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Abstract

Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50
million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene
regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and
revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein
sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We
identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein
sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program
conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a
variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components
in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway
and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in
both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional
constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years
strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient
characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes
predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and
barley germination research with greater confidence.
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Introduction

Seed germination is a biological process important to plant
development, plant evolution and agricultural production. Strictly
defined, germination begins with the uptake of water by dry
quiescent seeds and ends with visible emergence of an embryo
tissue from its surrounding tissues [1]. Seed germination is
accompanied by many distinct metabolic, cellular and physiolog-
ical changes. For example, upon imbibition, the dry quiescent
seeds take up water and rapidly resume many fundamental
metabolic activities such as respiration, RNA metabolism, and
protein synthesis using surviving structures and components in the
desiccated cells. These concerted biological activities transform a
dehydrated and resting embryo with almost undetectable metab-
olism into one with vigorous metabolism culminating in growth
[2,3].

Transcriptional regulatory program underlying seed germina-
tion and its associated biological pathways were investigated in
divergent plant species [4,5,6,7,8,9,10,11]. Extremely complex
transcriptional regulatory programs are activated over the course
of seed germination. In barley germination and seedling growth,
50% of examined genes are expressed in dry and germinating
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seeds at a detectable level. Twenty-five percent of those examined
genes are differentially regulated over the course of seed
germination and seedling growth. Based on global and dynamic
expression changes of the germination-regulated genes, the
transcriptional regulatory program underlying barley seed germi-
nation is divided into early and late phases. Each phase is
accompanied by differential expression of a distinct set of genes
and biological pathways. For example, the early phase of seed
germination is accompanied by transcriptional up-regulation of
cell wall synthesis and regulatory components including transcrip-
tion factors, signaling proteins, and post-translational modification
proteins. During the late germination phase, histone families and
many metabolic pathways are up-regulated. Stress related
pathways and seed storage protein genes are down-regulated
through the entire course of germination. Comparing transcrip-
tomes of barley and Arabidopsis showed that high accumulation of
many seed stored transcripts in Arabidopsis and barley dry seeds
have been preserved for 200 million years of monocot-dicot
divergence [9,11].

Barley and rice have been divergent for 50 million years, but
share a great similarity in seed germination and seedling growth
[3,12]. For example, both rice and barley are endospermic and
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starch cereal species, and have a highly conserved seed storage
mobilization pathway. Both rice and barley produce hydrolytic
enzymes in aleurone tissues during seed germination and seedling
growth, and translocate the hydrolytic enzymes to starch
endosperm for mobilizing seed storage reserves. Seed germination
and its associated production of hydrolytic enzymes are induced by
gibberellic acid through a highly conserved transduction pathway
[10,13,14,15]. To gain an insight into transcriptional regulatory
programs underlying the conserved characteristics of barley and
rice germination, we determined transcriptomes of rice grains at
start-, mid- and end-germination points, and developed a
bioinformatic and evolutionary approach to compare them with
our previously determined transcriptome of barley at the
equivalent germination stages [9]. Genome-wide sequence com-
parison identified germination regulated rice and barley gene pairs
with a strong sequence similarity. While a small percentage of
these pairs showed similar expression patterns over the course of
seed germination, a majority had divergent expression pattern.
The analysis also identified a collection of germination regulated
barley-rice gene sets. The rice and barley genes in each set shared
strong similarities in protein sequences and expression patterns.
Gene expression patterns and protein sequences changes quickly if
there are no functional constraints [16,17,18,19,20,21,22]. Seed
germination is accomplished through concerted activities of many
gene products, which are mainly defined by their protein
sequences and accumulation patterns. The preservation of
germination-regulated expression patterns and protein sequences
of the barley and rice genes in each set suggests that the barley and
rice genes were functionally important and equivalent in
germination, and likely contributed to the molecular and cellular
processes conserved in barley and rice germination.

Results

Transcriptomes of Barley and Rice at Three Distinct and
Equivalent Developmental Stages of Germination

An objective of this study was to compare transcriptomes of rice
and barley over the course of germination and to identify
germination regulated barley and rice genes with conserved
protein sequences and expression patterns. Since expression of
germination related genes are often differentially regulated with
respects to specific developmental stages over the course of seed
germination [6,9], it is critical to compare their transcript
accumulation levels at distinct and equivalent physiological stages.
Our previous studies showed that transcriptional regulatory
program underlying seed germination is divided into early and
late germination phases that are separated by the mid-time point
of germination [9]. Transcriptomes of barley at start- (dry),
middle- (9 hr) and end-points of germination (18 hr) were
previously determined and used for the comparison [9]. It took
42 hours for radicles to emerge from rice grains at the germination
condition identical to barley germination. To compare transcrip-
tomes of germinating rice and barley grains at their equivalent
stages of barley germination, we examined transcriptomes of rice
at 0 (dry), 21 and 42 hours of germination as start-, middle- and
end-stages of germination. Three independent biological replica-
tions were conducted for each stage in rice and barley
transcriptome assays.

Both barley and rice transcriptome data used in this study were
produced using the Affymetrix GeneChip technologies (GeneChip
Barley Genome Array and GeneChip Rice Genome Array), and
were analyzed using identical statistical approaches and param-
eters to reduce variation from different transcriptome assay
platforms and statistical analysis. One-way ANOVA identified a
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total of 3599 barley and 18665 rice probe-sets that were
differentially regulated between any two examined stages of
germination with a false discovery rate less than 5%. Considering
the potential that non-specific hybridization between paralogous
genes could cause an inaccurate assignment of signal intensity to
gene family members, the probe-sets flagged by Affymetrix as
potentially cross-hybridizing probes were removed from further
analysis. A total of 2537 barley and 13813 rice probe sets were
identified as germination regulated genes, and were used for
further comparative analysis. A much higher number of germi-
nation regulated probe-sets were identified in rice than in barley. It
was partially caused by the fact that the GeneChip Rice Genome
Array has two times as many probe-sets as the GeneChip Barley
Genome Array. In addition, probe-sets on barley array were
designed using EST sequences while the ones on the rice array
were designed using genes predicted from genome sequence,
which are likely to lead to a lower percentage of germination
regulated genes on the barley array than on the rice array.

Conservation and Divergence of Transcriptional
Regulatory Programs Underlying Barley and Rice
Germination

A total of 1507 pairs of barley and rice genes (BRs) with protein
sequence similarity at an e-value less than —50 were identified
among the germination regulated barley and rice genes. The BRs
contained 805 barley and 1054 rice genes (Table 1). Pearson
correlation coefficients (PCC) between log2 signal intensities of
each paired barley and rice genes at start-, mid- and end-stages of
germination were calculated to determine the similarity of their
expression patterns. Sixty percent of the BRs had a PCC value
higher than 0.5, indicating that the barley and rice genes in each of
the BRs had a good similarity in their transcript accumulation
patterns (Figure 1, Table 2). However, forty percent of the BRs
had PPC value lower than 0.5, indicating that a significant
percentage of BRs had low similarity or no similarity in their
expression patterns. Thus, the BRs with high protein sequence
similarity preferentially preserved their expression patterns after
rice and barley diverged from their most recent ancestor.
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Figure 1. Distribution of Pearson Correlation Co-efficiency
between Expression Patterns of Barley and Rice Genes. The
germination regulated barley and rice genes (BRs) were paired
randomly and paired based on their sequence similarity with an e-
value less than —50 respectively; and their PCC values were
determined. The distribution of PCC value for BR genes with e-value
less than —50 (dark blue) were compared with randomly paired BR
genes (light blue). The percentage of BRs (Y-axis) in each defined PCC
value range (X-axis) was graphed.
doi:10.1371/journal.pone.0087261.g001
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Table 1. Summary of Germination Regulated BRs and cBRs.

Conservation of Germination

No. of BRs with an e-value less than —50 1507

Species Barley Rice
No. of Distinct Genes 805 1054
No. of BRs with PCC >0.9 and e-value <=-50 483

Species Barley Rice
No. of Distinct Genes 368 388

in Single-gene cBRs 288 358

in multi-gene cBRs 80 30
Single-gene/Distinct 78.26% 92.27%

doi:10.1371/journal.pone.0087261.t001

However, a significant percentage of the BRs had evolved into
different gene expression patterns.

A collection of randomly paired barley/rice genes were
generated from the germination regulated barley and rice genes.
The randomly paired BRs had a relatively symmetrical distribu-
tion of PCC value with a slightly higher percentage at a range of
PCC value from 0.8 to 1.0 than that from —0.8 to —1.0.
Interestingly, twenty-seven percent of the randomly paired BRs
had a PCC value greater than 0.8 (Figure 1).

Percentage of BRs with similar expression patterns (PCC value
from 0.5 to 1.0) positively correlated with their protein sequence
similarities in the e value range of —5 to —100 (Table 2).
However, there was little difference in distribution of PCC values
between BRs with e value ranging from —50 to —100 and BRs
with e value less than —100. Chi-square analysis was performed to
compare distributions of PCC values between randomly paired
BRs and BRs with a given range of e value. There was a significant
difference in distribution of PCC values between BRs with e value
from —50 to —100 and randomly paired BRs at P<<0.01 (Table 2).
However, there was no significant difference in distribution of
PCC values between BR genes with e value from —20 to —50 and
random paired BRs at P value of 0.1. Thus, the BRs at e-values
less than —50 were used for identification of BRs that had
conserved expression patterns.

Barley and Rice Genes with Conserved Protein Sequences
and Germination Regulated Expression Patterns (cBRs)
A total of 483 BRs with a PCC value higher than 0.9 were
identified among the 1507 germination regulated BR genes. Those
BRs accounted for 32% of the germination regulated BRs. The
483 BRs were comprised of 368 distinct barley genes and 388
distinct rice genes. Those genes represented a small percentage of
the 2537 barley and 13813 rice germination regulated genes.

Thus, majority of the germination-regulated genes had diverged
beyond our thresholds in protein sequences, gene expression
patterns or in both. The 483 BRs were further merged into 262
single-gene cBRs containing only one gene from each species and
60 multi-gene cBRs (Table 1 and Table 3). Barley and rice genes
in each of those BRs were differentially regulated during seed
germination, and shared strong similarity in both protein
sequences and transcriptional expression patterns. We referred
to the BRs as conserved BRs (cBRs). Each multi-gene ¢BR had at
least three genes with one-to-many, many-to-one and many-to-
many barley and rice gene relationship. Any pair of “orthologous”
or paralogous genes in each multi-gene c¢cBR had sequence
similarity with an e-value less than —50 and expression pattern
similarity with a PCC value higher than 0.9. The largest mult-
gene cBR (cBR_M2) encoded a U-box domain containing RING
protein family and had a total of 20 rice and barley genes (Table 3).
However, the numbers of rice and barley genes in each cBRs were
not always equally distributed. For example, the cBR_M2 was
composed of 17 barley genes and 3 rice RING protein genes.

Diverse Gene Expression Patterns Were Preserved in
Barley and Rice Germination

There are eight possible expression patterns based on up or
down-regulations of a gene in early and late germination phases.
All of the possible expression patterns were observed for the cBRs,
and were preserved in both rice and barely since their divergence
(Table 3 and 4). Table 4 summarized the cBRs in the eight
expression patterns. A total of 71 cBRs showed up-regulated
expression patterns in both early and late germination phases, and
made up the largest group of cBRs (Group 1). Many cBRs in the
Group 1 encoded the proteins related to cell wall metabolism, cell
organization, chromatin structure, protein degradation, and
signaling G-proteins.

Table 2. Relationship Between Protein Sequence Similarity and Expression Similarity of Barley and Rice Genes.

Sequence Similarity\PCC value [—1,—0.5) [—0.5,0) [0,0.5) [0.5,1] p value
BRs with e-value <=-100 18% 8% 14% 60% <=0.01
BRs with e-value from —50 to —100 16% 9% 16% 59% <=0.01
BRs with e-value from —20 to—50 23% 12% 12% 54% <=0.1
BRs with e-value from —5 to —20 36% 15% 12% 37% <=1
random 38% 13% 12% 37%

doi:10.1371/journal.pone.0087261.t002
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Table 3. Cont.
¢BR ID

stress.abiotic.heat

—23
30.1

—1.2
15

1

cBR_M59

dnaJ homolog subfamily B member 5,

NO_MATCH

cBR_M60

not assigned.unknown

doi:10.1371/journal.pone.0087261.t003
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Table 4. Summary of cBR Expression Patterns.

Group early phase late phase No. of cBRs
1 Up Up 71
2 Up No 18
3 Up Down 28
4 No Up 69
5 No Down 36
6 Down Up 17
7 Down No 13
8 Down Down 62

Note: The cut-off value for the Up, Down and No change of cBR expression in
early and late germination phase is 1.4-fold change.
doi:10.1371/journal.pone.0087261.t004

Interestingly, Group 3 had 28 cBRs that were transiently up-
regulated in the early germination phase. Expression levels of most
cBRs in Group 3 at the end of germination were down-regulated
to levels at the dry seed stage. Preserving transient up-regulation in
early germination followed by down-regulation in late germination
in both barley and rice indicated that those genes likely
participated in biological processes specific to early germination.
Many cBRs in Group 3 encoded proteins involved in cell wall
modification, protein degradation, protein modification, and
signaling transduction. Cell wall modification is required to
weaken cell walls during early germination to permit radicle
protrusion and to provide access to stored metabolites in the
endosperm [23]. Also in Group 3 were proteins such as F-box
proteins, receptor-like kinases, G-proteins and calcium-dependent
protein kinases, which play important roles in a variety of signaling
transduction pathways. Those signaling components likely played
roles in transducing a variety of signals in the early germination
phase to initiate the biological pathways required in seed
germination. Sixty-two cBRs in Group 8 were down-regulated in
both early and late stages. They encoded proteins with a wide
range of biological functions. Those cBRs highly accumulated in
dry mature grains and their accumulation gradually decreased
over the course of seed germination. This raises the possibility that
these cBRs encoded proteins involved in seed development and
maturation. The highly accumulated transcripts were degraded
over the course of seed germination.

The ¢BRs Encoded Proteins in Diverse Biological
Pathways

The genes represented on the rice and barley GeneChips are
classified into 35 functional groups based on their functions in
metabolic pathways, signaling pathways and gene families in
MapMan and PageMan [24,25]. The cBRs encoded proteins in
most of the functional groups (Figure 2 and Table 3). For
examples, 13 c¢BRs encoded proteins in cell wall metabolic
pathways while 22 cBRs were functionally related to signaling
pathways. Eighty-nine c¢BRs encoded proteins that are not
classified into any of the functional groups. cBRs in the same
functional group often had diverse expression patterns. For
example, cBRs in stress-related pathways had both up-regulated
and down-regulated expression patterns in early phase of
germination. Conversely, cBRs in several functional groups had
similar expression patterns. For example, all three cBRs in the
biodegradation of xenobioitics pathway were down-regulated in
both early and late phases of germination while all eight cBRs

February 2014 | Volume 9 | Issue 2 | e87261
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Figure 2. Distribution of cBRs and Their Expression Patterns in Biological Pathways. All cBRs were assigned to 35 functional categories
defined by MapMan tools. The log2 of average fold changes from dry seed over the course of germination for each cBR were graphed next to its
functional categories. The number of cBRs assigned to each functional group was listed in the table.

doi:10.1371/journal.pone.0087261.g002

except cBR_M23 in DNA related pathways were up-regulated in
both early and late phase of germination (Figure 2 and Table 3).
Interestingly, a large number of transcription factor genes are
differentially regulated over the course of barley germination [9].
However, a limited number of ¢cBRs encoded transcription factors.
Only a PHD finger protein (cBR_207) and an AP2/EREBP
protein (cBR_191) were down-regulated during seed germination
(Table 3). Therefore, germination regulated transcription factor
genes evolved quickly in either their protein sequences or/and
their expression patterns.

Biological Pathways Regulated by Conserved
Transcriptional Regulatory Programs

Representation analysis of cBRs in each functional group
showed that the cBRs in a number of biological pathways were
preferentially regulated conserved expression programs
(Figure 3A). Early germination up-regulated cBRs were over-
represented in cell wall metabolic pathways and peroxidase gene

in
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family (Figure 3A, 3B and 3C). A total of 13 cBRs such as
arabinogalactan protein (AGP), cellulose synthase, beta-glucanase,
beta-D-xylosidase, expansins and xyloglucan endotransglucosylase
were identified in the cell wall metabolic pathway. All of the 13
cBRs were up-regulated during early germination, except that
cBR_228 encoding beta-D-xylosidase was slightly down-regulated
(Figure 3B). In addition, five cBRs encoded peroxidases; and four
of them were up-regulated in the early germination phase
(Figure 3C). Most of the peroxidase genes were also preferentially
up-regulated in the late germination phase. It was reported
previously that peroxidase activity increases significantly in the
micropylar end of germinating tomato seeds [26]. The conserved
up-regulation of peroxidase genes in barley and rice provides
additional evidence supporting the functional importance of
peroxidase in seed germination.

The cBRs encoding chromatin remodeling and structural
proteins were preferentially up-regulated during the late germi-
nation phase. There were 8 cBRs in chromatin structure

February 2014 | Volume 9 | Issue 2 | e87261
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Figure 3. Biological Pathways and Protein Families Over- and
Under-Represented with Early and Late Germination Regulat-
ed cBRs. Figure 3A showed biological pathways and families over- and
under-represented with early or late germination regulated cBRs. The
functionalities were displayed on the right; and the germination phase
and regulation patterns were displayed on the top. The representation
analysis was conducted for all cBRs. Log2 fold change values in early
and late germination phases were used in the PageMan analysis.
Fisher's exact test and an ORA Cutoff value of 1 were used. A false color
scale was used to indicate the statistic Z value. Blue and red indicates
significance in over-representation and under-representation. The cBRs
encoding proteins in cell wall metabolism and peroxidase families were
preferentially regulated in early germination phase (Figure 3B and 3Q)
while the cBRs encoding proteins in chromatin structure/modeling
pathways were preferentially up-regulated in late germination phase
(Figure 3D). Log2 of average fold changes from dry seed over the
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course of germination for the cBRs in those pathways were graphed.
Dry, middle (Mid) and end (End) points of germination were indicated
as X-axis.

doi:10.1371/journal.pone.0087261.9g003

pathways. All of them were dramatically up-regulated during the
late germination phase by more than 4.7 fold with an average of
30 fold. However, expression levels of those cBRs had no or little
change during the early germination phase (Figure 3D). Thus, the
specific and strong up-regulation of chromatin-related genes in the
late germination phase was conserved in rice and barley. Five of
the eight cBRs encoded histone proteins. For example, the
cBR_M23 was composed of 8 barley and 2 rice histone H4 genes.
Two of the eight cBRs encoding replication licensing factor MCM
proteins were specifically up-regulated in late germination phase.
MCM encodes a conserved minichromosome maintenance
protein and plays an essential function as a helicase in DNA
replication elongation in eukaryotes. MCM proteins also partic-
ipate in other chromosome processes including transcription,
chromatin remodeling, and genome stability [27].

Biological Pathways and Gene Families Containing cRBs
with Diverse Expression Patterns

Interestingly, the ¢cBRs in a number of signaling pathways and
gene families had diverse expression patterns. The cBRs encoding
14-3-3 proteins, G-proteins, receptor kinases, calmodulin and
calcium-dependent protein kinase in signaling pathways were
identified. The expression patterns of those cBRs were highly
diverse (Table 3 and Figure 4A). A total of 12 ¢cBRs encoded G-
proteins, but their expression patterns were highly diverse over the
course of germination. For example, the ¢cBR_M17 was up-
regulated by 13-fold in the early germination phase. In contrast,
another ras-related G protein cBR (cBR_246) was down-regulated
by 2.4 fold in the early germination phase. Two cBRs (cBR-M37
and cBR_71) encoded 14-3-3 proteins. The ¢cBR_71 was down-
regulated while ¢cBR-M37 was up-regulated over the course of
seed germination. Fourteen cBRs encoded proteins in ubiquitin/
26S proteasome-mediated protein degradation pathways, which
often play important roles in a variety of signaling transduction
pathways (Figure 4B). Most of the cBRs encoded E2 and E3
regulatory proteins such as E2, HECT, RING and F-BOX
proteins, and had diverse expression patterns. For example, four
cBRs encoding F-box proteins were differentially regulated by seed
germination, and showed diverse expression patterns.

Both alpha- and beta-amylases are key enzymes required in seed
storage starch mobilization during seed germination and seedling
growth [1,23]. Interestingly, the cBRs encoding alpha- and beta-
amylases had opposite transcriptional patterns. The alpha-amylase
cBR was up-regulated in late germination stages while the beta-
amylase cBR was down-regulated in late germination (Figure 4C).
In addition, two cBRs encoding cysteine proteases and two cBRs
encoding serine proteases were identified. Both cysteine and serine
proteases were suggested to play a role in protein mobilization
during seed germination [28]. Interestingly, one cysteine protease
cBR and one serine protease cBR were up-regulated while the
others were down-regulated in both the early and late germination
phase (Figure 4D). The functional and evolutionary significance in
preserving the opposite transcriptional regulatory programs for
these functionally related genes remains to be explored.

Discussions

Barley and rice diverged from their common ancestor 50
million years ago [12]. However, they share a great similarity
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Figure 4. Biological Pathways and Protein Families Composed of cBRs with Divergent Expression Patterns. The cBRs encoding G-
proteins and 14-3-3 proteins (4A), proteins in ubiquitin dependent degradation pathways (4B), cysteine and serine proteases (4C), and alpha and beta
amylases (4D) with diverse expression patterns were shown. Log2 of average fold changes in reference to dry seeds over the course of germination
for each ¢BR was graphed. Dry, middle (Mid) and end (End) points of germination were indicated X-axis. The diagram of ubiquitin dependent

degradation pathway was displayed in 4B.
doi:10.1371/journal.pone.0087261.9g004

morphologically and physiologically in germination and seedling
growth. In this study, we measured the transcriptomes of
germinating rice grains at dry, mid- and end points of seed
germinations, which should represent the most distinct stages of
the dynamic transcriptional changes over seed germination
process. Having determined transcriptomes of rice at the three
equivalent stages [9], we designed a systems and evolutionary
strategy to compare the dynamic transcriptomic changes over the
course of seed germination to gain an insight into divergence and
conservation of gene regulatory programs underlying rice and
barley germination.

One-Way ANOVA analysis of the transcriptomes revealed that
2537 barley and 13813 rice genes were differentially regulated
over the course of seed germination. Comparing their encoding
protein sequences and expression patterns identified 322 sets of
conserved barley and rice genes (cBRs) sharing strong similarity in
both protein sequences and gene expression patterns. The
collection of cBRs contained 368 barley genes and 388 rice genes.
Thus, only a very small percentage of the germination-regulated
genes preserved their protein sequences and gene expression
patterns; and a significant divergence occurred in transcriptional
regulatory programs underlying rice and barley germination since
the barley-rice divergence. As expected, protein sequence similar-
ity of germination regulated barley and rice genes positively
correlated to the similarity of their expression patterns, suggesting
co-evolution of protein functions and gene expression patterns.

Biological functions of genes are mainly determined by their
protein sequences and their expression patterns. Both protein
sequences and expression patterns change quickly if the genes have
no functional significance [17,29,30,31]. Therefore, we hypothe-
sized that the germination regulated expression patterns and
protein sequences of the barley and rice genes in each cBR have
been preserved for 50 million years after the split of rice and barley
from their common ancestor because the genes are functionally
important to seed germination, and should contribute to the
characteristics shared by rice and barley germination. Addition-
ally, 60 of the 322 ¢BRs were multi-gene cBRs. Each multi-gene
cBRs contained at least one pair of paralogs. Duplicated
paralogous genes are subjected to little functional constrains, and
offer a great opportunity for their sub-functionalization or neo-
functionalization through divergence of their protein sequence
and/or expression patterns [17,19,20,21,32]. Preserving germina-
tion regulated expression patterns and protein sequences of those
paralogous genes in the multi-gene cBRs suggests that they may be
subjected to negative selection, and provides additional evidence
supporting their functional significance in seed germination.

We identified a number of biological pathways enriched with
cBRs of similar expression patterns, suggesting that their
underlying transcriptional regulatory programs are highly con-
served in rice and barley. Preserving coordinate regulation of their
gene expression patterns across rice and barley in each of those
pathways provided further evolutionary evidence for functional
significance of those biological pathways in seed germination. As
suggested, most of those biological pathways have been previously
proposed to functionally important in seed germination based on a
variety of evidences. For example, a total of 13 cBRs were
identified in cell wall metabolic pathway; and 12 of the 13 cBRs
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were up-regulated during early germination. Cell wall metabolism
plays an important role in germination for most angiosperm seeds.
It 1s required for two important germination biological processes
[33,34], radicle elongation growth and endosperm weakening. It
was previously reported that endosperm weakening is accompa-
nied with the induction of cell wall remodeling enzymes in several
species. They include endo-beta mannanase, beta-1,3-glucanases,
expansins, xyloglucan endotransglycosylase, pectin methylesterase,
polygalacturonase and arabinogalactan protein [34]. We identified
cBR encoding each of these proteins. Three cBRs encoding
expansins were up-regulated during early germination. Expansins
are involved in modifying the cell wall matrix during plant growth
and development, and have been demonstrated to have cell wall
extension activity in vitro and in vivo [35]. It was proposed that
expansins is involved in the expansion of cucumber hypocotyls
[36]. During germination of tomato seeds, a specific alpha-
expansin transcript accumulates in the endosperm cap, presum-
ably in association with the weakening of cell walls that facilitates
emergence of the radicle [37]. The functional significance of
expansins in germination might be an importance force to
preserve the early germination up-regulated expression patterns
and protein sequences of the cBRs. Cell wall precursor synthesis,
cellulose synthesis and cell call modification genes are up-regulated
during the early germination phase in barley [9]. A number of cell
wall degradation related genes are preferentially expressed in after-
ripening barley coleorhiza, and are likely to associate with
breaking seed dormancy [7]. Preserving early germination up-
regulation of those cell wall metabolic enzyme genes in barley and
rice also provided further evidence supporting the hypothesis that
the early germination process turns on the transcriptional
regulatory programs underlying cell wall metabolism to weaken
coleorhiza and facilitate root emergence.

The c¢BRs encoding chromatin remodeling and structural
proteins were preferentially up-regulated during the late germi-
nation phase. There were 8 cBRs in chromatin structure
pathways. All of them were dramatically up-regulated during the
late germination phase by more than 4.7 fold with an average of
30 fold. Histone modification and chromatin remodeling play
important roles in reprogramming transcriptional programs.
Chromatin-based regulation of seed dormancy and germination
was also reported [38,39,40]. Mutation of histone monoubiquiti-
nation genes in Arabidopsis reduces ubiquitinated forms of histone
H2B and alters expression levels for several dormancy-related
genes [39]. A transient histone deacetylation event occurs during
seed germination one day after imbibition, and is likely to serve as
a key developmental signal that affects the repression of a number
of histone deacetylase regulated genes [40]. Preserving preferential
up-regulated expression of cBRs in late germination phase suggests
an important role for histone modification and chromatin
remodeling in germination, which likely supports radicle elonga-
tion and quick seedling growth in late and post-germination phase.

Interestingly, a number of biological pathways and gene families
contained cBRs with diverse expression patterns. The cBRs
encoding proteins in signaling pathways such as G-proteins and
kinases often had diverse germination regulated expression
patterns. G-proteins are involved in seed germination [41].
Diverse expression patterns of those G-protein cBRs suggested
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that those G-protein cBRs may participate in diverse signaling
pathways in seed germination process. Thus, those cBRs had
distinct biological functions in the most recent ancestor of barley
and rice, and their protein sequences and germination regulated
expression patterns have been preserved after their split from the
ancestor. In addition, two distinct regulatory programs controlling
alpha- and beta- amylases production were conserved in barley
and rice. Starch, a major storage reserve in rice and barley grains,
is mobilized during seed germination to support seedling growth.
Alpha- and beta-amylases are key enzymes required in starch
mobilization [1,23]. The alpha-amylase ¢cBR was up-regulated in
late germination stages while the beta-amylase ¢cBR was down-
regulated in late germination (Figure 3D). Alpha-amylase genes
are up-regulated in cereal grain germination and seedling growth.
They are also induced by GA in barley aleurone tissues
[10,15,23,42,43]. Preserving up-regulation of alpha-amylase genes
was consistent with its biological functions in starch degradation
during seed germination and seedling growth [44]. In contrast,
previous biochemical studies showed that beta-amylase is synthe-
sized and stored exclusively in the starchy endosperm during seed
maturation rather than in the aleurone after the initiation of
germination [45,46]. Accumulation level of beta-amylase tran-
script does not respond to GA treatment in barley aleurone [10].
Thus, the alpha- and beta- amylase cBRs had two opposite
expression patterns that had been preserved during barley and rice
seed germination for 50 million years of barely- rice divergence.
Two cBRs encoding protease also showed opposite expression
patterns during seed germination. The functional and evolutionary
significance in preserving the two opposite transcriptional regula-
tory programs for these functionally related genes remains to be
explored.

We also hypothesized in the study that the barley and rice genes
in each cBR have equivalent or similar biological functions
because of their strong similarity in protein sequences and
expression patterns. Rice serves as a model plant for monocot
plant research, and has rich research resources such as a large
collection of genetic mutants and substantial genomic information.
Barley germination has been extensively studied biochemically
and physiologically. Identification of the functionally equivalent
rice and barley genes should greatly facilitate integration of
research resource and knowledge from rice and barley research. In
addition, gene expression changes in response to a biological
process are used to successfully predict functional involvement of a
gene in the biological process. However, it is often limited to a
single species. It is difficult or even impossible to distinguish
coincidentally regulated genes from those that are physiologically
important. We hypothesized that the evolutionary conservation in
the expression patterns of the inter-species and intra-species
homologous genes could be used to predict their biological
functions with a higher confidence [47,48]. Overall, the evolu-
tionary and systems strategies described in the manuscript have a
broad application in predicting genes functionally important and
equivalent in a biological process and translate the research and
knowledge across plant species with a great confidence.

Materials and Methods

Plant Growth and Harvest

Oryza sativa L. ssp. japonica (cv. Nipponbare) seeds were used
in the experiment. Plump and healthy seeds were imbibed in water
for three hours and then germinated on water-saturated germi-
nation pack in the dark at 30°C. Twenty seeds were planted in
each 15 cm diameter Petri dish and spaced evenly to reduce the
variation. The seeds at each representative time point of 0 h (dry
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grains), 21 h and 42 h were harvested. Three replications were
conducted for each time point. Each replication represented an
independent germination experiment at identical growth condi-
tion. The seeds for each replication were pooled together and
immediately frozen in liquid nitrogen, and then stored at -80
degree for RNA extraction.

RNA Purification

Plant tissue (2 g) was ground using a mortar and pestle in liquid
nitrogen followed by adding 10 mL extract buffer (4% p-
aminosalicylic disodium, 1% 1, 5-naphthalenedisulfonic acid)
and 10 ml phenol. The mixture was inverted several times, and
then 10 ml chloroform was added; and the solution was
homogenized for 45 seconds using a Polytron. After centrifuging,
the aqueous phase was transferred into a new tube. Calcofluor
white (60 ul of 10% solution) was added, mixed thoroughly and
centrifuged for another 15 min at 4°C, 12,000 rpm. RNA in the
supernatant was precipitated using 1/10 volume of 3 M NaOAc,
and 2 volume of 100% ethanol. After centrifuging, the pellet was
dissolved in 8 ml water. 5 ml of 8 M LiCl was added and the
solution incubated on ice overnight. The resulting RNA pellet,
isolated after centrifugation, was dissolved in water. RNA quality
and quantity was determined using a Nano-Drop AN1000 (Nano-
Drop, Wilmington, DE) and Agilent 2100 Bioanalyzer (Aglient,
Palo Alto, CA).

Microarray Assay and Data Analyses

Preparation of cDNA and biotin-labeled cRNA were performed
and analyzed as recommended by Affymetrix (Santa Clara, CA).
According to the manufacturer’s protocol, 10 ug of total RNA was
used in a reverse transcription reaction to generate first-strand
cDNA using SuperScript II (Invitrogen, Clarsbad, CA). After
second-stranded synthesis, double-strand cDNA was used for an in
vitro transcription reaction to generate biotinylated cRNA. 10 ug
of fragmented cRNA for each sample was used in the hybridiza-
tion. Staining and scanning steps were performed according to the
manufacturer’s recommended protocols (Affymetrix, Inc., Santa
Clara, CA).

The GeneChip probe-level data were background-corrected,
normalized and summarized based on GC-Robust Multi-Array
Analysis (RMA) approach [49]. In this approach, quantile
normalization was used to remove the variation introduced during
sample preparation, manufacturing of the arrays, and the
processing of arrays, so that GeneChips from different time points
and replicates are comparable, and expression level value for each
gene was derived from probe pairs based on a log scale linear
additive model [50].

Then pre-normalized data were analyzed with Genespring 7.2
software (Silicon Genetics, Redwood City, CA). Within each
array, a further “per gene normalize the median” (with cutoff
0.01) was applied. The most unreliable data with absent call across
9 chips based on analyzed result using Microarray Suite 5.0
(Affymetrix, Santa Clara, CA) were filtered out. Statistical analyses
were performed using a one-way ANOVA provided in Gene-
Spring 7.2 software (With Parametric Test, Variances Assumed
Equal Option; Benjamini and Hochberg multiple testing correc-
tion. FDR set at 0.05) to identify genes that were differentially
expressed among samples at any two time points during seed
germination.

Considering that the potential non-specific hybridization
between homologous genes could lead to cause an inaccurate
correlation of their expression profiles, we excluded probes flagged
by Affymetrix as potentially cross-hybridizing. The flagged probe
sets included the ones with _x _at, which designates probe sets

February 2014 | Volume 9 | Issue 2 | e87261



where it was not possible to select either a unique probe set or a
probe set with identical probes among multiple transcripts, _s _at,
which designates probe sets with common probes among multiple
transcripts from different genes and _i_at, _g at, _f at, _r at.

5

Identification of Barley-Rice (BR) Genes

The exemplar sequences of all probe-sets on Barley Genome
GeneChip and Rice genome GeneChip were downloaded for the
GeneChips used (http://www.aftymetrix.com/products/arrays).
An all-against-all reciprocal tBLASTX search was used to identify
BRs at a given sequence homology. Pearson correlation coeffi-
cients (PCCs) of logy expression values were calculated between
homologs in R. Barley and rice genes with significantly changed
expression level during seed germination were permuted to
produce 100,000 random pairs to determine the distribution of
PCCs for the randomized population. Chi-square analysis was
used for comparison of observed values between barley and rice
genes in each BR and PCCis values from randomized pairs. Chi-
square analysis was used for comparison of expression values
between observed and random pairs. The microarray data used in
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