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Abstract: Modern plant-breeding practices have narrowed the genetic base of wheat, such that
there is a need to introduce new germplasms with underexploited diversity into breeding programs.
Wheat landraces are a very valuable resource when searching for genetic variation, which not only
possess increased adaptability, but also quality-related traits. Several studies have shown a wide
genetic diversity in Spanish wheat landraces compared to other germplasm collections; therefore,
the main objective of this study is to analyze the variability in a collection of 189 landraces from
the Spanish National Plant Genetic Resources Centre (Centro de Recursos Fitogenéticos, CRF-INIA,
Alcalá de Henares), in relation to end-use quality traits. We characterized the whole collection for
high-molecular-weight glutenin and puroindoline allelic composition, and for gluten strength. In
addition, grain protein content, grains per spike, and thousand kernel weight were evaluated in
samples from four-year field trials. The relationship between glutenin composition and quality was
evaluated, and some alleles strongly associated with high quality were identified in the collection,
some of them specific for Iberian landraces. The results also show the presence of novel variability
within high-molecular-weight glutenin and puroindolines, which needs to be characterized further
in order to assess its influence on wheat quality. In addition, a set of landraces showing outstanding
values for gluten quality and a good agronomic performance was selected for testing in field trials in
order to evaluate the suitability of their direct use in cropping systems.

Keywords: Triticum aestivum; wheat landraces; genetic diversity; HMW glutenins; puroindolines;
gluten quality

1. Introduction

Wheat is one of the three main crops grown across the world. It covers 214 million
hectares and represents a quarter of total cereal production, with 765 million tons produced
in 2019 [1]. Natural hybridization events between different species have led to the wheat
that is currently cultivated [2], including the hexaploid species Triticum aestivum spp.
vulgare (Vill.) (bread wheat, 2n = 6x = 42, AABBDD), which represents roughly 90% to 95%
of the total production. Bread wheat is an essential crop for humans; it provides 20% of total
protein and calories in daily intake through a variety of geographically derived products
(leavened breads, flatbreads, noodles, cookies, etc.) [3]. Currently, wheat production must
meet the increasing needs of a growing human population while taking into account the
uncertain climate conditions and the demand for more sustainable agriculture. Since the
Green Revolution in the 1960s, the genetic base of wheat has been narrowed because
only a small set of elite cultivars has been used for breeding [4]. In this context, wheat
landraces, specifically adapted to their region of origin and traditionally grown with less
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inputs, represent an important source of genetic variability [5–7]. Several studies have yet
to successfully identify interesting landraces that could widen the gene pools of modern
cultivars by adding underexploited diversity to wheat breeding programs [8–11].

Although the main current breeding goal is the development of stable yield cultivars,
most wheat production is used for human consumption and, thus, wheat end-use quality is
always a key breeding target [12]. The main determinants of wheat quality are endosperm
proteins, in terms of quantity and quality. Grain Protein Content (GPC) is a complex trait
affecting both nutritional value and dough rheological properties and is highly dependent
on environmental conditions [13–15]. Besides protein content, the main factor affecting end-
use quality is the prolamin composition of the wheat grain, especially the High Molecular
Weight glutenin (HMW-Gs) fraction [16]. HMW-Gs are encoded by the complex Glu-1 loci,
located close to the centromere on the long arm of homoeologous group 1 chromosomes
(Glu-A1, Glu-B1, and Glu-D1) [17]. These loci include two closely linked genes that encode
for two polypeptides: the x-type glutenin subunit and the y-type glutenin subunit [16,18].
In general, the Glu-A1 locus encodes one or no subunit, the Glu-B1 locus encodes one or
two subunits, and the Glu-D1 locus encodes two subunits [19]; therefore, bread wheat
cultivars present three to five different HMW-Gs subunits. The relationship between
HMW-Gs composition and gluten strength was established many years ago [16,20,21],
and several studies have ranked HMW-Gs alleles according to their influence on flour
quality [16,22]. The Glu-D1d, Glu-B1b, and Glu-B1c alleles, strongly associated with high
end-use quality, have been described as the most suitable to breeds for end-use value [23].
However, the identification of novel glutenin alleles and allelic combinations with eventual
superior quality will help widen the wheat breeding gene pool and is thus an important
breeding target.

Besides endosperm proteins, endosperm texture (or grain hardness) is also an im-
portant quality factor in bread wheat. Kernel texture, directly related to the amount of
damaged starch produced during the milling process, is used to classify wheats as either
hard or soft. Hard wheat grains produce more damaged starch, which results in higher
water absorption when doughs are formed [24,25] (more suitable for leavened breads),
while soft wheat kernels are easily fractured, resulting in fine flour with less damaged
starch (preferred for cookies, cakes, and pastries) [26]. Grain hardness is controlled by
two genes at the hardness locus (Ha), located on the short arm of chromosome 5D: the
Pina-D1 gene and the Pinb-D1 gene, which code for the puroindoline a and puroindoline b
proteins, respectively [25,27]. The wild-type form of these genes results in soft-textured
grains, while the absence of mutation(s) in either or both genes results in hard wheats [28].
As the major causal genes of kernel hardness, puroindolines with allelic diversities have
been extensively investigated in a wide range of wheat germplasm collections, and more
than 50 alleles have been described so far [29–33].

Landraces might harbor new end-use quality variability for breeding programs, but
their proper use requires deep characterization not only for quality, but also for agronomic
traits [34]. However, the main burden when breeding for quality is the fact that some
key quality-related traits, such as grain protein content, have been negatively correlated
with yield [35]. Yield is a complex trait determined by multiple quantitative loci that
interact with each other and with the environment [36]. This trait can be dissected into
different components, including Thousand Grain Weight (TKW) and Grain Number Per
Spike (GN) [37]. TKW is not only an essential yield component but also an important
quality trait that interacts with other quality-related traits, such as protein content, to which
it is negatively correlated [35]. GN has been shown to be less sensitive to environmental
changes than other yield components, especially in landraces [38].

In Spain, the widest collection of wheat landraces is composed of 522 Spanish ac-
cessions of Triticum aestivum ssp. vulgare (Vill.), conserved in the Spanish National Plant
Genetic Resources Centre, Centro de Recursos Fitogenéticos, INIA, Alcalá de Henares
(CRF-INIA). Given the high agroclimatic diversity of the Iberian Peninsula, these landraces,
which are locally adapted, represent a large source of genetic variability [39–41]. More-
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over, in relation to quality, several new HMW-Gs alleles have been detected in Spanish
landraces [42,43]. A recent study explored the genetic structure of a subset of this collection
and determined the existence of four different populations, representing different gene
pools for plant breeding [41]. According to the pedigrees of modern wheat cultivars, these
landraces have not played a significant role in wheat improvement [44]. Thus, the aim of
the current study is to evaluate the genotypic and phenotypic diversities in relation to the
quality and yield components of an assortment of 189 Spanish bread wheat landraces and
old cultivars compared to 18 modern bread wheat varieties. Evaluation of this material in
field trials may provide valuable information about its potential for wheat quality breeding.

2. Results

The germplasm bank codes of the studied landraces along with the commercial
varieties’ names are given in Supplementary Table S1, which also includes their genetic
profile and the data from the field trials.

2.1. Genotypic Characterization of Bread Wheat Landraces

In order to facilitate the exploitation of Spanish wheat landraces in breeding programs,
we determined their allelic profile for quality-related genes: puroindolines and HMW-Gs
subunits.

2.1.1. Puroindoline Genotyping

The allelic variation in puroindoline genes was determined in the full set by com-
paring the gene sequences to alleles available in the GenBank database. Most landraces
(95.70%) carried the wild-type soft a allele of the Pina-D1 gene, with the Pina-D1b hard-
type allele only being present in eight accessions (Table 1). For the Pina-D1a landraces,
the most frequent Pinb-D1 allele was the wild-type (soft-type) allele Pinb-D1a (80.65%).
The frequencies of the Pinb-D1b and Pinb-D1d hard-type alleles were low (2.69%). Two
additional rare Pinb-D1 alleles were found. Fifteen landraces carried an allele previously
described only in Spanish landraces and spelt wheat, not included in the Catalogue of
Gene Symbols, but tentatively classified as the allele Pinb-D1ad [45]. This allele has a C/T
change in position 271. It leads to an early stop codon in the predicted mature protein
(Q91*), which is associated with a hard texture [45]. Three landraces carried a Pinb-D1
allele that was not previously described. This allele has a G/A change in position 55, which
produces an A19T change in the predicted protein sequence. The puroindoline b protein
sequence alignment can be found in Figure S1. In the modern varieties (from now on
named the reference set), most of the varieties had the Pina-D1a/Pinb-D1a combination,
with the Pina-D1b, Pinb-D1b, and Pinb-D1d alleles being present in the same proportions.

Table 1. Frequency of the different Pina-D1/Pinb-D1 alleles observed in the bread wheat landraces and the analyzed
reference set. Endosperm texture associated with previous described alleles is also shown [27,45].

Landraces Reference Set

pinA-D1 allele a a a a a b a a a b

pinB-D1 allele a b d new1 (ad) new2 a a b d a

Endosperm
texture soft hard hard hard n.d. hard soft hard hard hard

N 150 5 5 15 3 8 8 3 3 3

% 80.65 2.69 2.69 8.06 1.61 4.30 47.06 17.65 17.65 17.65

n.d.: not described.
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2.1.2. HMW-Gs Subunits Characterization

The total set of varieties was genotyped by sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS–PAGE) and PCR for the complex Glu-1 homoeoloci (see Table S1).
The landraces showed a huge degree of variability in HMW-Gs subunit composition,
as shown in Figure 1.

Figure 1. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) patterns of bread wheat landraces
illustrating the variability in high-molecular-weight glutenin subunits (HMW-Gs) observed in the collection under study.
The subunits not previously described are highlighted in red.

Five different alleles at the Glu-A1 locus, fourteen different alleles at the Glu-B1 locus,
and nine different alleles at the Glu-D1 locus were identified in the 189 Spanish landraces
analyzed (Table 2). Several new subunits, not corresponding to any allele previously
described in the catalogue [46], were also identified: one at the Glu-A1 locus, four at the
Glu-B1 locus, and two at the Glu-D1 locus (Table 2 and Figure 1).

Table 2. Frequency of the different high-molecular-weight glutenin subunits (HMW-GS) observed
for Glu-1 loci in the 189 bread wheat landraces analyzed. The allele correspondence is indicated for
the variants that have already been designated.

Locus Allele HMW-GS N %

Glu-A1

a 1 31 16.40
b 2* 101 53.44
c null 22 11.64
y 2·· 34 17.99

New1 - 1 0.53

Glu-B1

a 7 6 3.17
d 6+8 11 5.82
e 20x+20y 89 47.09
f 13+16 30 15.87
aq 32+33 6 3.17

7*+9 7*+9 7 3.70
al 7oe+8 3 1.59
am 18 4 2.12
i 17+18 3 1.59
u 7*+8 26 13.76

New2 - 1 0.53
New3 - 1 0.53
New4 - 1 0.53
New5 - 1 0.53

Glu-D1

a 2+12 127 67.20
c 4+12 44 23.28
d 5+10 8 4.23
h 5+12 1 0.53
j 2+12* 2 1.06
l 12 3 1.59
u 2+10’ 1 0.53

New6 - 2 1.06
New7 - 1 0.53
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At the Glu-A1 locus, the most frequent HMW-Gs subunit was the 2* subunit (b allele)
found in 53.44% of the landraces, followed by subunits 2¨, 1, and null (alleles y, a, and c,
respectively) that were found in 17.99%, 16.40%, and 11.64% of the landraces, respectively.
The Glu-B1 locus was the most polymorphic, with nine previously catalogued alleles
identified, namely a, d, e, f, aq, al, am, i, and u. Among them, e, f, and u were the most
frequent (47.09%, 15.87%, and 13.76%, respectively). Other subunits/alleles were found at
a low frequency (from 0.53% for not previously described alleles to 5.82% for the d allele).
At the Glu-D1 locus, seven previously described alleles were found, with 2+12 (a allele,
67.20%) being the most frequent combination, followed by 4+12 (c allele, 23.28%). The d, h,
j, l, and u alleles were rare, being found in less than eight varieties.

In the reference set, most varieties presented the b allele at the Glu-A1 locus; the b, c,
or d alleles at the Glu-B1 locus; and the d allele at the Glu-D1 locus (Table S1).

2.2. Evaluation of End-Use Quality-Related Traits

The landraces and reference set were analyzed for Grain Protein Content (GPC) and
gluten strength, measured by the sodium dodecyl sulfate-sedimentation (SDSS) test. These
traits were evaluated in samples from four different seasons in landraces and three seasons
in the reference set (Table 3). Climatic data from the trial sites were recorded and, according
to them, water input was adequate for wheat growing in the 2017–2018 and 2019–2020
seasons (>300 mm [47]). However, 2016–2017 and 2018–2019 were especially dry; thus, the
plants likely suffered from drought stress. Moreover, in the 2016–2017 season, the highest
temperatures were achieved (Figure S2).

Table 3. Mean, range, and standard deviation for Grain Protein Content (GPC) and SDS Sedimenta-
tion (SDSS) test values.

Mean Min Max sd p-Value
Ld/Ref #

GPC (%)

2016/2017
Ld 17.59 13.97 20.96 1.24 -
Ref - - - -

2017/2018
Ld 11.51 8.97 15.44 1.16

***Ref 9.28 7.84 10.86 0.76

2018/2019
Ld 17.05 13.41 20.33 1.19

***Ref 15.30 12.96 16.96 1.15

2019/2020
Ld 14.47 11.23 18.78 1.60

***Ref 13.23 11.77 15.05 0.95

SDSS
(mm)

2016/2017
Ld 55.45 23.50 115.50 23.28 -
Ref - - - -

2017/2018
Ld 37.90 18 111 14.78

***Ref 52.28 34 69 10.44

2018/2019
Ld 41.51 10 93.50 17.02

***Ref 87.89 58.5 112 16.09

2019/2020
Ld 58.14 18.50 107.50 20.39

***Ref 83.22 66 97.5 10.89

-: data not available. #: * 0.05 > p > 0.05; ** 0.05 > p > 0.005; *** p < 0.005; ns: nonsignificant. Ld: landraces;
Ref: reference set.

2.2.1. Landrace Performances in Comparison to Reference Varieties

In landraces, mean GPC was between 11.51% and 17.59%, being significantly higher
than in the reference set varieties for the three years when both sets were sown (Table 3).
The highest GPC values were recorded in the 2016–2017 and 2018–2019 seasons, the driest
ones. With respect to gluten strength, the landraces showed significant lower mean values
(37.9 to 58.14 mm) than the reference (52.28 to 87.89 mm) set but a wider range, including
some landraces with values higher that the reference set (seasons 2017–2018 and 2019–2020).
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The lowest mean values were recorded in 2017–2018, although the range variation was
comparable between years.

Spearman’s correlation analysis was carried out between traits and between years
(see Table S2). As expected, SDSS values showed the highest positive correlation values
between years (from 0.65 to 0.85) and GPC showed lower values (from 0.34 to 0.58), as
this trait is much more dependent on environmental conditions. No correlation was found
between both traits.

2.2.2. Year and Genetic Structure in Relation to GPC and SDSS Values of Landraces

The effect of year and genetic structure ([41], see the Material and Methods section) on
the GPC and SDSS values in the set of landraces was evaluated by ANOVA and Kruskal–
Wallis tests, respectively.

Genetic structure and year had a significant effect on GPC values, and a population
× year interaction effect was also observed (Figure 2). The GPC values were higher in
dry seasons (2016–2017 and 2018–2019). Genetic population 3 showed significantly higher
GPC values than the other populations in three of the seasons; however, in the 2017–2018
season, the rainiest one, this difference was not significant, with the means for GPC in all
populations being comparable and low.

Regarding SDSS values, a genetic structure effect was observed but no population
× year effect was detected. Landraces from population 3 showed the lowest values
consistently.

2.3. HMW-Gs Influence on Gluten Strength

A Kruskal–Wallis analysis followed by a Wilcox test were conducted to determine
the effect of allelic variation at the Glu-1 loci on gluten strength measured by the SDSS
test. Although landraces with the same HMW-Gs genotype showed a wide range of SDSS
values, significant influences were detected for all loci. The highest values corresponded
to landraces with a, i, or d alleles at the Glu-A1, Glu-B1, and Glu-D1 loci, respectively
(Figure 3a–c and Table S3).

At the Glu-A1 locus, significant differences were found between the b and a, and
c and y alleles, with the b allele being associated with lower mean values. Among the
seven alleles analyzed at the Glu-B1 locus, the e allele showed the lowest SDSS values.
Significant differences between the e allele and the ones with the highest values (a, f, I, u,
and 7*+9) were found. Regarding this locus, the 7*+9 combination and i allele were the
most outstanding allelic variants for gluten strength. A significant influence of the Glu-D1
genotype was also found, with significant differences among the a, c, d, and j alleles and
with the d allele being associated with the highest gluten strength (Figure 3c and Table S4).

The analysis of allelic variation at a single locus facilitates the identification of alleles
with a relevant effect on a trait, particularly when the loci under study are highly poly-
morphic. However, gluten performance is the outcome of the interaction among different
alleles. Therefore, after analyzing the influence of each Glu-1 locus independently, we
studied the influence of the allele combinations from the three loci: Glu-A1:Glu-B1:Glu-D1
(Figure 3d and Table S5). We analyzed thirteen Glu-1 combinations presented in at least
three accessions. The combination b:7*+9:d showed the highest SDSS values, which were
significantly different from almost any other allele combination. On the contrary, the a:e:a,
b:e:a, b:e:c, c:d:a, and y:e:a combinations showed the lowest values (Figure 3d and Table S6).
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Figure 2. Effect of year and genetic structure of the collection on the (a) Grain Protein Content (GPC, %) and (b) SDS
Sedimentation (SDSS) test values (mm). The results of the Duncan (a) or Wilcox (b) multiple comparison tests of means
are included.
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Figure 3. Landrace SDS Sedimentation (SDSS) test values (mm) according to Glu-1 allele composition: (a) Glu-A1, (b) Glu-B1,
(c) Glu-D1 and (d) allele combination at the three Glu-1 loci.

2.4. Evaluation of Yield Components (TKW and GN)
2.4.1. Landrace Performances in Comparison to Modern Varieties

The landraces and reference set were also characterized for yield components TKW
and GN. These traits were recorded in samples from four different seasons in landraces
and from three seasons in the reference set (Table 4).

Table 4. Mean, range, and standard deviation for Thousand Kernel Weight (TKW) and Grain Number
per Spike (GN).

Mean Min Max sd p-Value
Ld/Ref #

TKW (g)

2016/2017
Ld 26.20 14.98 39.14 3.99 -
Ref - - - -

2017/2018
Ld 40.24 27.03 52.03 5.01

***Ref 35.11 25.73 43.71 5.13

2018/2019
Ld 27.19 16.59 37.92 3.84 ns
Ref 27.42 22.37 33.31 3.09

2019/2020
Ld 31.92 20.00 40.36 4.02

***Ref 29.84 22.08 35.60 3.87

GN

2016/2017
Ld - - - - -
Ref - - - -

2017/2018
Ld 24.67 10.25 44.75 6.31

***Ref 36.36 24.5 52.25 7.04

2018/2019
Ld 19.91 5.5 49.00 7.61

***Ref 40.16 18 57.75 8.99

2019/2020
Ld 31.76 17.00 57.80 7.24

***Ref 46.46 29.4 62.8 8.69

-: data not available. #: * 0.05 > p > 0.05; ** 0.05 > p > 0.005; *** p < 0.005; ns: nonsignificant. Ld: landraces;
Ref: reference set.
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The mean TKW values in landraces were significantly higher than that in the reference
set in two of the three years analyzed, attaining the maximum value for both sets in the
rainiest season 2017–2018 (Table 4). GN was significantly lower in landraces than in the
reference set in the three years analyzed, and the highest values for both sets were achieved
in the 2019–2020 season, the mildest one.

Spearman’s correlation analyses were carried out between traits and between years
(see Table S2). GN and TKW showed low correlation values between years (from 0.39 to 0.47
for GN and from 0.35 to 0.57 for TKW) as these traits are very dependent on environmental
conditions.

When the correlation between traits were analyzed, a strong negative correlation was
found between TKW and GPC (r = −0.72).

2.4.2. Year and Genetic Structure Influence in TKW and GN

The effect of the year and genetic structure of the collection on the TKW and GN
values in the set of landraces was evaluated by an ANOVA test (Figure 4 and Table S3).
No year × population interaction effect was detected in any case.

The variability in climatic conditions between years significantly affected TKW, with
values being higher in the rainiest season (2017–2018) and being much lower in the driest
seasons (2016–2017 and 2018–2019). The genetic structure also had a significant effect
on this trait. All populations performed significantly differently across years, and lan-
draces belonging to genetic population 3 were those that achieved higher TKW values in
every year.

For GN, year also had a significant effect, corresponding to the highest values in the
mild 2019–2020 season. Genetic populations 2, 3, and 4 showed similar values, with popu-
lation 1 being the one with the significantly lowest values for any year.
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Figure 4. Effect of year and genetic structure of the collection on the (a) Thousand Kernel Weight (TKW, g) and (b) Grain
Number per Spike (GN).

3. Discussion

In the present work, genetic variability related to end-use quality was studied in a
set of 189 Spanish landraces by characterizing the genes controlling endosperm texture
(puroindoline loci) and HMW-Gs composition (Glu-1 loci), two main quality determinants
in bread wheat.
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This study of genetic variability in puroindoline genes showed that most landraces
had the wild-type soft allele of the Pina-D1 gene. This allele, originally described by [48], is
the most common Pina-D1 allele among the wheat genotypes [49,50]. The Pina-D1b allele,
found only in eight of our landraces, was first discovered by [51] and, although extremely
rare, has been found in germplasms of diverse origins [32,52,53]. Other rare Pina-D1 alleles
have been described in cultivars from China and India [30,54], but were absent in this
collection. Regarding Pinb-D1, the a allele is normally the most frequent allele in landraces,
followed by the b and d alleles, with Pinb-D1c being very rare or even absent [45,55]. This
result is opposite to what is frequently found in modern cultivars and breeding lines, where
the hard-textured allele Pinb-D1b is the most frequent and Pinb-D1c, with a similar effect,
is also present [55–57]. These differences between modern cultivars and landraces are
probably caused by the narrow genetic variability in the breeding lines and are the result of
a selection pressure commonly attributed to hard-type cultivars. However, in our reference
set, which includes mostly cultivars sown in Spain, the allelic distribution is similar to that
of landraces, probably due to the fact that, in Spanish breeding programs, hardness has not
been included as a breeding target. Three landraces carried a Pinb-D1 allele that has not
been previously described. This allele produced a changed A19T in the predicted protein
sequence (see Figure S1). Considering that alanine is an apolar amino acid with a mainly
structural role in proteins, this change is likely to be associated with a soft texture, but this
prediction should be confirmed in the future by a phenotypic hardness analysis.

Genetic variability for HMW-Gs has been reported to account for up to 60% of the
dough strength variation in bread wheat [16]. In the present work, the allelic variations
for the Glu-A1 and Glu-B1 loci are similar to those found in previous studies on Spanish
and Portuguese landraces [42,58]. At the Glu-A1 locus, the y allele has been found at a
similar frequency to the a and c alleles in the landraces analyzed in this work. This allele
was first described in lines derived from a Portuguese landrace called Barbela [59], and
since then it has been described in very few studies. This may be due to the difficult
assignment of this glutenin subunit using only standard SDS–PAGE electrophoresis but
could also indicate that it is characteristic of Iberian landraces [42]. Regarding the Glu-B1
locus, it is worth noting that Spanish landraces present a high frequency of the subunit
pairs 20x+20y and 13+16, whereas these combinations are absent in landraces from other
regions of the world [60–64], indicating the specific conservation of these alleles in the
Iberian Peninsula. The 13+16 pair has also been described at a high frequency (88%) in
Triticum aestivum ssp. spelta from North Spain [58,65]. The HMW glutenins from the Glu-D1
locus also showed an allelic distribution similar to that found in other previous studies
on Iberian landraces [42,58,66] and Chinese landraces, where the 2+12 pair was also the
most frequent [60,61], although different from that reported in studies on landraces from
other world regions [67–69]. Some rare combinations (i.e., 5+12, 2+12*, 12, and 2+10´)
appeared at a low frequency. These combinations have been previously described in other
germplasm collections [62–64], but this is the first time that they have been reported in
Iberian landraces, probably due to the large number of and high diversity in the accessions
analyzed here.

In this work, the SDSS test was chosen to estimate end-use quality, since it is the
most suitable methodology to predict gluten strength when a large number of samples
are assessed [70]. In general, the landraces showed lower SDSS values than the reference
set but a wider range. This latter finding was expected since modern varieties are quite
genetically homogeneous regarding quality due to the small set of beneficial alleles related
to this trait selected in breeding. Accordingly, the variability in the Glu-1 loci observed in
the reference set was low and some alleles, such as Glu-A1b; Glu-B1b, c, or d; or Glu-Dd,
were the most frequent (Table S1). The wide range of variability observed in landraces, with
some outstanding varieties, indicates the existence of a high degree of genetic variability
for this trait that can be explored and further exploited in breeding.

Due to the strong influence of HMW-Gs on gluten strength, the relation between SDSS
values and Glu-1 variability was analyzed further. At the Glu-A1 locus, the a and b alleles
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have been described as being associated with high end-use quality, with both having a
more beneficial effect on gluten strength than the c allele [71]. In this work, significant
differences in SDSS values were found between the a and b alleles and between the b and
c, and b and y alleles, with the b allele performing worse than the others. The y allele,
corresponding to the 2¨ subunit, was also related to high gluten strength, confirming the
findings of previous studies [42]. At the Glu-B1 locus, the e allele showed the lowest SDSS
values. This result is in accordance with previous studies that have considered it to be a
poor end-use quality allele [71]. Significant differences between the e allele and the ones
with the highest values (a, f, i, u, and 7*+9) were found. Among all the Glu-B1 variants
examined, the 7*+9 combination and i allele were the most outstanding alleles for gluten
strength. These results confirm those obtained by other authors for the 7+9 subunits [23]
due to the fact the 7* subunit has been frequently misclassified as a 7 subunit [72]. The
7*+9 combination is present with a high frequency in European modern wheat cultivars,
in agreement with its strong relation to high end-use quality [73]. The high SDSS values
related to the f allele are of particular interest because this allele, as previously mentioned,
is characteristic of Iberian landraces [42]. In the present work, a significant influence of
the Glu-D1 genotype was found, showing significant differences in the a, c, d, and j alleles.
Glu-D1d was associated with the highest gluten strength, and c and l were associated
with the lowest. The positive influence of the Glu-D1d allele compared to a and c has also
previously been shown [23,71]. Most authors consider the c allele to be the one with the
lowest influence on the sedimentation volume, but, here, the l allele showed even lower
SDSS volume values. It should be highlighted that the influence of this allele has not been
previously established, as it is a very rare allele. Further studies are required to determine
the influence on gluten strength of the new alleles identified in the collection that could not
be addressed due to the low number of landraces (only one or two) carrying them (Table 2).

It is clear that a given Glu-1 allele can show different effects on gluten properties
depending on the genetic background and that specific allelic combinations can have a
specific influence on quality [42,43]. For these reasons, Glu-1 allele combinations were
analyzed. Among the thirteen different combinations that were analyzed, b:7*+9:d showed
the highest SDSS values, being significantly different from almost all other allele combina-
tions. This is according to the strong positive effect observed for each of these alleles and in
contrast to that observed with the b:u:a, combination, which achieved the second-best SDSS
values, but was composed of alleles for which the individual influence was not remarkable.
On the other hand, the a:e:a, b:e:a, b:e:c, c:d:a, and y:e:a combinations showed the lowest
values. This supports a strong negative influence of the Glu-B1e allele, even if some alleles
with a positive effect, such as Glu-A1a and Glu-D1a, are present (Figure 3).

GPC is a parameter that is related to grain quality, but it is not significantly influenced by
HMW-Gs subunits composition. We found a negligible correlation between GPC and SDSS
(r = 0.074), which is in accordance with some authors [22,64,74], who showed that dough
strength is independent of GPC, although the expression of a high-quality genotype requires
enough protein content. The genetic components of GPC have been extensively studied
in bread wheat [75–78], but GPC and yield are both largely influenced by environmental
conditions (e.g., [79–81]). In this work, year had a significant influence on this trait and, as
expected, higher GPC content values were observed in the driest seasons [82,83]. However,
a higher GPC was consistently observed in the landraces compared to the reference set, in
agreement with other studies that have shown that landraces have high GPCs compared to
modern varieties, probably due to a dilution effect in the higher-yielding modern cultivars,
which may be of particular interest for low-input cropping systems [84,85].

Although breeding for quality must be a key target of a wheat breeding program,
yield is a major determinant of crop value and the main goal of any program. The inclusion
of landraces in quality breeding programs will be favored if they have good agronomic
values. Field characterization can aid breeders when selecting local donor materials that
ensure good end-use properties in the derived elite cultivars without high detriment to
agronomic performance. In addition, although landraces perform worse than modern
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varieties in terms of yield, their yield stability can be higher since they are more resilient to
adverse conditions and can have a better performance in unfavorable conditions [86–88]. It
has been proposed that landraces could provide genetic diversity that may contribute to
improved yields in rainfed agroecosystems, where heavier kernels may compensate for
lower spike fertility [89,90].

With this aim, the collection of landraces besides the reference set was evaluated for
agronomic performance in four-year trials, in which the yield components TKW and GN
were evaluated. TKW is important because it not only determines the flour yield, but
also affects the milling quality of wheat grains [91] and because it has been associated
with increased grain yield in low- and intermediate-yielding environments [89]. TKW
was significantly higher in landraces compared to the reference set in almost every year
analyzed and had outstanding values. The water deficit in two of the seasons reduced the
TKW values, as reported in other studies [85,92,93]. GN was significantly lower in landraces
compared to the reference set, which also agrees with the results of other studies [85]. GN is
one of the more stable yield components and is positively correlated with yield, mainly in
the driest years [85]. In this work, correlations between traits showed a high and negative
correlation between GPC and TKW. A negative correlation between both traits has been
found in other studies [64]. Traditionally, high-grain-yielding varieties have been associated
with lower-quality parameters, mainly because of the inverse relationship between protein
content and grain yield [14,15,94]. Yield is positively associated with GN and TKW, and
the two components are usually negatively correlated [37], but, in this work, no correlation
was observed between them.

For TKW and GN, as well as for GPC, the influence of the genetic structure was
observed. This supports the existence of different gene pools in the landrace collection that
can be explored further in relation to wheat improvement. It is interesting that landraces
from population 3 showed high TKW and GPC values, in spite of the negative correlation
found between these variables. This group of landraces have a diverse eco-geographical
origin, but, with population 4, are the most genetically different from modern cultivars [41].

Combining all the traits analyzed, a set of fifteen landraces with high SDSS values and
high TKW and GPC values were selected to be characterized further and more deeply in
field trials for agronomic performance and for other parameters related to end-use quality
(Figure S3 and Table S7). This will allow us to assess their suitability for direct use in
farming agrosystems focused on the cultivation of traditional varieties. Interestingly, the
landraces selected have very different HMW-Gs compositions (Figure S3 and Table S7),
with some of them carrying allele combinations associated with high quality (such as
BGE008221) and with some of them carrying poor-quality allele combinations (such as
BGE012591). This supports the influence of other genetic factors affecting wheat quality,
which have not been evaluated in this work (such as Low-Molecular-Weight Glutenins
(LMW-Gs)), and the suitability of this material for association mapping studies aiming to
identify new genomic regions that influence the end-use quality of bread wheat. There
are other examples of Spanish landraces whose good quality performance is unexpected
according to their HMW-Gs genotype. Some of them are used in the elaboration of artisanal
baking products, which are currently highly appreciated by consumers [85,95].

4. Materials and Methods
4.1. Plant Material

For this study, a set of 189 bread wheat landraces and old cultivars were selected
from the Spanish national collection of Triticum aestivum subsp. vulgare (Vill.) maintained
in Spanish National Plant Genetic Resources Centre (Centro de Recursos Fitogenéticos,
CRF-INIA, Alcalá de Henares). All these accessions were homozygous lines derived
from GenBank-original accessions, chosen based on their collection site data and agro-
morphological characteristics to represent all of the different ecological and geographical
areas of Spain [96]. This set was previously analyzed at the genomic level, and the acces-
sions were clustered into four genetic populations, representing different gene pools [41].
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Additionally, this study included a set of 18 modern bread wheat varieties composed
of the cultivars most widely grown in Spain during the last 50 years. A complete list of
the materials is presented in Table S1. Passport and characterization data on each of the
entries can be retrieved from the CRF-INIA germplasm database (http://webx.inia.es/
web_inventario_nacional/Introduccioneng.asp, accessed on 23 March 2021).

4.2. DNA Isolation and Genotyping

For each accession, genomic DNA were isolated from young leaves of one plant using
a modified CTAB method [97].

In order to characterize puroindoline genotypes, the Pina-D1 and Pinb-D1 genes were
amplified as described in [98]. The PCR-amplified fragments were purified with sepharose
columns and sequenced using capillary electrophoresis at Macrogen (Macrogen Europe,
Amsterdam, The Netherlands). The sequences were analyzed with Genious version 9.1.8
sequence analysis software [99]. The gene sequences were compared to those available
in the GenBank database (Pina-D1a: NCBI ID KT885195; Pinb-D1a: NCBI ID KT885196;
Pinb-D1b: NCBI ID KT885197; Pinb-D1d: NCBI ID KT885198; and Pinb-D1ad: NCBI ID
JX187515) and translated to proteins for analysis with the same software.

The total set was also genotyped for the complex Glu-1 homoeoloci [41], which encodes
the HMW-Gs subunits. For this analysis, endosperm proteins were extracted from single
seeds according to [100] and fractionated by sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS–PAGE) using 12% polyacrylamide gels, as described by [101].
Some subunits (7oe, 7*, and 2¨) were confirmed by PCR analysis [42,72,102]. HMW-Gs
allele classification was performed according to the Catalogue of Gene Symbols for Wheat
2013 [46].

4.3. Grain Quality and Yieldparameters

All landraces were sown for four consecutive years. In the first year (season 2016–
2017), the accessions were sown in an augmented design in plots of four rows (1 m long) in
Alcala de Henares (40◦31’17,8” N, 3◦17’33” W, Madrid). In the following years (seasons
2017–2018, 2018–2019, and 2019–2020), landraces and the reference set were sowed in
the same conditions in the experimental fields of the School of Agricultural, Food, and
Biosystems Engineering (ETSIAAB, Universidad Politécnica de Madrid; 40◦25’ N, 3◦42’ W).
Daily meteorological data were recorded over the period of study (autumn 2016 to summer
2020) at weather stations located near the growing areas. The average monthly precipitation
and the minimum and maximum temperatures from October to June are shown in Figure S2
(Supplementary Materials).

The number of Grains per Spike (GN) was recorded according to the International
Board of Plant Genetic Resources (IBPGR) from at least five different spikes in each ac-
cession. After harvest, Thousand Kernel Weight (TKW) was estimated for all accessions,
and a sample of 15 g was ground in a Tekator mill for quality analysis. Protein content
on dry matter (GPC) was estimated by near-infrared reflectance analysis (NIR) using a
PerCon Inframatic 8600 (Perten Instruments AB, Sweden). Gluten strength was determined
on 1 g of whole grain flour samples by an sodium dodecyl sulfate -sedimentation (SDSS)
volume test, according to Dick and Quick (1983) [103] with minor modifications. Technical
duplicates were used in GPC measurement and the SDSS tests.

4.4. Data Analysis

All statistical analyses were performed with the software R version 3.5.2 [104]. Mean,
standard deviation, and maximum and minimum values were calculated for landraces and
reference varieties for the four seasons. The Shapiro–Wilk normality test was applied to the
four variables: GPC, SDSS, TKW, and GN (p-value < 0.01). For a better fit to normality, a
logarithmic transformation was performed for GN before further analysis. For SDSS, no
transformation gave a better fit to the normal distribution; therefore, the original values
were used in the analysis. A t-test (p-value < 0.05 for GPC, TKW, and GN) or a Wilcox

http://webx.inia.es/web_inventario_nacional/Introduccioneng.asp
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test (p-value < 0.05 for SDSS) was used to compare means between landraces and reference
varieties. Spearman correlations between years and variables were calculated (p-value < 0.05).
Homocedasticity was checked using the Levene test. The effect of year, the genetic structure
of the collection, and their interaction were evaluated by ANOVA for TKW, GN, and GPC
(p-value < 0.05). Duncan’s method for multiple mean comparisons was used to study the
effect of genetic structure on these variables for each season. For the same purpose and to
analyze the relationship between SDSS value and the allelic variation at the Glu-1 loci, the
nonparametric Kruskal–Wallis (p-value < 0.05) and Wilcox tests (p-value < 0.05) were used.
Alleles found in less than three landraces were excluded from this analysis.

5. Conclusions

In this work, the genetic variability of quality-related genes was evaluated in a set
of Spanish wheat landraces. New alleles for puroindolines and HMW-Gs subunits were
identified, although the potential of this new variability needs to be studied further by
a segregating populations analysis. Moreover, the influence of HMW-Gs variability in
gluten strength revealed that some alleles that are not present in modern cultivars, such as
Glu-A1y and Glu-B1f, which is related to Iberian material, may be of particular interest in
breeding for quality. The four-year trials allowed us to identify landraces with outstanding
values. As this collection has been previously throughput genotyped [41], these data in
combination with the results obtained in this work can be very valuable in identifying
genomic regions associated with quality- and yield-related traits using Genome Wide
Association Studies (GWAS). In addition, several interesting landraces that showed high
gluten strength and high GPC will be characterized more deeply in field trials to assess
their suitability for organic cropping systems, where yield is not as important as the
quality-added value provided.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10040620/s1, Table S1. Accessions genetic profile and data from the field trials. Figure S1.
Alignment of the puroindoline b predicted protein sequence for each allele: the polymorphism
characteristic of each allele is highlighted. Figure S2. Monthly rainfall (mm) and mean maximum
(Tmax, T ºC) and minimum (Tmin, T ºC) temperature recorded from October to June at the field trial
sites during (a) 2016–2017, (b) 2017–2018, (c) 2018–2019, and (d) 2019–2020. Table S2. Spearman’s
correlation among (A) traits and (B) years for Thousand Kernel Weight (TKW), Grain Protein Content
(GPC), Grain Number (GN), and SDS Sedimentation (SDSS) test. Table S3. Mean, standard deviation,
and F values for the effect of the Glu-1 loci on the SDS Sedimentation (SDSS) test values (mm).
Table S4. Wilcox test for the Glu-A1, Glu-B1, and Glu-D1 alleles. Table S5. Mean and standard
deviation of SDS Sedimentation test (mm) values for Glu-1 allele combinations. Table S6. Wilcox
test for allele combination Glu-A1:Glu-B1:Glu-D1. Table S7. Mean and standard deviation for SDS
Sedimentation (SDSS) test (mm), Grain Protein Content (GPC, %), and Thousand Kernel Weight
(TKW, g) for a selected set of landraces and their HMW-Gs compositions. Figure S3. Set of fifteen
landraces selected (in red) based on SDS Sedimentation (SDSS) test values (mm), Thousand Kernel
Weight (TKW, g) and Grain Protein Content (GPC, %) to be further and deeply characterized in
field trials.
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