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Abstract
Exploring the origin of multi-target activity of small molecules and designing new multi-target compounds are highly topi-
cal issues in pharmaceutical research. We have investigated the ability of a generative neural network to create multi-target 
compounds. Data sets of experimentally confirmed multi-target, single-target, and consistently inactive compounds were 
extracted from public screening data considering positive and negative assay results. These data sets were used to fine-tune 
the REINVENT generative model via transfer learning to systematically recognize multi-target compounds, distinguish 
them from single-target or inactive compounds, and construct new multi-target compounds. During fine-tuning, the model 
showed a clear tendency to increasingly generate multi-target compounds and structural analogs. Our findings indicate that 
generative models can be adopted for de novo multi-target compound design.

Keywords Multi-target activity · Deep learning · Generative modeling · Structure-promiscuity relationships · Multi-target 
ligand design

Introduction

Computational de novo and multi-target ligand design are 
important topics in the pharmaceutical research community. 
During the early stages of drug discovery, computational 
compound design is often applied to complement experi-
mental or virtual screening and identify new molecules with 
desired properties in a time-efficient manner [1]. Recently, 
deep generative models have become popular for de novo 
compound design [2, 3]. De novo design using generative 
models typically involves a two-step process. First, a genera-
tive model is trained on a large data set of known compounds 
using their SMILES [4] representations; then, the model is 
fine-tuned to generate only compounds with desired proper-
ties. The first training step enables the generative model to 
learn the syntax of molecular string representations and gen-
erate new syntactically correct strings without restrictions. 

For example, Arús-Pous et al. [5] have shown that generative 
models trained with one million SMILES were capable of 
covering the chemical space of a fully enumerated set of all 
possible molecules with up to 13 atoms. Fine-tuning of the 
generative model is either carried out using reinforcement or 
transfer learning [6, 7]. In reinforcement learning, the gen-
erative model first constructs molecules and then receives 
property-based feedback for the compounds, for example, 
by applying a bioactivity classifier. Depending on the feed-
back, the generative model updates its output to increase 
or decrease the number of structurally related compounds. 
Through iterative feedback, the model generates compounds 
that increasingly meet desired properties. In transfer learn-
ing, the model does not rely on feedback when generating 
compounds, but enters a second learning phase on a smaller 
subset of compounds with desired properties. By repeat-
edly exposing the generative model to preferred molecules, it 
learns common features and then generates new compounds 
with such features. Both fine-tuning approaches have been 
applied in different studies to optimize compounds with 
activity against individual targets [6–11].

Multi-target activity of small molecules, often also 
referred to as promiscuity, has gained much attention in the 
medicinal chemistry community over the last two decades. 
Of note, multi-target activity is often viewed controversially. 
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On the one hand, promiscuity is associated with non-spe-
cific ligand-target interactions and assay artifacts caused by 
aggregators or other assay interference compounds [12–15]. 
On the other hand, true multi-target activity provides the 
fundamental basis for polypharmacology of drugs, which 
is caused by concomitant in vivo interactions with multiple 
targets [16–19]. Polypharmacology is often essential for 
therapeutic efficacy in the treatment of multifactorial dis-
eases [16–21], but may also cause undesired side effects. 
Accordingly, the study of multi-target activity is important 
not only to better understand the fundamental basis of polyp-
harmacology, but also to control potential side effects of new 
drugs. To rationalize multi-target activity and predict multi-
target compounds, different computational approaches have 
been adopted [17, 22, 23]. Most of these predictions have 
focused on the identification of additional targets for known 
active compounds [24–31], while only few have attempted 
to predict different types of promiscuous compounds directly 
[32–35]. These latter studies have shown that promiscuous 
and non-promiscuous compounds could be differentiated 
with reasonable accuracy on the basis of chemical structure, 
indicating the presence of structural patterns that distinguish 
compounds with single- and multi-target activity. These 
studies have also revealed that nearest neighbor relationships 
between multi-target or single-target compounds strongly 
contributed to the predictions. Further exploring structure-
promiscuity relationships is expected to aid in the design of 
compounds with pre-defined multi-target activities, which 
is currently mostly attempted by combining pharmacophore 
information for different targets [36–39]. However, another 
potential route to designing multi-target compounds would 
be adapting deep generative models for this task, which to 
our knowledge has not been attempted so far.

Herein, we explore the possibility of fine-tuning a 
SMILES-based generative neural network to recognize 
multi-target compounds, distinguish them from single-tar-
get or inactive compounds, and construct new multi-target 
candidates. If structural patterns exist that are characteristic 
of multi-target compounds, a generative model should be 
able to detect these patterns via transfer learning and uti-
lize them to create new multi-target compounds. In con-
trast to other machine learning algorithms, SMILES-based 
generative models do not rely on the explicit calculation 
of substructure fingerprints or physiochemical properties. 
Neither use these models the information that compounds 
have multi-target activity, nor are they specifically trained 
to distinguish between multi- and single-target compounds. 
This added layer of abstraction enables the recognition of 
non-obvious structure-promiscuity relationships in an unsu-
pervised manner, thereby bridging between transfer learning 
and multi-target ligand design.

For this study, we used high-confidence compound sets 
extracted from biological screening data and applied the 

publicly available REINVENT model [40] for transfer learn-
ing. Through fine-tuning, we determined if the generative 
model was able to recognize multi-target compounds and 
distinguish them from single-target or inactive compounds. 
Furthermore, newly generated SMILES representations were 
analyzed following each fine-tuning cycle to assess the recov-
ery of known compounds and structural neighbors as a proof-
of-concept measure for the principal capacity of the model to 
generate new multi-target compounds.

Methods and materials

Data extraction

For the analysis, a comprehensive collection of publicly 
available PubChem screening data [41] was used after apply-
ing a number of confidence criteria. Only qualitative com-
pound assay results for human targets with the designation 
‘active’ and ‘inactive’ were considered. Assays imported 
from ChEMBL [42], BindingDB [43], or Tox21 [44] and 
revoked or ambiguously annotated assays were excluded 
from the analysis. Because the assessment of multi-target 
compounds is particularly vulnerable to false positive activ-
ity assignments, assays with a hit rate higher than 2% were 
also excluded. Furthermore, compounds with potential lia-
bilities were omitted including designated pan-assay inter-
ference compounds [45] detected with publicly available fil-
ters from ChEMBL, ZINC [46], and RDKit [47], molecules 
violating empirical medicinal chemistry rules [48], and 
others yielding aggregation alerts [49]. Finally, compounds 
with inconsistent activity annotations across different assays 
for the same target were also discarded.

Qualifying compounds were assigned to three different 
sets depending on the number of human targets they were 
active against. Screening molecules with activity against 
five or more different targets were classified as multi-target 
compounds. In addition, compounds with activity against 
only one target and confirmed inactivity against at least four 
other targets were categorized as single-target compounds. 
Furthermore, compounds with no reported activity but inac-
tivity in assays against at least five different targets were 
classified as inactive (“no-target”) compounds. Qualify-
ing compounds not meeting any of these selection criteria 
were not further considered. Multi-target compounds were 
required to be active against at least five different targets to 
ensure that they were promiscuous in nature, setting them 
clearly apart from single-target compounds.

Generative model

For generative modeling, we used REINVENT, a publicly 
available model that was originally trained on ~ 1.4 million 
bioactive compounds from ChEMBL [40].
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For our study, REINVENT was fine-tuned using a ran-
dom selection of 1000 multi-target compounds. Fine-tuning 
was carried out for 200 epochs using the ADAM optimizer 
[50]. The loss function used during fine-tuning minimized 
the negative log-likelihood (NLL) of the SMILES of multi-
target training compounds. After each training epoch, the 
NLL for the canonical SMILES of all detected compounds 
was calculated. To avoid overfitting, the SMILES represen-
tations of multi-target compounds were randomized [51].

Compound design

After each fine-tuning epoch, 1,000,000 SMILES were sam-
pled. The sampling of molecules over different epochs was 
performed using the same random seed. Accordingly, two 
identical models would sample the same SMILES. Con-
sequently, any difference in the sampled SMILES directly 
resulted from fine-tuning of the underlying generative model 
and was not a result of random sampling. The generated 
SMILES were canonicalized with RDKit and all unique 
valid SMILES were considered to represent newly gener-
ated compounds.

Molecular similarity

For each generated molecule, the extended-connectivity fin-
gerprint with bond diameter 6 (ECFP6) [52] and constant 
2048 bit format was used as a representation and Tanimoto 
similarity to multi-, single-, and no-target compounds from 
PubChem was calculated. If the Tanimoto similarity of a 
generated molecule to a PubChem compound was at least 
0.6, it was classified as a structural (fingerprint) neighbor.

Results and discussion

Compound sets

Applying high-confidence data selection criteria taking 
positive as well as negative assay results into account, 2809 
multi-target, 61,928 single-target, and 295,395 no-target 
compounds were extracted from PubChem screening assays. 
As expected, the compound data set was imbalanced, con-
taining comparably few multi-target compounds.

A random selection of 1000 multi-target compounds was 
used as a training set for fine-tuning the general-purpose 
REINVENT model. The remaining 1809 multi- and 61,928 
single-target compounds, as well as an equally sized ran-
dom subset of 61,928 no-target compounds, were used as 
test sets.

Fine‑tuning

The REINVENT model was fine-tuned for 200 epochs. After 
each epoch, the NLL for all PubChem compounds was cal-
culated. NLL values provide a quantitative estimate for the 
probability that the model will (re-)generate a particular 
compound at a given stage in the process. The resulting NLL 
value distribution is shown in Fig. 1.

Prior to fine-tuning (epoch 0), there was a notable differ-
ence in the NLL distribution between multi-, single-, and 
no-target compounds. On the basis of the NLL median val-
ues, multi-target compounds were 3–4 times less likely to be 
generated than single- or no-target compounds. Moreover, 
comparing the 75% quartile, multi-target compounds were 
10 times less likely than single- or no-target compounds.

This difference in the likelihood of generating multi-
target compounds compared to others could be rationalized 

Fig. 1  Distribution of negative log-likelihood values. Boxplots report the NLL distribution for known multi-, single-, and no-target compounds. 
Shown are the 25% quartile, the median (horizontal line), and the 75% quartile. Whiskers and statistical outliers are omitted for clarity
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by considering the derivation of the generative REIN-
VENT model [40]. The REINVENT model was originally 
trained on a large collection of bioactive compounds from 
ChEMBL, the majority of which are single-target com-
pounds [53]. ChEMBL only contains a very small propor-
tion of compounds with reported activity against more than 
five targets (< 2%), which has remained essentially constant 
over time [53]. Accordingly, the REINVENT model was tai-
lored towards single-target compounds. Prior to fine-tuning, 
the model also preferentially learned structural features from 
single-target screening compounds (but also inactive com-
pounds), as revealed by the higher likelihood of generating 
single- and no-target compounds from screening assays; an 
interesting observation.

However, after only 10 epochs of fine-tuning, the NLL 
value distributions for multi-, single-, and no-target com-
pounds were very similar including their mean values. At 
this stage, the 25% and 75% quartile displayed a difference 
of less than 0.4 NLL units.

After 30 epochs of fine-tuning, the model started to 
preferentially recognize multi-target compounds from the 
training set. Compared to the initial state prior to fine-
tuning, the median NLL was reduced by 1.5 units. This 
reduction already corresponded to a 400-fold increase in 
the likelihood to generate multi-target compounds at this 
early stage. Moreover, for the 75% quartile, the median 
NLL was reduced by 2.2. Concomitantly, the NLLs for sin-
gle- and no-target compounds slightly increased. After 50 
epochs, the median NLL value for multi-target test com-
pounds was lowered relative to the median for the other 
training compounds and the difference further increased 
during fine-tuning. Similarly, the median NLL for multi-
target training compounds consistently decreased during 
fine-tuning, as monitored in Fig. 1. After 200 epochs, the 
median NLL approached a value of 8. Taken together, 

these observations indicated that the model increasingly 
learned structural features shared by multi-target training 
and test compounds and discriminated single- and no-
target compounds, consistent with the underlying design 
idea.

Generating multi‑target compounds

Of note, the NLL values were exclusively calculated for 
the canonical SMILES of each compound. Since a com-
pound may also be represented by a variety of non-canonical 
SMILES strings, the likelihood of generating a compound is 
expected to be underestimated by the NLL calculated on the 
basis of its canonical SMILES representation. Therefore, to 
more comprehensively monitor the ability of the generative 
model to create multi-target compounds, 1,000,000 SMILES 
were sampled randomly after each epoch of fine-tuning, 
canonicalized, and filtered for PubChem compounds. The 
results are shown in Fig. 2.

Prior to fine-tuning, the model generated 3% of known 
compounds across the three different sets, with no significant 
difference between multi-, single-, and no-target compounds. 
After 25 epochs of fine-tuning, 20% of the multi-target train-
ing set, 10% of the multi-target test set, and 4% of both the 
single-target and no-target test sets were retrieved. Through-
out fine-tuning, the number of reproduced multi-target train-
ing and test compounds increased. After 200 epochs, 85% 
of the multi-target training and 21% of the test set were 
reproduced, in contrast to only 4% of the single-target and 
3% of the no-target test set. The increase in the number of 
multi-target test set compounds provided firm evidence that 
the model recognized structure-promiscuity patterns in the 
training set and used these patterns to preferentially generate 
multi-target compounds.

Fig. 2  Compound retrieval during fine-tuning. Reported is the number of retrieved multi-, single-, and no-target compounds among 1,000,000 
SMILES sampled after each fine-tuning epoch. a shows the absolute number of retrieved compounds and b the percentage for each data set
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Neighbors of multi‑target compounds

Nearest neighbor relationships were previously found to 
play an important role in distinguishing between different 
types of promiscuous and non-promiscuous compounds 
using supervised machine learning [33–35]. The influence 
of nearest neighbor relationships indicated that promis-
cuous compounds were typically more similar to other 
promiscuous than non-promiscuous compounds and vice 
versa [35]. To analyze structural neighbors of all gener-
ated compounds, Tanimoto similarity to other training and 
test compounds was calculated (excluding exactly repro-
duced compounds). As a neighbor criterion, an ECFP6 
similarity threshold of 0.6 was applied, thus focusing on 
closely related compounds. To account for the difference 
in size between the multi-target test set and the single- and 
no-target test sets, the number of detected neighbors was 
normalized relative to the size of each set. The results are 
shown in Fig. 3 (and essentially parallel the observations 
made in Fig. 2). Prior to fine-tuning, 3% of the generated 
compounds were structural neighbors of PubChem training 
and test compounds. Over the first 30 epochs of fine-tun-
ing, the number of generated neighbors increased for the 
training and test sets. After epoch 50, the absolute number 
of generated neighbors for the no-target test set decreased 
to 38,000 compounds but remained constant at 48,000 
compounds for the single-target set. For the multi-target 
training and test set, the number of neighbors increased 
throughout fine-tuning to 22,000 and 10,000 compounds, 
respectively (corresponding to 22 neighbors per training 
and five neighbors per test compound). The large num-
ber of neighbors generated for multi-target compounds 
provided further evidence for the ability of the fine-tuned 

model to recognize characteristic structural patterns and 
create structural analogs.

Figure 4 shows examples of newly generated multi-target 
candidate compounds and their nearest neighbors from the 
training and test set. In all three instances, structural modi-
fications compared to the nearest neighbor from the train-
ing set produced candidate molecules that closely resem-
bled test set compounds, hence illustrating the ability of 
the fine-tuned model to sample chemical space populated 
by multi-target compounds. The generation of such ana-
logs complemented the capacity of the model to reproduce 
known multi-target compounds, which was monitored as a 
quality criterion.

Scaffold analysis

In addition to nearest neighbor analysis, we also assessed 
the similarity between the newly generated compounds, 
training set, and test set compounds on the basis of Bemis 
and Murcko (BM) scaffold composition [54]. From each 
compound, the BM scaffold was extracted and scaffolds 
of newly generated, training, and test set compounds were 
compared. The multi-target training set was found to contain 
869 unique BM scaffolds and the multi-target test set 1463 
BM scaffolds, 1252 of which (86%) were not present in the 
training set. Furthermore, the single-target and no-target test 
sets yielded 33,977 and 34,024 BM scaffolds, respectively, 
335 and 245 of which were present in the multi-target train-
ing set, respectively. We then determined scaffolds from 
each data set that were generated during fine-tuning. The 
results are shown in Fig. 5. Prior to fine-tuning, the model 
retrieved ~ 41% of the BM scaffolds from the training and 
test sets. Over the first 25 epochs of fine-tuning, the total 

Fig. 3  Distribution of structural neighbors. Reported is the number 
of generated (fingerprint) neighbors of multi-, single-, and no-target 
compounds among 1,000,000 SMILES sampled after each fine-tun-
ing epoch. Duplicated canonical SMILES were removed and only 

unique, valid, and novel SMILES were considered. a shows the abso-
lute number of generated neighbors and b the normalized number of 
generated neighbors per known compound
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number of retrieved BM scaffolds increased for the training 
and all test sets. After epoch 25, the number of retrieved 
scaffolds decreased for the no-target and single-target test 
set to 12,119 (36%) and 13,052 (38%), respectively. For the 
multi-target training and test set, the number of retrieved 

BM scaffolds increased throughout fine-tuning to 833 (96%) 
and 905 (62%), respectively. Remarkably, the majority of the 
retrieved BM scaffolds for the multi-target test set (698 of 
905; 77%) were not present in the training set. Hence, scaf-
fold analysis provided further evidence for the ability of the 

Fig. 4  Exemplary compounds. Shown are three examples of newly generated multi-target compounds together with their nearest neighbors from 
the multi-target training and test set, respectively. In each case, the calculated ECFP6 Tanimoto coefficient  (Tc) is reported

Fig. 5  Scaffold retrieval during fine-tuning. Reported is the number of multi-, single-, and no-target BM scaffolds detected in 1,000,000 
SMILES sampled after each fine-tuning epoch. a shows the total number of BM scaffolds and b the percentage for each data set
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fine-tuned model to recognize structural characteristics of 
multi-target compounds.

Compound classification

To further explore newly generated compounds, we trained 
a decision tree ensemble classifier using the gradient boost 
algorithm from the XGBoost library [55]. The classifier was 
built to distinguish multi-target compounds from single- and 
no-target compounds. It was derived using the multi-target 
training set (positive class label) and combined random sub-
sets of 30,000 single- and no-target compounds each (nega-
tive class label). Using the remaining screening compounds 
as a test set, the classifier reached a ROC AUC score of 0.82, 
a Matthews correlation coefficient (MCC) of 0.30, and recall 
of 0.32, hence confirming reasonable accuracy.

Applying the classifier, prior to fine-tuning, 2.4% of the 
generated compounds were labeled as multi-target com-
pounds. During fine-tuning, the fraction of compounds clas-
sified as multi-target compounds steadily increased. After 
200 epochs, 26.6% of the newly generated compounds were 
predicted to be multi-target compounds. Thus, compound 
classification also supported the ability of the fine-tuned 
model to preferentially generate multi-target compounds.

Conclusion

In this work, we have attempted to fine-tune a deep genera-
tive model originally trained on bioactive compounds for 
de novo design for recognizing and producing multi-target 
compounds. Therefore, high-confidence data sets of multi-, 
single-, and no-target (inactive) screening compounds were 
assembled considering positive and negative assay results. 
Using a subset of known multi-target compounds, the pub-
licly available REINVENT model was fine-tuned using 
transfer learning, and its ability to re-generate known multi-, 
single-, and no-target compounds was evaluated on the basis 
of NLL analysis. Consistent with its derivation, the origi-
nal REINVENT model was tailored towards the generation 
of single-target compounds, but also recognized no-target 
compounds. However, fine-tuning via unsupervised transfer 
learning systematically increased the likelihood of generat-
ing multi-target compounds, while decreasing the likelihood 
of producing single- or no-target compounds. During fine-
tuning, the model regenerated known multi-target test com-
pounds at increasing rates, in contrast to single- or no-target 
compounds. Moreover, the analysis of structural neighbors 
of training and test compounds, scaffold assessment, and 
compound classification studies further supported the abil-
ity of the fine-tuned model to particularly generate multi-
target candidate compounds. Taken together, the results also 
provided evidence for the presence of structure-promiscuity 

relationships that were detected, learned, and utilized by 
the model, consistent with earlier findings. Notably, cor-
responding structural patterns were captured by randomized 
SMILES of multi-target compounds used for the fine-tuning 
and recognized in an unsupervised manner. Taken together, 
our findings provide proof-of-concept for generative de novo 
multi-target compound design. As a part of our study, the 
data sets and custom code generated for our analysis have 
been made freely available [56].

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Schneider G, Fechner U (2005) Computer-based de novo design 
of drug-like molecules. Nat Rev Drug Discov 4:649–663. https:// 
doi. org/ 10. 1038/ nrd17 99

 2. Chen H, Engkvist O, Wang Y et al (2018) The rise of deep learn-
ing in drug discovery. Drug Discov Today 23:1241–1250. https:// 
doi. org/ 10. 1016/j. drudis. 2018. 01. 039

 3. Chen H, Engkvist O (2019) Has drug design augmented by artifi-
cial intelligence become a reality? Trends Pharmacol Sci 40:806–
809. https:// doi. org/ 10. 1016/j. tips. 2019. 09. 004

 4. Weininger D (1988) SMILES, a chemical language and informa-
tion system. 1. Introduction to methodology and encoding rules. J 
Chem Inf Model 28:31–36. https:// doi. org/ 10. 1021/ ci000 57a005

 5. Arús-Pous J, Blaschke T, Ulander S et al (2019) Exploring the 
GDB-13 chemical space using deep generative models. J Chem-
inform 11:20. https:// doi. org/ 10. 1186/ s13321- 019- 0341-z

 6. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular 
de-novo design through deep reinforcement learning. J Chemin-
form 9:48. https:// doi. org/ 10. 1186/ s13321- 017- 0235-x

 7. Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating 
focused molecule libraries for drug discovery with recurrent neu-
ral networks. ACS Cent Sci 4:120–131. https:// doi. org/ 10. 1021/ 
acsce ntsci. 7b005 12

 8. Gupta A, Müller AT, Huisman BJH et al (2018) Generative recur-
rent networks for de novo drug design. Mol Inform 37:1700111. 
https:// doi. org/ 10. 1002/ minf. 20170 0111

 9. Blaschke T, Engkvist O, Bajorath J, Chen H (2020) Mem-
ory-assisted reinforcement learning for diverse molecular 
de novo design. J Cheminf 12:1–17. https:// doi. org/ 10. 1186/ 
s13321- 020- 00473-0

 10. Kotsias P-C, Arús-Pous J, Chen H et al (2020) Direct steering 
of de novo molecular generation with descriptor conditional 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nrd1799
https://doi.org/10.1038/nrd1799
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.tips.2019.09.004
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1186/s13321-019-0341-z
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1002/minf.201700111
https://doi.org/10.1186/s13321-020-00473-0
https://doi.org/10.1186/s13321-020-00473-0


370 Journal of Computer-Aided Molecular Design (2022) 36:363–371

1 3

recurrent neural networks. Nat Mach Intell 2:254–265. https:// 
doi. org/ 10. 1038/ s42256- 020- 0174-5

 11. Yang X, Wang Y, Byrne R et al (2019) Concepts of artificial 
intelligence for computer-assisted drug discovery. Chem Rev 
119:10520–10594. https:// doi. org/ 10. 1021/ acs. chemr ev. 8b007 28

 12. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A 
common mechanism underlying promiscuous inhibitors from vir-
tual and high-throughput screening. J Med Chem 45:1712–1722. 
https:// doi. org/ 10. 1021/ jm010 533y

 13. Morphy R (2009) Selectively nonselective kinase inhibition: strik-
ing the right balance. J Med Chem 53:1413–1437. https:// doi. org/ 
10. 1021/ jm901 132v

 14. Aldrich C, Bertozzi C, Georg GI et al (2017) The ecstasy and 
agony of assay interference compounds. J Med Chem 60:2165–
2168. https:// doi. org/ 10. 1021/ acs. jmedc hem. 7b002 29

 15. Stork C, Chen Y, Šícho M, Kirchmair J (2019) Hit Dexter 2.0: 
machine-learning models for the prediction of frequent hitters. J 
Chem Inf Model 59:1030–1043. https:// doi. org/ 10. 1021/ acs. jcim. 
8b006 77

 16. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many 
drug targets are there? Nat Rev Drug Discov 5:993–996. https:// 
doi. org/ 10. 1038/ nrd21 99

 17. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: 
challenges and opportunities in drug discovery. J Med Chem 
57:7874–7887. https:// doi. org/ 10. 1021/ jm500 6463

 18. Bolognesi ML, Cavalli A (2016) Multitarget drug discovery and 
polypharmacology. ChemMedChem 11:1190–1192. https:// doi. 
org/ 10. 1002/ cmdc. 20160 0161

 19. Mei Y, Yang B (2018) Rational application of drug promiscu-
ity in medicinal chemistry. Future Med Chem 10:1835–1851. 
https:// doi. org/ 10. 4155/ fmc- 2018- 0018

 20. Zimmermann GR, Lehár J, Keith CT (2007) Multi-target thera-
peutics: when the whole is greater than the sum of the parts. 
Drug Discov Today 12:34–42. https:// doi. org/ 10. 1016/j. drudis. 
2006. 11. 008

 21. Ramsay RR, Popovic-Nikolic MR, Nikolic K et al (2018) A 
perspective on multi-target drug discovery and design for com-
plex diseases. Clin Transl Med 7:3. https:// doi. org/ 10. 1186/ 
s40169- 017- 0181-2

 22. Lavecchia A, Cerchia C (2016) In silico methods to address 
polypharmacology: current status, applications and future per-
spectives. Drug Discov Today 21:288–298. https:// doi. org/ 10. 
1016/j. drudis. 2015. 12. 007

 23. Zhang W, Pei J, Lai L (2017) Computational multitarget drug 
design. J Chem Inf Model 57:403–412. https:// doi. org/ 10. 1021/ 
acs. jcim. 6b004 91

 24. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) 
PASS: prediction of activity spectra for biologically active sub-
stances. Bioinformatics 16:747–748. https:// doi. org/ 10. 1093/ 
bioin forma tics/ 16.8. 747

 25. Jenkins JL, Bender A, Davies JW (2006) In silico target fishing: 
predicting biological targets from chemical structure. Drug Dis-
cov Today Technol 3:413–421. https:// doi. org/ 10. 1016/j. ddtec. 
2006. 12. 008

 26. Nidhi, Glick M, Davies JW, Jenkins JL (2006) Prediction of bio-
logical targets for compounds using multiple-category Bayesian 
models trained on chemogenomics databases. J Chem Inf Model 
46:1124–1133. https:// doi. org/ 10. 1021/ ci060 003g

 27. Nigsch F, Bender A, Jenkins JL, Mitchell JBO (2008) Ligand-
target prediction using Winnow and Naive Bayesian algorithms 
and the implications of overall performance statistics. J Chem 
Inf Model 48:2313–2325. https:// doi. org/ 10. 1021/ ci800 079x

 28. Liu X, Ouyang S, Yu B et al (2010) PharmMapper server: a web 
server for potential drug target identification using pharmaco-
phore mapping approach. Nucleic Acids Res 38:W609–W614. 
https:// doi. org/ 10. 1093/ nar/ gkq300

 29. Koutsoukas A, Simms B, Kirchmair J et al (2011) From in silico 
target prediction to multi-target drug design: current databases, 
methods and applications. J Proteom 74:2554–2574. https:// doi. 
org/ 10. 1016/j. jprot. 2011. 05. 011

 30. Nickel J, Gohlke B-O, Erehman J et al (2014) SuperPred: update 
on drug classification and target prediction. Nucleic Acids Res 
42:W26–W31. https:// doi. org/ 10. 1093/ nar/ gku477

 31. Reker D, Rodrigues T, Schneider P, Schneider G (2014) Identi-
fying the macromolecular targets of de novo-designed chemical 
entities through self-organizing map consensus. Proc Natl Acad 
Sci USA 111:4067–4072. https:// doi. org/ 10. 1073/ pnas. 13200 
01111

 32. Jasial S, Gilberg E, Blaschke T, Bajorath J (2018) Machine learn-
ing distinguishes with high accuracy between pan-assay interfer-
ence compounds that are promiscuous or represent dark chemical 
matter. J Med Chem 61:10255–10264. https:// doi. org/ 10. 1021/ acs. 
jmedc hem. 8b014 04

 33. Blaschke T, Miljković F, Bajorath J (2019) Prediction of dif-
ferent classes of promiscuous and nonpromiscuous compounds 
using machine learning and nearest neighbor analysis. ACS 
Omega 4:6883–6890. https:// doi. org/ 10. 1021/ acsom ega. 9b004 
92

 34. Feldmann C, Yonchev D, Stumpfe D, Bajorath J (2020) Sys-
tematic data analysis and diagnostic machine learning reveal 
differences between compounds with single- and multitarget 
Activity. Mol Pharm 17:4652–4666. https:// doi. org/ 10. 1021/ acs. 
molph armac eut. 0c009 01

 35. Feldmann C, Yonchev D, Bajorath J (2020) Analysis of biologi-
cal screening compounds with single- or multi-target activity 
via diagnostic machine learning. Biomolecules 10:1605. https:// 
doi. org/ 10. 3390/ biom1 01216 05

 36. Korcsmáros T, Szalay MS, Böde C et al (2007) How to design 
multi-target drugs. Expert Opin Drug Discov 2:799–808. 
https:// doi. org/ 10. 1517/ 17460 441.2. 6. 799

 37. Wei D, Jiang X, Zhou L et al (2008) Discovery of multitarget 
inhibitors by combining molecular docking with common phar-
macophore matching. J Med Chem 51:7882–7888. https:// doi. 
org/ 10. 1021/ jm801 0096

 38. Shang E, Yuan Y, Chen X et al (2014) De novo design of mul-
titarget ligands with an iterative fragment-growing strategy. J 
Chem Inf Model 54:1235–1241. https:// doi. org/ 10. 1021/ ci500 
021v

 39. Hiremathad A, Keri RS, Esteves AR et al (2018) Novel Tacrine-
Hydroxyphenylbenzimidazole hybrids as potential multitar-
get drug candidates for Alzheimer’s disease. Eur J Med Chem 
148:255–267. https:// doi. org/ 10. 1016/j. ejmech. 2018. 02. 023

 40. Blaschke T, Arús-Pous J, Chen H et al (2020) REINVENT 2.0: an 
AI tool for de novo drug design. J Chem Inf Model 60:5918–5922. 
https:// doi. org/ 10. 1021/ acs. jcim/ 0c009 15

 41. Wang Y, Bryant SH, Cheng T et al (2017) PubChem BioAssay: 
2017 update. Nucleic Acids Res 45:D955–D963. https:// doi. org/ 
10. 1093/ nar/ gkw11 18

 42. Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL 
database in 2017. Nucleic Acids Res 45:D945–D954. https:// doi. 
org/ 10. 1093/ nar/ gkw10 74

 43. Gilson MK, Liu T, Baitaluk M et al (2016) BindingDB in 2015: a 
public database for medicinal chemistry, computational chemistry 
and systems pharmacology. Nucleic Acids Res 44:D1045–D1053. 
https:// doi. org/ 10. 1093/ nar/ gkv10 72

 44. Kavlock RJ, Austin CP, Tice RR (2009) Toxicity testing in the 
21st century: implications for human health risk assessment. Risk 
Anal 29:485–497. https:// doi. org/ 10. 1111/j. 1539- 6924. 2008. 
01168.x

 45. Baell JB, Holloway GA (2010) New substructure filters for 
removal of pan assay interference compounds (PAINS) from 

https://doi.org/10.1038/s42256-020-0174-5
https://doi.org/10.1038/s42256-020-0174-5
https://doi.org/10.1021/acs.chemrev.8b00728
https://doi.org/10.1021/jm010533y
https://doi.org/10.1021/jm901132v
https://doi.org/10.1021/jm901132v
https://doi.org/10.1021/acs.jmedchem.7b00229
https://doi.org/10.1021/acs.jcim.8b00677
https://doi.org/10.1021/acs.jcim.8b00677
https://doi.org/10.1038/nrd2199
https://doi.org/10.1038/nrd2199
https://doi.org/10.1021/jm5006463
https://doi.org/10.1002/cmdc.201600161
https://doi.org/10.1002/cmdc.201600161
https://doi.org/10.4155/fmc-2018-0018
https://doi.org/10.1016/j.drudis.2006.11.008
https://doi.org/10.1016/j.drudis.2006.11.008
https://doi.org/10.1186/s40169-017-0181-2
https://doi.org/10.1186/s40169-017-0181-2
https://doi.org/10.1016/j.drudis.2015.12.007
https://doi.org/10.1016/j.drudis.2015.12.007
https://doi.org/10.1021/acs.jcim.6b00491
https://doi.org/10.1021/acs.jcim.6b00491
https://doi.org/10.1093/bioinformatics/16.8.747
https://doi.org/10.1093/bioinformatics/16.8.747
https://doi.org/10.1016/j.ddtec.2006.12.008
https://doi.org/10.1016/j.ddtec.2006.12.008
https://doi.org/10.1021/ci060003g
https://doi.org/10.1021/ci800079x
https://doi.org/10.1093/nar/gkq300
https://doi.org/10.1016/j.jprot.2011.05.011
https://doi.org/10.1016/j.jprot.2011.05.011
https://doi.org/10.1093/nar/gku477
https://doi.org/10.1073/pnas.1320001111
https://doi.org/10.1073/pnas.1320001111
https://doi.org/10.1021/acs.jmedchem.8b01404
https://doi.org/10.1021/acs.jmedchem.8b01404
https://doi.org/10.1021/acsomega.9b00492
https://doi.org/10.1021/acsomega.9b00492
https://doi.org/10.1021/acs.molpharmaceut.0c00901
https://doi.org/10.1021/acs.molpharmaceut.0c00901
https://doi.org/10.3390/biom10121605
https://doi.org/10.3390/biom10121605
https://doi.org/10.1517/17460441.2.6.799
https://doi.org/10.1021/jm8010096
https://doi.org/10.1021/jm8010096
https://doi.org/10.1021/ci500021v
https://doi.org/10.1021/ci500021v
https://doi.org/10.1016/j.ejmech.2018.02.023
https://doi.org/10.1021/acs.jcim/0c00915
https://doi.org/10.1093/nar/gkw1118
https://doi.org/10.1093/nar/gkw1118
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkv1072
https://doi.org/10.1111/j.1539-6924.2008.01168.x
https://doi.org/10.1111/j.1539-6924.2008.01168.x


371Journal of Computer-Aided Molecular Design (2022) 36:363–371 

1 3

screening libraries and for their exclusion in bioassays. J Med 
Chem 53:2719–2740. https:// doi. org/ 10. 1021/ jm901 137j

 46. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for eve-
ryone. J Chem Inf Model 55:2324–2337. https:// doi. org/ 10. 1021/ 
acs. jcim. 5b005 59

 47. RDKit (2020) RDKit: open-source cheminformatics and machine 
learning software. https:// www. rdkit. org/. Accessed 1 Apr 2020

 48. Bruns RF, Watson IA (2012) Rules for identifying potentially 
reactive or promiscuous compounds. J Med Chem 55:9763–9772. 
https:// doi. org/ 10. 1021/ jm301 008n

 49. Irwin JJ, Duan D, Torosyan H et al (2015) An aggregation advisor 
for ligand discovery. J Med Chem 58:7076–7087. https:// doi. org/ 
10. 1021/ acs. jmedc hem. 5b011 05

 50. Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-
tion. arXiv:14126980. http:// arxiv. org/ abs/ 1412. 6980

 51. Arús-Pous J, Johansson SV, Prykhodko O et al (2019) Randomized 
SMILES strings improve the quality of molecular generative mod-
els. J Cheminf 11:71. https:// doi. org/ 10. 1186/ s13321- 019- 0393-0

 52. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J 
Chem Inf Model 50:742–754. https:// doi. org/ 10. 1021/ ci100 050t

 53. Hu Y, Bajorath J (2017) Entering the ‘big data’ era in medicinal 
chemistry: molecular promiscuity analysis revisited. Future Sci-
ence OA 3:FSO179. https:// doi. org/ 10. 4155/ fsoa- 2017- 0001

 54. Bemis GW, Murcko MA (1996) The properties of known drugs. 
1. Molecular frameworks. J Med Chem 39:2887–2893. https:// doi. 
org/ 10. 1021/ jm960 2928

 55. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting 
system. In: Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining. ACM, New 
York, NY, USA, pp 785–794. https:// doi. org/ 10. 1145/ 29396 72. 
29397 85

 56. Blaschke T, Bajorath J (2021). Data set and source code for gen-
erative multi-target compound modeling. https:// github. com/ tblas 
chke/ reinv ent- multi- target. The composition of the deposition is 
detailed in a Data Note in Future Science OA (in press)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1021/jm901137j
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.5b00559
https://www.rdkit.org/
https://doi.org/10.1021/jm301008n
https://doi.org/10.1021/acs.jmedchem.5b01105
https://doi.org/10.1021/acs.jmedchem.5b01105
http://arxiv.org/abs/1412.6980
https://doi.org/10.1186/s13321-019-0393-0
https://doi.org/10.1021/ci100050t
https://doi.org/10.4155/fsoa-2017-0001
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/jm9602928
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://github.com/tblaschke/reinvent-multi-target
https://github.com/tblaschke/reinvent-multi-target

	Fine-tuning of a generative neural network for designing multi-target compounds
	Abstract
	Introduction
	Methods and materials
	Data extraction
	Generative model
	Compound design
	Molecular similarity

	Results and discussion
	Compound sets
	Fine-tuning
	Generating multi-target compounds
	Neighbors of multi-target compounds
	Scaffold analysis
	Compound classification

	Conclusion
	References




