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Abstract: The optoelectronic properties of layered α-MoO3 are greatly limited due to its wide band
gap and low carrier concentration. The insertion of hydrogen (H) can effectively tune the band
structure and carrier concentration of MoO3. Herein, first-principles calculations were performed
to unravel the physical mechanism of a H-doped α-MoO3 system. We found that the modulation
of the electronic structure of H-doped MoO3 depends on the doping concentration and position
of the H atoms. It was found that the band gap decreases at 8% doping concentration due to the
strong coupling between Mo-4d and O-2p orbits when H atoms are inserted into the interlayer. More
interestingly, the band gap decreases to an extreme due to the Mo-4d orbit when all the H atoms are
inserted into the intralayer only, which has a remarkable effect on light absorption. Our research
provides a comprehensive theoretical discussion on the mechanism of H-doped α-MoO3 from the
doping positions and doping concentrations, and offers useful strategies on doping modulation of
the photoelectric properties of layered transition metal oxides.

Keywords: α-MoO3; Insertion; H doping modulation; layer structure; optoelectronic properties

1. Introduction

Two-dimensional (2D) nanomaterials, applied as optoelectronic devices or energy
storage elements, are expected to play an important role in nanoelectronic devices [1–3].
In the past few decades, a large number of two-dimensional materials such as graphene,
molybdenum disulfide, and phosphorus-based materials have been found by researchers.
These materials are considered as promising candidates for future electronics. Graphene
has very high electron mobility [4], but zero band gap limits its practical application
in transistor devices [5]. Typical transition metal dihalide compounds (TMDCs), such
as MoS2, can achieve ultra-high switching ratios [6–8], but the device has low carrier
mobility and weak light absorption. Additionally, phosphorus-based two-dimensional
materials with high mobility were also found, but they decompose rapidly in a realistic
environment [9,10]. Layered transition metal oxide (TMO) materials attracted the attention
of researchers due to their excellent stability and rich physical and chemical properties [11].
As one of the important members of TMO, cubic molybdenum trioxide (α-MoO3) has
attracted extensive attention because of its extraordinary environmental stability and
tunable photoelectric characteristics, which have been widely used in energy storage [12],
solar cells [13], sensors [14], photoelectric devices [15], and other fields.

As we know, two-dimensional α-MoO3 crystal has a unique layered structure and a
wide band gap (2.8–3.0 eV), resulting in low intrinsic carrier concentration and low conduc-
tivity and making it difficult to be directly applied to electronic devices [16–18]. Therefore,
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the main challenge of developing nano α-MoO3 functional devices is to effectively adjust
the band gap and carrier concentration of α-MoO3. Doping is an effective method to im-
prove its photoelectric properties [19–21]. Previous studies have shown that ion insertion
(usually hydrogen and alkali metal ions) can control the electron band gap of α-MoO3,
and one of the most effective post-treatments for improving the band gap of the pristine
α-MoO3 is hydrogenation [11,20,22]. Kourosh, Kalantar-zadeh, and others regulate their
energy band structure by doping molybdenum oxide with hydrogen ions. They believe
that most of the inserted H+ combines with edge-shared oxygen and terminal oxygen to
form OH2 groups and convert MoO3 to HxMoO3. However, the OH2 group is not stable
in the presence of environmental disturbances (such as heat) and is finally released from
the original position in the lattice, leaving oxygen vacancies followed by the formation
of nonstoichiometric MoO3−x [23]. Furthermore, Maria Vasilopoulou et al. used Coulomb
charge to reduce the band gap of two-dimensional MoO3. These charges can be introduced
either by inserting H+ to form HxMoO3 or by reducing MoO3 to MoO3−x. Finally, α-MoO3
obtained higher carrier mobility at about 1100 cm2V−1s−1 while maintaining the original
high work function [24]. In addition, hydrogen doping can significantly improve the con-
ductivity of α-MoO3 and its optical response in the visible region [18]. As an interface layer,
α-MoO3 can also greatly improve the performance of organic optoelectronic devices [25].
However, these studies have not fully discussed the physical mechanism of hydrogen ion
insertion in MoO3 and the chemical bonding with three different coordinate oxygen in
doped molybdenum oxide. Few theoretical studies have reported the effects of different
combinations of H atoms and three kinds of oxygen atoms on the band structures, and dis-
cussed the doping position and concentration of hydrogen ion on tuning the photoelectric
properties of α-MoO3.

H-doped α-MoO3 is the effective way to tune the band structure and photoelectric
properties [24–26]. It is well known that band gap modulation depends on the type and
doping concentration of impurity atoms [27,28]. Herein, we theoretically established a
series of doped models and focused on the physical regulation mechanisms under different
bonding modes. By systematically studying the internal mechanism of α-MoO3 after
doping H atoms and the corresponding changed band structures, we found that the doping
position associated with the concentration of impurity plays an important role in the
photoelectric properties of α-MoO3. This paper not only reveals the internal physical
mechanism of H doping, but also provides useful theoretical guidance for the actual H
doping of α-MoO3.

2. Methods

All first-principles calculations were performed using the Vienna ab initio simulation
package (VASP version 5.4.4) based on density functional theory (DFT). Considering the
strong magnetism of Mo, GGA + U (generalized gradient approximation method and
modified by the Hubbard model) is used in the calculation of electronic structure [29]. The
pseudo-potential was considered in calculations through the projector-augmented wave
(PAW) method. The cut-off energy of plane waves was set at 400 eV. The Brillouin zone
integration was performed using a 2 × 3 × 4 k-point mesh. In order to make the doping
concentration closer to the actual situation, we established a 2 × 3 × 1 α-MoO3 supercell to
calculate the doping of a single H atom.

3. Results and Discussion

α-MoO3 is a two-dimensional layered material with a unique orthogonal structure
(space group: Pbnm, a = 3.697 Å, B = 13.864 Å and C = 3.963 Å). It has a distorted octahedral
structure, and each layer is connected by van der Waals interaction. It also has three
different types of oxygen, namely asymmetric oxygen, symmetric oxygen and terminal
oxygen, which are labeled as Oa, Os and Ot, respectively. Firstly, the electronic structure of
the unit cell is calculated, the band structure shows an indirect band gap, and the maximum
of valence band and the minimum of conduction band are at high symmetric K-points R
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and Γ, respectively. The band gap value corrected by the GGA + U method was 1.82 eV,
which is basically consistent with the previous literature, and the actual band gap value is
usually underestimated [30–32]. In addition, as shown in Figure 1c, it can be seen from the
density of states that the valence band of molybdenum trioxide is mainly contributed by
O-2p orbital electrons, while the conduction band is mainly contributed by Mo-4d orbital
electrons. This analysis is also consistent with the previous studies of α-MoO3 [27].
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Figure 1. (a) The crystal structure of two-dimensional α-MoO3. (b) The calculated band structures of
α-MoO3 unit cell. (c) The partial density of states (PDOS) of intrinsic α-MoO3.

As shown in Figure 2a, to find the most stable doping position, five sites were selected
in interlayer or intralayer according to the symmetry of α-MoO3. For the interlayer po-
sitions, H atoms bonded with Ot, Os and Oa when they doped into A1, A2 and A3 sites,
respectively. For the intralayer positions, H atoms bonded with Oa and Os when they
doped into B2 and B3 sites, respectively. As we can see in Figure 2b, in comparison with the
total energies of the different systems it was found that when H is doped at the concen-
tration of 4%, it is easier to form a coordination bond with Oa, and the intralayer doped
system is more stable than the interlayer doped system because the corresponding sys-
tem energy is relatively lower (see Table S1 for detailed data). This is consistent with the
study by Ritter et al., which indicated that H atoms first fill the intralayer positions on
the asymmetric oxygen atoms, and then start to fill the terminal oxygen sites when the H
atom concentration x > 0.85 (HxMoO3) [33]. In addition, by comparing the structure of
molybdenum trioxide octahedron before and after H doping (as shown in Figure 2c–f),
we found that MoO6 octahedron produced varying degrees of distortion, which can be
clearly seen in the change of Oa-Mo-Oa bond length. Among them, due to the weak van
der Waals force between layers, the strong coordination bond between H and Ot breaks
the original central symmetry of MoO6 octahedron. Compared with a non-doping state,
the longest Mo-Oa bond length is shortened by 0.126 Å and the shortest Mo-Oa bond
length is increased by 0.022 Å. (Figure 2d) The bonding of H atom and Oa in interlayers or
intralayers not only leads to small octahedral distortion, but also has the effect of making
the octahedral structure more symmetrical. In conclusion, we can confirm that the most
stable doping site at low concentration H is B2, where H forms a coordination bond with Oa
in the intralayer. Therefore, our research mainly focused on the most stable and metastable
sites B2 and A3. In addition, because the H ion radius (0.25 Å) is very small, its insertion
does not cause significant lattice distortion, which remains the original two-dimensional
structure of α-MoO3.

H doping not only leads to small deformation of α-MoO3, but also plays an important
role in modulating the energy band structure of α-MoO3. Figure 3a shows the band
structure of the system when the H atom is doped at A3 position. Compared with the band
structure of intrinsic α-MoO3, H insertion introduces an obvious impurity level near the
conduction band, which provides more transition levels for carrier transition in the wide
gap band. From the position of relative Fermi level, it was found that doping makes the
minimum of conduction band and the maximum of valence band move downwards, which
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shows the behavior of n-type doping. The density of states in Figure 3b also confirms the
existence of gap states which are near the bottom of the conduction band, composed of
Mo-4d orbit and weak O-2p orbit coupling. In addition, when impurity H is doped at
the most stable B2 position, it can be clearly seen in the energy band and density of states
that similar impurity levels are generated near the bottom of the conduction band, and are
mainly contributed by Mo-4d orbital electrons (Figure 3c,d). From the calculated results,
low concentrations of H doping can tune the band gap through shallow level defects, but
the modulation effect is weak. Therefore, we tried to increase the H doping concentration
and observe the different optoelectronic influence on band gap.
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Figure 2. (a) Schematic diagram of doping sites. (b) System energy at different doping sites. (c) In-
trinsic α-MoO3. (d) The H atom bonded to Ot at position A1. (e) The H atom bonded to Oa at position
A3. (f) The H atom bonded to Oa at position B2.

Firstly, we calculated the most stable doping position of H at 8% concentration. Because
α-MoO3 has two different doped positions, interlayer and intralayer, we examined three
doping styles: H atoms that are both doped in interlayer as AA site, H atoms that are
both doped in intralayer as BB, and H atoms that exist both interlayer and intralayer as
AB. As shown in Figure 4a, the total energy of the doped system showed that the most
stable doping situation was BB site (see Table S2 for systems energy of each doping site).
By further analyzing the bonding characteristics, we found that under AA or AB doping,
H tends to bond alternately with Ot and Oa in the same MoO6 octahedron, which is quite
different from the situation under low concentration doping. In the most stable BB doping
mode, H retains the bonding mode at low concentration and tends to coordinate with
Oa. In addition, by measuring the bond length between Oa and adjacent Mo at AB site,
we found that this doping method greatly improved the symmetry of the O-Mo bond
formed between asymmetric oxygen and Mo. The Mo-Oa bond length in MoO6 octahedron
changed from 1.79 Å to 2.05 Å and 2.11 Å to 2.09 Å, respectively. The effect of H insertion
on the interlayer spacing was also investigated. Interlayer spacing of α-MoO3 is 5.000 Å
(Figure 2a). When doping concentration is 4% or 8%, the interlayer spacing of α-MoO3
increased to 5.012 Å and 5.014 Å, respectively, which indicates that insertion of H atoms
results in only minor interlayer spacing increases due to its small ionic radius. In order to
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explore the reasons for the formation of different doping modes under a high concentration
of H atoms, we calculated their electronic structures to unravel the different modulation of
band gaps.
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As shown in Figure 4b,c, when H is doped in AA or AB mode, Mo-4d is strongly
coupled with O-2p orbit due to the bonding of H-Ot and H-Oa. As a result, the orbital
electrons are delocalized and an obvious trap state is formed in the middle of the forbidden
band. When H is doped in BB mode, due to the bonding of H-Oa, Mo-4d and O-2p, it only
produces weak coupling and the trap state is near the bottom of the conduction band, which
is mainly contributed by the Mo-4d state (as shown in Figure 4d). Furthermore, the partial
charge distribution in Figure 5 is consistent with the conclusion above. In BB doping mode,
H atoms lose electrons and become protons (Figure 5c). The charge of hydrogen atoms
is mainly transferred to Oa atoms in the same layer. The charge transfer of Oa required
bonding with Mo is reduced, resulting in an impure state contributed primarily by the
Mo-4d orbital. In AA and AB doping modes, the charge of hydrogen atoms is transferred
to nearby Mo and O atoms at the same time, and a large amount of charge is localized,
resulting in strong Mo-4d and O-2p orbital coupling. The deep level defects are formed
eventually, as in the previous calculation results for density of states (see Figure S1 for
band structure). The phenomenon of electron transfer from H atoms to MoO3 can also be
observed by experimental Raman spectroscopy. T. Hirata et al. reported that the Raman
mode of MoO3 would decrease in intensity with the increase in H+ concentration implanted,
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which indicates the electron transfer from hydrogen to MoO3 [34]. In addition, from the
effect of band gap modulation it is clear that H atom doping at higher concentration
can tune the band gap in a wider range. When there are H atoms in the interlayer, H is
bonded with Ot and Oa in the same octahedron, which also improves the conductivity of
α-MoO3 and optimizes its optoelectronic properties. This phenomenon is mainly due to
the introduction of deeper impurity states between bands, which improves the transition
probability of carriers. In the case where H atoms only exist in the intralayer, they tend to
bond with Oa and the total system energy of H doped α-MoO3 is the lowest, showing a
similar regularity to that observed in low concentration H-doping calculations. Our work
also calculated the 25% doping concentration, which shows a similar behavior with the
doping concentration of 8%. The total energy of the doped system shows that the most
stable doping situation is still BB site, when all the H atoms are doped in intralayer (see
Table S3 for detailed data). The trap state is further extended and shows the strong coupling
between Mo-4d orbit and O-2p orbit (see Figure S2 for DOS at 25% concentration). As
shown in Figure 5d–f, we also found that both H atoms tend to bond with asymmetric
oxygen at site BB, and the energy of H atoms arranged along [001] or [101] direction is
0.5 eV lower than that along [100] direction (see Table S4 for detailed data).
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Finally, the optical absorption spectra for different doping situations and the different
modulation on the optical properties of the systems were investigated. We calculated the
optical absorption coefficients of three different doped systems (AA, AB, BB). As shown in
Figure 6, compared with the α-MoO3 system before doping, the light absorption coefficient
of the doped system was significantly improved in the visible and infrared regions. These
findings support the results by M. H. Yaacob et al., which list the absorbance versus optical
wavelength of the Pd/MoO3 film and show that the magnitude of the absorbance was
increased significantly when the film was exposed to 1% H2 in synthetic air [35] (see
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Figure S3 for light absorption at different doping concentration). Particularly, in the most
stable BB doped system, its optical absorption property behaves best in the long wavelength
visible region and the infrared region.
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4. Conclusions

We used first-principles calculation to study the physical mechanism of changing
optoelectronic properties in H doped α-MoO3. At low concentration (4%) doping, hydro-
gen atoms tend to be distributed in the intralayer, and H-O bonding causes local lattice
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distortion of α-MoO3, which leads to an impurity gap state near the minimum of the
conduction band. At high concentration (8%) doping, the impurity gap state is expanded,
which reduces the band gap to an extreme. At the concentration of 8%, we set three different
doping positions: AA, AB, and BB. The AA and AB doping states lead to strong coupling
between Mo-4d and O-2p orbits, and finally produce impurity extended states located deep
in the forbidden band. As a result, the high concentration dopant will tune the band gap
and optoelectronic properties of the material in a wider range. Interestingly, when H atoms
only exist in the intralayer (BB state), the doped MoO3 system is the most stable one and the
impurity state is mainly contributed by Mo-4d orbital near the conduction band. Hydrogen
atoms in the BB doping state were found to have a tendency arranging towards [101] or
[001] and create a remarkable effect on enhancing light absorption.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15093378/s1, Figure S1: Band structure of hydrogen doped
at AA, AB, BB position at 8% concentration. (a) Band structure of AA position. (b) Band structure
of AB position. (c) Band structure of BB position. Figure S2: DOS of hydrogen doped at AA, AB,
BB position at 25% concentration. (a) Density of states of AA site. (b) Density of states of AB site.
(c) Density of states of BB site. Figure S3: light absorption of different doping concentration. Table S1:
The total energy of systems in A1, A2, A3, B1, B2 doping sites. Table S2: The total energy of systems
with different 8% concentration doping site. Table S3: The total energy of systems with different 25%
concentration doping site. Table S4: The total energy of BB systems in different crystal orientation.
Table S5: Interlayer spacing of different doping concentration.
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