compatible
with such a view.

The vast majority of Kv7.1 variants are inherited dominantly and are associated
with LQTS (RWS), but not with hearing loss. Homozygous or compound heterozygous
Kv7.1 mutations that are not associated with hearing loss are also reported [5,6]. These
observations suggest that the cardiac function is more sensitive to the reduction of Kv7.1
function compared to the auditory function. Thus, as it has been presumed, JLNS hearing
loss is probably caused by drastic or complete loss of Kv7.1-mediated K+ channel activity.
Pathological contributions of cytotoxicity of Kv7.1 variants are likely minimal in JLNS,
given the observed recessive inheritance of JLNS variants.

8. Remaining Questions and Future Directions

It seems reasonable to speculate that the severity of disease phenotypes and the mode
of inheritance of truncated Kv7 variants lacking their C-terminal tetramerization regions
is largely determined by the magnitude of their anticipated cytotoxicity. However, the
large cytotoxicity found in Kv7.4A349Pfs contradicts the fact that this variant is inherited
recessively [92]. Future studies should address if the truncated Kv7 variants are actually
expressed in natural host cells. In addition, the vulnerability of natural host cells to cytotoxic
Kv7 variants may be very different from those of HEK293T and other cell lines. Animal
models need to be generated to fully examine the pathophysiological role of cytotoxic Kv7
variants found in our in vitro study. Animal models are also needed to examine potential
adverse effects of drugs (e.g., autophagy inducers). For example, imatinib was found to
delay the onset of cell death induced by cytotoxic truncated Kv7.4 variants [41]; however, it
was reported to be ototoxic [121,122]. We are currently in the process of generating knock-in
mouse models for several truncating Kcnq4 variants to address these questions.

Despite its limitations, in vitro characterization of disease-associated Kv7 variants us-
ing doxycycline-inducible stable cell lines, as showcased in our recent study for Kv7.1 and
Kv7.4 [41], will remain useful as an experimental platform for rapidly identifying cytotoxic
variants and screening for potentially effective drugs. In general, a dominant-negative
inhibitory effect is suspected for dominantly inherited missense Kv7 variants that retain the
C-terminal tetramerization region. For example, for Kv7.4 missense variants, a dominant-
negative inhibitory effect has been demonstrated for p.L47P, p.N264S, p.S269F, p.S273A,
p.L274H, p.W276S, p.T278A, p.L281M, p.L281S, p.G285C, p.G285S, p.L295P, p.G296S,
p.G321S, and p.R433W [52,54,58,68,73,74,76]. However, these studies would not rule out
the possibility that some missense variants are also cytotoxic. Not a Kv7.4 variant, but
the expression of a missense Kv7.2 variant, Kv7.2M518V, was reported to induce neuronal
death [123]. Missense mutations that were reported to impair cell membrane targeting of
Kv7.4, i.e., p.L274H, p.W276S, p.L281S, p.G285C, p.G285S, p.G296S, and p.G321S [58,68,81],
are of particular interest because impaired cell membrane targeting implies a structural
defect in a mutated protein, an intracellular accumulation of which could induce cellular
stress. It should be pointed out that many previous studies reporting a dominant-negative
inhibitory effect for Kv7 variants used transiently transfected cells. It is possible that a
dominant-negative effect may be erroneously judged for some cytotoxic Kv7 variants that
may indirectly affect the overall Kv7 channel activity by impairing cell viability, rather than
directly affecting the function of Kv7WT. In fact, our whole-cell patch clamp recordings
found “apparent” dominant-negative inhibitory effects in cells expressing both Kv7.4WT

and Kv7.4242X or Kv7.4A349Pfs, which was most likely attributable to impaired cell mem-
brane integrity [41]. Hence, cytotoxicity should be suspected and explored in any variants
that affect the amino acid sequence of the Kv7 proteins (Tables 1 and 2). The use of inducible
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stable cell lines is strongly encouraged to confidently identify cytotoxic variants and to
quantify their relative cytotoxicity.

Since loss of function likely accounts for the pathological role of Kv7.1 variants un-
derlying recessively inherited JLNS, it may seem insignificant to explore cytotoxicity in
JLNS-associated Kv7.1 variants. In fact, our recent study identified WT-like small cytotoxi-
city in a JLNS-associated Kv7.1 variant, Kv7.1Q530X [41]. However, the generality of this
finding should be thoroughly examined, especially given the observation that a recessively
inherited Kv7.4 variant, Kv7.4A349Pfs, exhibits counterintuitively large cell-death-inducing
cytotoxicity [41]. The relatively large number of JLNS-associated Kv7.1 variants (Table 1)
allows for a systematic study examining the anticipated absence of large cytotoxicity that
may account for their recessive inheritance.

Due to the remarkable structural similarity between Kv7.1 and Kv7.4 (Figure 1), a mis-
sense change of a conserved residue that affects the function of one Kv7 protein is expected
to similarly affect the other. The fact that an approximately ten times greater number of
disease-associated variants are found in KCNQ1 compared to KCNQ4 implies that the car-
diac function is even sensitive to very small reductions in Kv7.1 channel activity. If true, why
do JLNS-associated Kv7.1 variants, which induce severe cardiac (and hearing) phenotypes
when they are homozygous or compound heterozygous, not induce haploinsufficiency-
related cardiac phenotypes when heterozygous? In addition to examining cytotoxicity, it
would be also worthwhile to learn if JLNS-associated Kv7.1 variants, especially missense
ones, are functional by themselves and capable of physically interacting with Kv7.1WT to
exert an inhibitory or cooperative effect. These experimental efforts may contribute to the
determination of the magnitude of Kv7.1-mediated K+ channel activity that is minimally
required to support normal cardiac and auditory functions.

It should be noted that “disease-associated” variants are not necessarily pathogenic.
Experimental characterization is important for any disease-associated variants to define
their pathogenicity. It is entirely possible that some variants have been falsely identified as
pathogenic or likely pathogenic. Identification of nonpathogenic variants is as important
as identification of truly pathogenic variants. The significance of experimental validation
should not be understated regardless of the likelihood of a variant being pathogenic
or nonpathogenic.

9. Concluding Remarks

Cytotoxicity-based pathological mechanisms have been acknowledged to account for
several neurodegenerative diseases, such as Alzheimer’s disease, in which pathological
aggregations of the tau protein are recognized as one of the hallmarks of the diseases [124],
with over 100 dominantly inherited tau variants reported to date. However, cytotoxicity-
based mechanisms have barely, if not never, been entertained for ion-channel-related
hereditary hearing loss. Our efforts to experimentally confirm the absence of K+ channel
activity in truncated Kv7.4 variants lacking the C-terminal tetramerization region might be
seen as belaboring, given the fully established fact that tetramer formation is essential for
completing a functional channel pore in any Kv channel. In fact, all three truncated Kv7.4
variants examined in our recent study were found to be nonfunctional by themselves, just as
expected. However, cell-death-inducing cytotoxicity would have not been found if we did
not pursue this thoroughly using inducible stable cell lines, underscoring the importance
of experimentally characterizing disease-associated variants without preconceptions.

We identified large cell-death-inducing cytotoxicity in truncated Kv7.1 and Kv7.4
variants. However, as stressed above, cytotoxicity should be suspected in any variants,
especially for dominantly inherited ones, that affect amino acid sequences of the Kv7
proteins. The currently pursued pharmacological strategy to augment residual Kv7 channel
activity would not benefit patients with cytotoxic Kv7 variants. Thus, cytotoxic variants
must be identified and distinguished from the others so that legitimate clinical strategies
can be developed separately.
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